
Research Article
Design and Analysis of Machine Learning Based Technique for
Malware Identification and Classification of Portable Document
Format Files

Sultan S. Alshamrani

Department of Information Technology, College of Computer and Information Technology, Taif University,
P.O. Box 11099, Taif 21944, Saudi Arabia

Correspondence should be addressed to Sultan S. Alshamrani; susamash@tu.edu.sa

Received 5 July 2022; Revised 26 August 2022; Accepted 7 September 2022; Published 21 September 2022

Academic Editor: Muhammad Faisal Amjad

Copyright © 2022 Sultan S. Alshamrani. 'is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Modern day antivirus software, which is available commercially, is incapable of providing the protection from the malicious
portable document format (PDF) files and thus considered as a threat to system security. In order to mitigate the same to some
extent, a new PDF malware classification system based on machine learning (ML) is introduced in this paper. 'e novelty of this
system is that it will be inspecting the given PDF file both statistically and dynamically, which in turn will increase the accuracy of
finding the correct nature of the document. 'is method is nonsignature-based and hence can possibly distinguish obscure and
zero-day malware.'e experiment is carried out for this system by deploying five different classifier algorithms to find out the best
fit for the system. 'e best fit approach is analyzed by calculating the true positive rate (TPR), precision, false positive rate (FPR),
false negative rate (FNR), and F1-score for each of these classifier algorithms. Comparison of this work is carried out with
previously existing PDF classification systems. A malicious attack on to the proposed system is also implemented, which will in
turn obfuscate the malicious code inside the PDF file by making it hidden during the parsing phase by the PDF parser. It has been
inferred that the proposed approach achieved F1-measure of 0.986 by using the random forest (RF) classifier in comparison to
state-of-the-art where F1-measure was 0.978. 'us, our approach is quite effective in the identification of the malwares when
embedded in the PDF file in comparison to the existing systems.

1. Introduction

In the current generation of the digital world, most of the
activities are centric towards the usage of the Internet, and
thus, it becomes more important to safeguard our appli-
cations, data, and information in the presence of various
attackers who are always trying to devise new malicious
codes and attacks to compromise the resources. Hence,
malware analysis becomes one of the prime concerns today
as various malwares are generated by attackers and even
their properties are changing very rapidly day by day.
Nowadays, malware is not the same one that was there
before as they change its signatures with time and thus
difficult to trace. So, identification and classification of the
latest malware is one of the most sought-after areas of

research. 'ere are majorly two ways for malware identi-
fication: one is a signature-based detection technique and
the another one is behavior-based. 'e signature-based
technique is quick and efficient only for identifying known
malware and the behavior-based technique is able to identify
unknown and complex malware to some extent using
machine intelligence and other approaches, but the be-
havior-based technique is a complex one. None of the
methods can detect all kinds of malware, especially when the
count of malware is increasing day by day. In the signature-
based approach, unique signature is created by using the
attributes of the underlying object. 'e presence of digital
signature is efficiently detected by scanning the object by the
algorithm. In the behavioral-based approach, intended ac-
tions of objects are evaluated before such actions are carried

Hindawi
Security and Communication Networks
Volume 2022, Article ID 7611741, 10 pages
https://doi.org/10.1155/2022/7611741

mailto:susamash@tu.edu.sa
https://orcid.org/0000-0001-8194-9354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/7611741


out. 'is approach analyses the potential behavior of any
actions carried by objects before the actual execution of
behavior. 'e older malware was easy to detect as they were
able to hide their features, but the malware uses different
techniques like obfuscation [1–4] to hide their identity for a
longer span and even they can bypass the firewall and other
security checks present in the network or system. Also,
multiple types of malwares are used to launch the attack, so
the effects are more devastating.

'ere are majorly two ways for analyzing the malware:
static and dynamic. In the static approach, malware is
inspected without running the code it embeds, whereas in
the dynamic approach, it is inspected by running its code
[5, 6]. 'us, malware identification is one of the foremost
steps in themalware analysis process.'e static analysis does
not require executing any malware samples and is very
simple. 'ere is no need to cover each phase of the process
while performing static malware analysis. Dynamic analysis
involves the detailed analysis for malware detection. A
complete behavior of actions is thoroughly analyzed, while
the process remains under execution. 'is analysis requires
detailed monitoring for processes. Classification of malware
is also important as identification is. 'e various categories
of malware are viruses, trojan horse, worms, rootkits, ran-
somware, and key logger. 'ere are various ways by which
the classification can be carried out for malware such as
feature-based techniques [7, 8] and image classification
where the binary values are transformed to image. So, for
better classification, more information will be fruitful [9, 10].
For better classification, good classifiers are required to be
developed for the better and accurate classification of
malware using some latest machine intelligence techniques.

One of the most widely used document formats is PDF.
Despite the general public’s ignorance, it quickly emerged as
a critical attack vector for computers. Hackers may take over
a victim’s computer using dozens of flaws found in adobe
reader. In addition, antivirus software developers have a
difficult time protecting PDF files from assaults because of
the file’s complex internal structure and the vast variety of
obfuscation techniques already in use [11]. Most of us send
attachments in the PDF format since it is recognized for its
mobility and small weight. However, we have no idea what
kinds of assaults these files may be used for or propagated to.
'e three primary forms of PDF malware are vulnerabilities,
phishing, and exploitation of PDF features. Vulnerability in
the PDF reader’s API is exploited by exploit kits, allowing the
attacker to run an arbitrary code on the compromised
machine. In most cases, JavaScript code is included in the file
to do this. However, in phishing assaults, an unsuspecting
file is used to trick the user into clicking on an infected link.
'ese campaigns have just lately been uncovered, and they
are significantly more difficult to recognize. A malicious
programmay be downloaded or a website’s login credentials
may be stolen by any of these assaults.

'e static analysis makes use of some techniques for
identification such as file format inspection, string extrac-
tion, fingerprinting, which primarily used hash code values,
antivirus scanning, and disassembly where the machine code
is changed to assembly language [12]. Static methods are the

time taking ones and also more based on behavior analysis of
malware. But in the dynamic approach, the behavior is
monitored, while the file is executing for any malware
identification. So, it has more leverage to identify the
malware. Similarly, detection of malware is primarily done
through two ways: one is signature-based where the pre-
defined signatures, if there are any, of malware are used for
detection and the other one is a heuristic-based approach
where multiple factors are used that contrasts the malicious
behavior. One of the challenges in the signature-based ap-
proach is that attackers develop the malware by changing
their signatures so many times that they are hard to trace.
Hence, the heuristic approach is more favorable owing to its
capacity to identify polymorphic and some latest attacks.

Using heuristics, sequences of code, and string com-
parison, signature-based algorithms may determine if a PDF
is benign or malicious. However, this has not been dem-
onstrated to be effective against stealth assaults of the present
day. If one wants to find the hidden malicious behaviors of a
particular file, dynamic approaches are more successful since
they run the file in a supported environment and analyze the
process it goes through as well as the API calls it makes and
build a thorough record of its activities. One may learn a lot
about a file’s characteristics by looking at the execution log.
Because the attributes that are employed to identify malware
vary depending on the approach, this is true for all methods
of malware detection. Like in a signature-based byte se-
quence, all methods of malware detection,such as Dynamic
link libraries (DLL), behavior-based API and system calls,
heuristic used operation code, context-free grammars, and
some new techniques such as mobile-based used android
permissions and system calls are used [13].

'e novelty of the proposed approach given in this paper
is signature-less driven criteria. 'e suggested model will
evaluate the API calls processes inside the PDF file and will
thus look for the activities that will be performed throughout
the file’s processing. 'e detection may be dependent on the
system calls and JavaScript files inside the PDF file that have
been evaluated. 'e data mining technique is used in this
system to collect information from API requests. It is
possible to categorise a particular file as being either “Or-
dinary (O)” or a “Potentially Malicious (PM)” based on the
retrieved characteristics and statistics. Finally, these results
are sent via the classification block which maps the gathered
information with the algorithm’s findings and classifies the
file as “correct” or a “malicious” file.

'e main highlights of this paper are as follows:

(1) It provides a novel ML-based malware identification
approach for the PDF files

(2) It provides the training and testing implementation
of the proposed model under the various ML
approaches

(3) It also highlights the efficiency of the proposed ap-
proach under the simulated malicious attack

'e paper is divided into the sections as per their rel-
evance. 'e work already done in the context of malware
identification using the ML and PDF file based has been

2 Security and Communication Networks



elaborated in Section 2. 'e proposed techniques have been
defined in Section 3, which is followed by the dataset details
under Section 4. Results and the inference drawn have been
defined in Section 5. Also, the comparative analysis with
existing models has been done in Section 6. Conclusion is
highlighted in Section 7.

2. Related Work

In this part of the paper, the researchers’ main efforts are in
detecting and classifying malware using machine learning
(ML) and other approaches. Also, the work done pertaining
to the file types that are utilized for the malware identifi-
cation has also been expressed.

2.1. Malware Identification Related Work. Malware analysis
focuses on finding the operation modus of malware and how
it affects the programs and systems. Historically, signature-
based identification approaches were widely used. 'is
technique works against known malware quickly and ef-
fectively but does not work with respect to the zero-day
malware properly [14, 15]. A malware identification
framework oriented on the genetic algorithm (GA) and
signature generators [16] was proposed by authors. While
the authors claim that this methodology may identify un-
known malware, the paper does not include significant
information for the proposed framework, such as testing
results, the amount of malware studied, and a comparison to
other current studies. Fukushima et al. have defined [17] a
behavior-based detection method. New and encrypted
malware may be detected using the proposed approach on
Windows OS. In [18], a supervised ML method is suggested.
'e model utilized an SVM kernel basis that weighs the
frequency of each library call for the detection of Mac OS X
malware.

Recently, with the advent of intelligence techniques, ML
has also become one prominent way in malware analysis.
Deep learning is an ML subcomponent, which is a heritage
from artificial neural networks (ANNs). It is a novel method
and is widely utilized for the analysis of images and au-
tonomous cars, but is not enough for virus detection. Al-
though it quite effectively and significantly decreases the area
for features, it does not prevent assaults from evasion.
Shabtai et al. [19] proposed taxonomy for malware identi-
fication by reporting certain sorts of functions and selecting
features in the literature, using ML methods. 'ey focus
largely on the selection of features. In [20], author has
provided a detailed survey of ML for malware analysis. 'ey
have mentioned the challenges of datasets and the ways to
overcome them. Image transformation with ML is used for
malware identification by the author where the convolution
neural network (CNN) is utilized [21]. Similarly, the work in
the direction of tools usage and framework representation
for the malware analysis has been carried out by the re-
searchers recently [22–25].

2.2. File-BasedMalware IdentificationRelatedWork. In [26],
authors examined PDF design and JavaScript information

included in PDFs from top to bottom. With regard to design
and metadata, they created an extensive set of capabilities,
such as the count of bytes per second, the encoding scheme,
object names, catchphrases, and comprehensible strings in
JavaScript. Also, when the characteristics vary, it is difficult
to create antagonistic models since little changes are strong
for AI calculations. 'ey built up a classification model
utilizing discovery type models keeping structures and data
features to limit the danger of ill-disposed assaults. To ap-
prove the proposed model, they fabricated an adversarial
attack. In [27], authors have presented an outline of the PDF;
also, the current assaults are used to be carried out on PDF
malware through solid assault models gathered in nature.
'ey depicted how to play out a measurable examination of a
PDF record to discover the proof of implanted malware
utilizing programming strategies. 'ey examined some of
the new PDF malware detection apparatuses dependent on
AI that can uphold computerized scientific examinations;
recognizing dubious documents before a more profound, a
more definite statistical evaluation is released. 'ey exam-
ined the PDF constraints and other open issues, particularly
regarding the misuse of their weaknesses to possibly mis-
direct resulting measurable investigations. At last, they
recommended tips for improving the exhibition of such
frameworks enduring an onslaught and sketch promising
analysis. In [28], authors have focused on the malware
implanted in PDF files as a delegate instance of modern-day
cyber-attacks. 'ey started by giving a scientific classifica-
tion of the various methodologies used to produce PDF
malware. To combat PDF malware classifiers based on
learning, they have utilized an adversarial AI structure that
has been shown effective. For example, this method enables
us to identify existing flaws in learning-oriented PDF
malware locators and to identify fresh attacks that may
jeopardize such frameworks, along with the possibility of
protective measures. In [29], authors have planned and
executed a novel framework called AIMED, utilizing he-
reditary calculations to sidestep malware classifiers. 'eir
tests proved that an opportunity to accomplish ill-disposed
malware tests can be diminished up to half, contrasted with
exemplary arbitrary approaches. Also, they carried out
AIMED to create ill-disposed models utilizing individual
malware scanners as target and tried the adversarial docu-
ments against additional classifiers from both examination
and industry.'e created models accomplished up to 82% of
cross-avoidance rates among the classifiers.

In [30], authors have exhibited how the most pessimistic
scenario conduct of a malware classifier regarding explicit
vigor properties can be evaluated. Besides, they found that
preparation of classifiers that fulfill officially checked vigor
properties can build the avoidance cost of unbounded as-
sailants by dispensing with straightforward assaults avoid-
ances. 'ey proposed another distance metric that works on
the PDF tree structure and determined two classes of
strength properties including subtree inclusions and era-
sures. 'ey used the best in class irrefutably vigorous for
preparing a strategy to construct strong PDF malware
classifiers. A PDF malware classifier, PDFrate, is used by the
authors later in [31] to evaluate their methods. Using data

Security and Communication Networks 3



from a real network, they demonstrate that high quality
classifier arrangements can make the majority of predic-
tions. It is clear that the classifier cannot reliably predict the
outcomes of most avoidance efforts, including nine focusing
on imitation scenarios from two current projects. Over
100,000 PDF files as well as 100,000 Android apps are part of
their evaluation. In [32], authors presented “Hidost,” the
primary static AI based malware discovery framework
intended to work on various file extensions. Broadening a
formerly distributed and profoundly viable strategy, it
consolidates the coherent design of documents with their
substance for better identification precision. On account to
its specific plan and general list of capabilities, it is extended
to differentiate organizations whose coherent design is co-
ordinated as a chain of command.

In [33], authors presented a novel AI framework for
automating the discovery of malicious PDF files. Both of
the structure and data in the PDF are extracted, and a
sophisticated parsing mechanism is included. As a result, a
broad range of malware may be distinguished, comprising
parsing-based and non-JavaScript malware. Additionally,
with a cautious decision of the learning calculation,
their methodology has given an altogether higher exactness
contrasted with other static examination methods,
particularly within the sight of ill-disposed malware
control.

To identify JavaScript-induced malware, the authors of
[34] employed AI algorithms to get a sample of API ref-
erences that depict the malicious code. An important ap-
plication area was examined in this investigation, namely,
the placement of the malicious JavaScript code in PDF files.
Although their training data contained instances of malware,
they demonstrated that their strategy has been able to
identify new malware even when it was introduced into an
existing system that had not previously been exposed to such
malicious code. In [35], authors built up a framework that
utilizes various feature selection and AI-induced techniques
to set up the attributes of typical JavaScript code.

3. The Proposed Approach

PDF documents include a header, body, cross-reference
table (CRT), and a trailer. Components in the body include
information about the document itself, while the header
provides the information about the document’s current
version. Tables used to connect to objects are included in the
CRT.'e root object and the table locations of the objects in
the body area are included in the trailer part.

'e proposed ML-based malware categorization tech-
nique is explained here. For the most part, this system is
designed to scan the PDF file being inspected, sort out its
internal code, and determine if it is good or dangerous. 'e
hacker’s attempts to obfuscate file headers have also been
found to be blocked by the mechanism in place. 'is
technique does not identify the malware family contained
inside a particular file, but it does accurately classify the file’s
type [36]. System’s categorization procedure of the proposed
work is shown in Figure 1. Even if this is a high-level system
design, it provides a better idea of how the classifier is

implemented. To begin the inspection procedure, the PDF
file document must be uploaded to the system. After the
document is submitted, it is first analyzed for its information
and structure. It is tagged for additional assessment if it
follows the pattern of known harmful files. 'is saves a lot of
time and improves speed. In other circumstances, when it
does not fit the pattern of hostile instances, the feature
extraction module analyses the whole file structure and
derives the features from it. It is then given to the classifier
component for evaluation once characteristics have been
extracted from the PDF. 'e main ML algorithm is located
in the classifier component, and it is this algorithm that is
responsible for thoroughly examining the information
provided by the feature extractor component [37]. 'e
classifier will categorise the PDF file as either a “correct” or
an “infected” file after doing the necessary data analysis.

'ere may be some suspicious API references in the code
that can only be discovered via the dynamic code assess-
ment, which can only be done through a new static analysis.
'e static and dynamic code inspection both employed the
same monitoring method as with the PhoneyPDF to keep an
eye out for any API references. SpiderMonkey and Rhino are
two examples of open-source facilitators that have been used
to conduct dynamic investigations in the past.'e JavaScript
ECMA standard is seen by these translators, but they are
unable to comprehend JavaScript connections to the Ac-
robat PDF format, unless Adobe DOM duplication occurs
[38].

A reference design is developed by selecting a subset of
API reference that depicts the harmful JavaScript code.
Using a collection of PDF files that are either clean or
malicious, our system can automatically build a specific set.
Acrobat PDF API perceives all JavaScript objects, strategy,
and capacity constants as part of the “H” arrangement. 'is
enables us to define “Φ” as the arrangement of all JavaScript
objects, strategy, and capacity constants as well as constants.
'e total number of harmful and nonmalicious files is equal

Initial Evaluation

Input PDF

Feature Extraction

ML Classifier

Clean Malicious

Trained System

Predictions

Figure 1: Proposed layout working of the model.

4 Security and Communication Networks



to M. 'e following equation depicts the characteristic set
provided by all of the references.

􏽘

M

i�0
(Φ(H, i))> threshold. (1)

Also, it is to be noticed that Φ(H, i) may be holding two
values and signifies −1 and +1. Also, if result comes out +1,
then it signifies malicious PDF. If the value is −1, then it
signifies that the file is a safe one.

4. Dataset Details

An overview of the dataset is provided in this section that is
used in this proposed research. Following the benign set,
the malicious dataset that we analyzed was provided. A
total of 1200 PDF samples, both malicious and safe, have
been obtained for the investigation. An 800-sample
training set has been employed, and 400 samples have been
used for testing as depicted in Table 1. It must have been
important to have a ratio of good files to malicious files in
the training and testing sets of 1 : 1. 'e majority of the
samples are based on genuine cyber-attacks that have been
made public. Samples are gathered from a variety of lo-
cations over the Internet.

Because the JavaScript code is included in many of these
PDF files, some classifiers believe they are all malicious
because of the file’s large size.'e approach in this work, on
the other hand, does not use file size as a criterion for
determining whether or not a file is harmful. To demon-
strate this, the harmless JavaScript code is purposely
inserted into nondangerous PDF files in order to make
them seem as though they included the malicious Java-
Script code. All dangerous and safe PDFs have been an-
alyzed independently and the average size of safe and
malicious files was of only approximately 800 kB difference,
as shown in Table 2.

5. Implementation and Results

In this section, the various approaches that have been ex-
ecuted for the analysis and implementation of the proposed
model are described. Here, the training and testing part is
done consequently and the results inferred are discussed. A
variety of methods have been used to study and implement
this suggested approach, and they are all discussed in this
section. 'is system has been trained on 800 PDFs using
several ML classification techniques. With five alternative
algorithms, including stochastic gradient boosting (SGB),
random forest (RF), decision tree (DT), support vector
classifier (SVC), and logistic regression (LR), a comparison
is carried out to check how well the system performs under
these algorithms.

'e effectiveness of the proposed work is reflected by
confusion matrix parameters obtained after classification.
'e confusion matrix comprises of training, testing, vali-
dation, and a combined matrix that reflects
truepositive, truenegative, falsepositive, and falsenegative outcomes.
'ese parameters are further used to calculate the

performance parameters like precision, recall, and F1-score
using the following equations, respectively.

Precision �
truepositive

truepositive + falsepositive
, (2)

Recall �
truepositive

truepositive + falsenegative
. (3)

F1 score � 2∗
(precision∗ recall)
(precision + recall)

. (4)

Figure 2 signifies that deploying RF, LR, andDTtakes the
least amount of time possible, and thus, they perform the
classification in a faster manner. In comparison, the SGB’s
efficiency is average, whereas the SVC’s is poor.

'e “True Positive Rate (TPR)” is computed by placing
the various classifiers during testing, and the trend line is
produced. 'e system should have a higher TPR score in
order to be the optimal match. Figure 3 shows that the RF
approach has the highest TPR score among all the options.
Moreover, the SVC seems inappropriate for file functional
testing since it has the lowest TFR score value.

'e same holds true when this suggested system’s
“Precision Score (PS)” under various classifiers was tested.
Using Figure 4, it can be concluded that the RF is providing
an average PS ratio of approximately 96 percent and that the
SVC is providing the lowest PS at roughly 72 percent.

When calculating the “False Positive Rate (FPR)” when
testing the system, it is deduced from Figure 5 that the RF
has the lowest FPR score, which is preferred, and the SVC
has the highest FPR score, which demonstrates its
ineffectiveness.

During the calculation of the “False Negative Ratio
(FNR)” score, Figure 6 shows that the RF, DT, and SGB all
have the lowest FNR scores; hence, they come strongly
recommended. SVC and LR, at the other hand, have a high
FNR score.

In addition, RF has shown the best overall F1-score on
the dataset when compared to the SGB. 'e DT’s F1-score
remained similarly moderate. RF has shown to be the best fit
for our proposed system, whereas SVC had the worst results
when tested with our system.

A number of other PDF malware classification tech-
niques, created by a variety of authors, have been tested. It is
evident that our system has the best fit when utilizing the RF
classifier based on previous parts. Extraction of features
relies on API calls performed by the document as well as the
JavaScript code included inside its contents. 'e F1-score of
the various classifiers is determined, and it is inferred that for
the proposed classification method, it is higher in contrast to
other classifiers as mentioned in Table 3. 'e numbers
(F1-score) shown in the table are derived utilizing the same
dataset, through which the testing was executed earlier.

6. System Analysis under Attacks

Malicious samples are developed to resist our system after it
had been built, and it is supported by developing a

Security and Communication Networks 5



Table 1: File count for testing and training.

Safe files Malicious files Total files
Count for training 396 404 800
Count for testing 175 225 400
Total count 1200

Table 2: File size (kB) details of dataset for evaluation.

Category type of file Maximum size Minimum size Average size
Safe 21,365 2 10,657
Malicious 22,061 2 11,321

24

22

20

18

16

14

12

10

8

6

4

2

0

Ti
m

e (
s)

20 30 40 50 60
Testing Ration (%)

70 80 90 100 110

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

Figure 2: Performance evaluation under various classifiers.

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

100

95

90

85

80

75

70

65

60

Tr
ue

 P
os

iti
ve

 R
at

e (
%

)

Figure 3: Analysis of TPR under the testing phase.

6 Security and Communication Networks



mechanism to recognize those types of attackers during the
testing step. As a general rule, while parsing PDF files, the
parser first travels to the trailer and retrieves the location of
the first item in the list of items in the body. When the first
object has been entirely parsed, the program returns to the
cross-reference table (CRT) and receives the second item’s
address. Since the harmful code is not processed or read
when a PDF reader is requested, this work deleted the
references to the body section objects that contain the

dangerous code. Because of this, we may fool the parser into
thinking that the file is secure, even if it has a harmful code
inside it. If one wants to deceive the system into thinking a
malicious file is safe, onemay use this method.'is is despite
the fact that it has been tested using dynamic classifiers,
which means that it can be inspected throughout the course
of its execution. 'is code does not execute because it does
not include any references to the portions of the body
mentioned above. As a result, we may also send the

20 30 40 50 60

Testing Ratio Value

70 80 90 100 110

Fa
lse

 P
os

iti
ve

 R
at

e (
%

)

36
34
32
30
28
26
24
22
20
18
16
14
12
10

8
6
4

Logistic Regression
Decision Tree Random Forest

Support Vector Classifier

Figure 5: FPR evaluation under various classifiers.

100

95

90

85

80

75

70

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

Pr
ec

isi
on

 (%
)

Figure 4: Precision evaluation under various classifiers.

Security and Communication Networks 7



malicious code-infected PDF file during dynamic analysis.
'e classification of documents under the malicious attacks
is given in Table 4.

7. Conclusion and Future Scope

A ML model that can identify JavaScript and malicious API
calls attacks in PDF files is provided in this paper. 'is work
also tried out a number of alternative classifiers, including

DT, RF, LR, SVC, and SGB, on the dataset to see how they
performed. 'e RF classifiers within this work have pro-
duced the best results. A comparison of this approach with
other PDF classifiers revealed that this proposed approach
has a high F1-score of 0.986, making it 4 percent more
efficient than the other most recent PDF classifiers. To
further enhance the system’s defense against malicious code
obfuscation methods, functionality is included to run an
object scanner within the PDF document to identify any
objects that are not being processed. Unparsed objects
containing the malicious code may be easily identified and
removed using this approach. Future plans include adding
support for other file formats. Use an advanced data mining
approach for more detailed insights of documents. 'e use
of ML during the detection and classification phase of
malware is highly useful, but it fails against evasion attacks;
thus, it must be explored in the future.

Data Availability

'e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

'e author declares that there are no conflicts of interest.

Acknowledgments

'is research was supported by Taif University Researchers
supporting Project number (TURSP-2020/215), Taif Uni-
versity, Taif, Saudi Arabia.

Table 3: Comparative analysis of the proposed model with existing
based on F1-score.

Tool reference details Classifier used F1-score
[39] SVM 0.828
[40] RF 0.982
[41] RF 0.778
[32] RF 0.818
[34] RF 0.980
[33] AdaBoost 0.960
[31] DT 0.658
[35] Bayesian 0.978
Proposed model RF 0.986

Table 4: Document classification under the malicious attack on the
proposed system.

Type of file
Normal stage Executing the malicious

attack
Classified Not classified Classified Not classified

Safe 109 16 119 6
Malicious 122 53 170 5

Stochastic Gradient Boosting
Logistic Regression
Decision Tree

Support Vector Classifier
Random Forest

20 30 40 50 60
Testing Ratio Value

70 80 90 100 110

Fa
lse

 N
eg

at
iv

e R
at

e (
%

)

40

35

30

25

20

15

10

5

Figure 6: Analysis of FNR under the testing phase.

8 Security and Communication Networks



References

[1] K. M. A. Alzarooni, “Malware Variant Detection,” Doctoral
Dissertation, UCL (University College London), London,
England, 2012.

[2] W. Stallings, L. Brown, M. D. Bauer, and A. K. Bhattacharjee,
Computer Security: Principles and Practice, pp. 978–980,
Pearson Education, Upper Saddle River, NJ, USA, 2012.

[3] S. Alam, R. N. Horspool, I. Traore, and I. Sogukpinar, “A
framework for metamorphic malware analysis and real-time
detection,” Computers & Security, vol. 48, pp. 212–233, 2015.

[4] A. Mehtab, W. B. Shahid, T. Yaqoob et al., “AdDroid: rule-
based machine learning framework for android malware
analysis,” Mobile Networks and Applications, vol. 25, no. 1,
pp. 180–192, 2020.

[5] Y. Alosefer, Analysing Web-Based Malware Behaviour
through Client Honeypots, Doctoral dissertation PhD 'esis,
Cardiff University, Cardiff, Wales, 2012.

[6] N. Idika and A. P. Mathur, “A survey of malware detection
techniques,” Technical Report, Purdue University, West
Lafayette, IN, USA, 2007.

[7] R. Islam, R. Tian, L. M. Batten, and S. Versteeg, “Classification
of malware based on integrated static and dynamic features,”
Journal of Network and Computer Applications, vol. 36, no. 2,
pp. 646–656, 2013.

[8] J. Saxe and K. Berlin, “Deep neural network based malware
detection using two dimensional binary program features,” in
Proceedings of the 2015 10th International Conference on
Malicious And Unwanted Software (MALWARE), pp. 11–20,
IEEE, Fajardo, PR, USA, October 2015.

[9] L. Nataraj and B. S. Manjunath, “SPAM: signal processing to
analyze malware [applications corner],” IEEE Signal Pro-
cessing Magazine, vol. 33, no. 2, pp. 105–117, 2016.

[10] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis
using visualized images and entropy graphs,” International
Journal of Information Security, vol. 14, no. 1, pp. 1–14, 2015.

[11] D. Liu, H. Wang, and A. Stavrou, “Detecting malicious
JavaScript in pdf through document instrumentation,” in
Proceedings of the 44th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks, pp. 100–
111, IEEE, Atlanta, Georgia, June 2014.

[12] K. Chumachenko, Machine Learning Methods for Malware
Detection and Classification, Bachelor’s 'esis Information
Technology, Xamk Kouvolan kampus, Kouvola, Finland,
2017.

[13] Ö. A. Aslan and R. Samet, “A comprehensive review on
malware detection approaches,” IEEE Access, vol. 8,
pp. 6249–6271, 2020.

[14] A. Souri and R. Hosseini, “A state-of-the-art survey of mal-
ware detection approaches using data mining techniques,”
Human-centric Computing and Information Sciences, vol. 8,
no. 1, pp. 3–22, 2018.

[15] A. R. Javed, M. O. Beg, M. Asim, T. Baker, and A. H. Al-
Bayatti, “Alphalogger: detecting motion-based side-channel
attack using smartphone keystrokes,” Journal of Ambient
Intelligence and Humanized Computing, vol. 2020, pp. 1–14,
2020.

[16] M. F. Zolkipli and A. Jantan, “A framework for malware
detection using combination technique and signature gen-
eration,” in Proceedings of the 2010 Second International
Conference on Computer Research and Development,
pp. 196–199, IEEE, Kuala Lumpur, Malaysia, May 2010.

[17] Y. Fukushima, A. Sakai, Y. Hori, and K. Sakurai, “A behavior-
based malware detection scheme for avoiding false positive,”

in Proceedings of the 2010 6th IEEE Workshop on Secure
Network Protocols, pp. 79–84, IEEE, Kyoto, Japan, October
2010.

[18] H. H. Pajouh, A. Dehghantanha, R. Khayami, and
K. K. R. Choo, “Intelligent OS X malware threat detection
with code inspection,” Journal of Computer Virology and
Hacking Techniques, vol. 14, no. 3, pp. 213–223, 2018.

[19] A. Shabtai, R. Moskovitch, C. Feher, S. Dolev, and Y. Elovici,
“Detecting unknownmalicious code by applying classification
techniques on opcode patterns,” Security Informatics, vol. 1,
no. 1, pp. 1–22, 2012.

[20] D. Ucci, L. Aniello, and R. Baldoni, “Survey of machine
learning techniques for malware analysis,” Computers & Se-
curity, vol. 81, pp. 123–147, 2019.

[21] D. L. Vu, T. K. Nguyen, T. V. Nguyen, T. N. Nguyen,
F. Massacci, and P. H. Phung, “A convolutional transfor-
mation network for malware classification,” in Proceedings of
the 2019 6th NAFOSTED Conference on Information And
Computer Science (NICS), pp. 234–239, IEEE, Hanoi, Viet-
nam, December 2019.

[22] S. K. Sasidharan and C. 'omas, “ProDroid—an Android
malware detection framework based on profile hidden
Markov model,” Pervasive and Mobile Computing, vol. 72,
Article ID 101336, 2021.

[23] Y. Jian, H. Kuang, C. Ren, Z. Ma, and H. Wang, “A novel
framework for image-based malware detection with a deep
neural network,” Computers & Security, vol. 109, Article ID
102400, 2021.

[24] Y. Li, X. Wang, Z. Shi, R. Zhang, J. Xue, and Z. Wang,
“Boosting training for PDF malware classifier via active
learning,” International Journal of Intelligent Systems, vol. 37,
no. 4, pp. 2803–2821, 2022.

[25] A. R. Javed, W. Ahmed, M. Alazab, Z. Jalil, K. Kifayat, and
T. R. Gadekallu, “A comprehensive survey on computer fo-
rensics: state-of-the-art, tools, techniques, challenges, and
Future Directions,” IEEE Access, vol. 10, pp. 11065–11089,
2022.

[26] A. R. Kang, Y. S. Jeong, S. L. Kim, and J. Woo, “Malicious PDF
detection model against adversarial attack built from benign
PDF containing javascript,” Applied Sciences, vol. 9, no. 22,
p. 4764, 2019.

[27] D. Maiorca and B. Biggio, “Digital investigation of pdf files:
unveiling traces of embedded malware,” IEEE Security &
Privacy, vol. 17, no. 1, pp. 63–71, 2019.

[28] Y. Chen, S. Wang, D. She, and S. Jana, “On training robust
{PDF} malware classifiers,” in Proceedings of the 29th USENIX
Security Symposium (USENIX Security 20, pp. 2343–2360,
Berkeley CA. USA, August 2020.

[29] C. Smutz and A. Stavrou, “When a Tree Falls: Using Diversity
in Ensemble Classifiers to Identify Evasion in Malware De-
tectors,” in Proceedings of the 23rd Annual Network and
Distributed System Security Symposium, NDSS 2016, San
Diego, CA, USA, February 2016.

[30] N. Šrndić and P. Laskov, “Hidost: a static machine-learning-
based detector of malicious files,” EURASIP Journal on In-
formation Security, vol. 2016, no. 1, pp. 22–20, 2016.

[31] D. Maiorca, D. Ariu, I. Corona, and G. Giacinto, “A structural
and content-based approach for a precise and robust detec-
tion of malicious PDF files,” in Proceedings of the 2015 In-
ternational Conference on Information Systems Security and
Privacy (Icissp), pp. 27–36, IEEE, Angers, France, February
2015.

[32] I. Corona, D. Maiorca, D. Ariu, and G. Giacinto, “Lux0r:
detection of malicious pdf-embedded javascript code through

Security and Communication Networks 9



discriminant analysis of api references,” in Proceedings of the
2014 Workshop on Artificial Intelligent and Security Work-
shop, pp. 47–57, Scottsdale, ARI, USA, November 2014.

[33] M. Cova, C. Kruegel, and G. Vigna, “Detection and analysis of
drive-by-download attacks and malicious JavaScript code,” in
Proceedings of the 19th International Conference on World
Wide Web, pp. 281–290, Raleigh North, CAR, USA, April
2010.

[34] A. Demontis, M.Melis, B. Biggio et al., “Yes, machine learning
can be more secure! a case study on android malware de-
tection,” IEEE Transactions on Dependable and Secure
Computing, vol. 16, no. 4, pp. 711–724, 2019.

[35] A. Pektaş and T. Acarman, “Malware Classification Based on
API Calls and Behaviour Analysis,” IET Information Security,
vol. 12, no. 2, 2017.

[36] P. Panda, I. Chakraborty, and K. Roy, “Discretization based
solutions for secure machine learning against adversarial
attacks,” IEEE Access, vol. 7, pp. 70157–70168, 2019.

[37] B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial
examples for cnn-based malware detectors,” IEEE Access,
vol. 7, pp. 54360–54371, 2019.

[38] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples:
attacks and defenses for deep learning,” IEEE Transactions on
Neural Networks and Learning Systems, vol. 30, no. 9,
pp. 2805–2824, 2019.

[39] P. Laskov and N. Šrndić, “Static detection of malicious
JavaScript-bearing PDF documents,” in Proceedings of the
27th Annual Computer Security Applications Conference,
pp. 373–382, Orlando, FL, USA, December 2011.

[40] D. Maiorca, G. Giacinto, and I. Corona, “A pattern recog-
nition system for malicious pdf files detection,” in Interna-
tional Workshop on Machine Learning and Data Mining in
Pattern Recognition, pp. 510–524, Springer, Berlin, Heidel-
berg, 2012.

[41] C. Smutz and A. Stavrou, “Malicious PDF detection using
metadata and structural features,” in Proceedings of the 28th
Annual Computer Security Applications Conference, pp. 239–
248, Orlando, FL, USA, December 2012.

10 Security and Communication Networks


