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With the rapid development of cloud computing andmachine learning, using outsourced stored data andmachine learningmodel
for training and online-aided disease diagnosis has a great application prospect. However, training and diagnosis in an outsourced
environment will cause serious challenges to the privacy of data. At present, many scholars have proposed privacy preserving
machine learning schemes and made a lot of progress, but there are still great challenges in security and low client load. In this
paper, we propose a complete privacy preserving outsourced multiclass SVM training and aided disease diagnosis scheme. We
design some efficient basic operation algorithms for encrypted data. (en, we design an efficient and privacy preserving SVM
model training protocol using the basic operation algorithms. We propose a secure maximum finding algorithm and secure
comparison algorithm. (en, we design an efficient online-aided disease diagnosis scheme based on the BFV cryptosystem and
blinding technique. Detailed security analysis proves that our scheme can protect the privacy of each participant.(e experimental
results illustrate that our proposed scheme significantly reduces the computation overhead compared with the previous similar
works. Our proposed scheme completes most of the operations of aided disease diagnosis by the cloud servers and the client only
needs to complete a small amount of encryption and decryption operations. (e overall computation overhead is 0.175 s, and the
efficiency of online aided disease diagnosis is improved by 85.4%. At the same time, our proposed scheme provides multiclass
diagnosis results, which can better assist doctors in their treatment.

1. Introduction

Machine learning (ML) uses the computer system to build
mathematical models on sample data with statistical
methods and makes predictions or decisions without being
explicitly programmed. Now, ML has shown significant
advantages in the field of disease diagnosis and brings more
and more convenience to the prevention and treatment of
diseases.

With the rapid development of cloud computing tech-
nology, cloud service providers (CSP) have high-quality
computation and huge storage space, which can provide data
processing, model training, diagnosis services and

deployment, and other intelligent solutions based on ma-
chine learning. In this context, the local clients will out-
source their medical data and machine learning models to
CSP without having to build their own large-scale infra-
structure and computing resources. (e cloud can train a
machine learning model and provide aided disease diagnosis
service by using the outsourced medical data and machine
learning models, which can help improve doctors’ diagnosis,
treatment decisions and provide patients an online disease
diagnosis service. A typical cloud platformmachine learning
system architecture is shown in Figure 1.

However, the security and privacy of outsourced data
will be threatened by various threats, making people afraid to
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use the service of CSP. (e security and privacy threats are
mainly reflected in the leakage of the data, the machine
learning model of the model owners, the users’ request, and
diagnosis results. As we all know, the leakage of medical
information may cause irreversible losses or become a major
event. (erefore, the security and privacy preserving of
model training and diagnosis based on cloud computing
have become a major challenge.

To address the abovementioned challenges, many
scholars have proposed various schemes, such as a secure
outsourced classification based on logistic regression model
[1], an electronic medical disease risk prediction scheme
based on naive Bayes model [2], and other secure disease
prediction schemes based on machine learning technology
[3–5]. As a machine learning algorithm with high compu-
tational efficiency and nice predictive accuracy, the support
vector machine (SVM) has achieved high classification ac-
curacy and efficiency in the medical field [6, 7]. However, the
existing privacy preserving SVM schemes mainly implement
secure prediction [8–11], and there are few privacy pre-
serving SVM schemes for secure training. Most of the
existing privacy preserving SVM schemes are designed for
binary classification, which can only determine whether the
patient has the disease [12], but cannot deal with the
multiclass of the disease. In addition, multiclass SVM re-
quires more computation, which will reduce the efficiency
[13].

To solve the abovementioned problems, we propose an
efficient and privacy preserving online disease diagnosis
scheme based on the SVM algorithm. In our scheme, we can
achieve multi-class SVM training on the encrypted out-
sourced data from multiple data owners and provide users
with privacy preserving disease diagnosis. In summary, our
contributions are as follows:

(1) Efficient and secure basic operation algorithms:
Based on the Paillier cryptosystem, we design several
basic operation algorithms to realize the secure
outsourced data storage and computation, including
secure aggregation algorithm, secure multiplication
algorithm, and so on. (ese secure computation

algorithms are the building blocks for our proposed
training protocol.

(2) Completing machine learning process under privacy
preserving: Aiming at the general machine learning
process and the goal of privacy preserving, we
propose a privacy preserving outsourced multiclass
SVM model training and online-aided disease di-
agnosis scheme. Different from the existing privacy
preserving schemes that only support training or
diagnosis, our proposed scheme extends the function
of privacy preserving machine learning system.

(3) Efficient and secure online aided disease diagnosis:
Based on the BFV cryptosystem, we design a secure
maximum finding algorithm and secure comparison
algorithm. We provide an efficient and privacy
preserving aided disease diagnosis scheme. Experi-
mental results illustrate that our proposed scheme
significantly reduces the computation cost than the
existing similar schemes, which is suitable for
practical application scenarios where a large number
of users request diagnosis at the same time.

(4) Low overhead for local client: For a local client, the
client only needs to perform encryption and de-
cryption operations in our proposed scheme, which
reduces the storage and computation overhead of the
local client to the greatest extent and makes full use
of the computation power of the cloud servers.

(e remainder of this paper is organized as follows. In
Section 2, we review some related works. In Section 3, we
review the Paillier cryptosystem, BFV cryptosystem, and
SVM algorithm as preliminaries. In Section 4, we make a
system overview. (en, we propose our scheme in Section 5.
In Section 6, we analyze the security of our proposed scheme.
In Section 7, we make a performance evaluation. Finally, we
conclude this paper in Section 8.

2. Related Work

In this section, we summarize the privacy preserving ma-
chine learning schemes in recent years.

With the development of big data era, machine learning
has been widely used in many fields. Among them, the
application of machine learning in the field of intelligent
disease diagnosis has developed rapidly. Disease diagnosis
schemes based on various machine learning classification
algorithms have been proposed [14–17]. However, at the
same time, the problem of privacy disclosure in the machine
learning process is becoming more and more serious. So,
many scholars have carried out the research studies on
privacy preserving machine learning.

Triastcyn and Faltings [18] proposed the Bayesian dif-
ferential privacy, considered the distribution of data and
provided a more practical privacy guarantee. Laur et al. [19]
proposed a privacy preserving scheme of support vector
machine based on secure multiparty computation. For each
training or testing phase, their scheme involves multiple
parties holding encrypted data and secret sharing obtained
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during training. Based on additive homomorphic encryp-
tion, Mandal and Gong [20] designed a privacy preserving
scheme that performs gradient descent on data owners and
cloud server. (ey achieved secure linear and logistic re-
gression model training. Shen et al. [21] used blockchain
technology to establish a secure and reliable data sharing
platform among multiple data providers and constructed a
privacy preserving support vector machine training scheme
based on the Paillier cryptosystem. However, in their
scheme, the data provider needs to interact with the cloud
server to complete the computation. (e computation cost
of the data provider is large. Liu et al. [22] proposed a privacy
preserving clinical decision support system using the naive
Bayes (NB) classifier. (e BGV homomorphic encryption
system significantly improved the performance. In work
[23], a framework for securely and efficiently outsourcing
decision tree inference was proposed. Tan et al. [24] pro-
posed a system for privacy-preserving machine learning that
implements all operations on the GPU, which makes full use
of the computing power of GPU. Zheng et al. [25] combined
random permutation and arithmetic secret sharing by the
compute-after-permutation technique and built a privacy-
preserving machine learning framework. Li et al. [26]
proposed a verifiable privacy-preserving machine learning
prediction scheme for the edge-enhanced HCPSs, which
outputs the verifiable prediction results for users without
privacy leakage. Ma et al. [27] designed a lightweight pri-
vacy-preserving medical diagnosis mechanism on edge
called LPME.

Among them, the SVM algorithm is a research hotspot
and has been widely used in different data mining and
machine learning schemes. Most of the existing privacy
preserving SVM schemes are based on three main privacy
preserving technologies: differential privacy (DP), secure
multi-party computation (SMC), and homomorphic en-
cryption (HE). DP can significantly improve the calculation
and communication efficiency, but the cost is to sacrifice the
accuracy of the model by adding random noise [28, 29].
Zhang et al. [30] proposed a general differential privacymodel
fitting method based on the genetic algorithm, but it reduces
the decision accuracy of the model. SMC alleviates the lim-
itation of computing but requires more interaction between
participants. (is leads to expensive communication over-
head [31, 32]. Yu et al. [33] first proposed a privacy preserving
SVM classification method based on vertically segmented
data.(ey use SMC technology to obtain the global model, so
as to protect the local privacy data and hide the classification
model. However, this method requires at least three parties to
participate in the calculation, which is complex and ineffi-
cient. HE can directly calculate the encrypted data, but it also
requires a lot of computing costs [34, 35]. Bajard et al. [36]
usesHE technology to protect the decisionmodel andmedical
data, but it needs high computational load. (erefore, it is
necessary to design an efficient and secure SVM scheme for
cloud online disease diagnosis service. Wang et al. [37]
proposed an efficient privacy preserving outsourced SVM
scheme for Internet of medical things deployment, which
protected training data privacy and guaranteed the security of
the trained SVM model.

In this paper, we propose a new privacy preserving
scheme for training and disease diagnosis of the multiclass
SVM algorithm. We make a comparison analysis with the
schemes in [38–40]. (e experimental results demonstrate
that our scheme has more practical application values.

3. Preliminaries

In this section, we describe some techniques as the basis of
our scheme, including the Paillier cryptosystem, BFV
cryptosystem, and SVM algorithm.

3.1. Paillier Cryptosystem. In the training phase, the data are
encrypted by the Paillier cryptosystem [41]. (e Paillier
cryptosystem is a public key cryptosystem with additive
homomorphic operation. We will introduce the Paillier
cryptosystem as follows.

(i) Key generation: Set the security parameter k.
Choose two big primes p, q, |p| � |q| � k, n � p·

q, λ � l cm(p − 1, q − 1), λ is the Carmichael
function of n. Choose a random number g ∈ Z∗

n2 ,
and gcd(L(gλmod n2), n) � 1, L(x) � (x − 1)/n.
(e public key is pk � (n, g). (e private key is
sk � λ.

(ii) Encryption: Given m ∈ Zn. (e message m will be
encrypted with pk. (e ciphertext is expressed as
c � Epk(m) � gmrn mod n2, where r ∈ Z∗n is a ran-
dom number.

(iii) Decryption: According to the key generation stage
and Carmichael’s theorem, gλ ≡ 1mod n. So
gλ � kn + 1. (en, m � Dsk(c) � (L(cλ mod n2)

/L(gλ mod n2))mod n.
(iv) Homomorphic computation: Given two ciphertexts

Epk(m1), Epk(m2) under the same public key pk.
(e homomorphic computations are defined as
Epk(m1 + m2) � Epk(m1) · Epk(m2), Epk(m1 ·

m2) � Epk(m1)
m2 .

3.2. BFVCryptosystem. In the prediction phase, the data are
encrypted by the BFV cryptosystem [34]. BFV cryptosystem
is a leveled-FHE public key cryptosystem based on RLWE,
which can support unlimited times additive homomorphic
operation and limited times multiplicative homomorphic
operation.

(i) Key generation: Generate a polynomial
s � Z[x]/(xd + 1). (e private key is defined as
sk � s. (en, generate a polynomial from ciphertext
polynomial space (polynomial s), a � Zq[x]/
(xd + 1). (e polynomial a is used to generate
public key. Define a noise polynomial e←χ. (e
notation χ expresses the Gaussian distribution. (e
public key is pk � ([− (a · s + e)]q, a).

(ii) Encryption: (e message m ∈ Rt. Define
p0 � pk[0], p1 � pk[1], u←χ, e1←χ, e2←χ. (e
ciphertext c is computed as c � (p0 · u + t · e2
+m, p1 · u + t · e1).
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(iii) Decryption: To decrypt the ciphertext c, define
c0 � p0 · u + t · e2 + m, c1 � p1 · u + t · e1. (e mes-
sage m is computed as m � (c0 + c1 · s)mod t.

(iv) Homomorphic computation: BFV cryptosystem
supports ciphertext batch processing. Define two
z-dimensional vectors encrypted under public key
pk, Epk(x1, x2, . . . , xz), Epk(y1, y2, . . . , yz). (e
homomorphic computations are defined as follows:

Epk x1 + y1, x2 + y2, . . . , xz + yz( 􏼁 � Epk x1, x2, . . . , xz( 􏼁

+ Epk y1, y2, . . . , yz( 􏼁, Epk x1 + ·y1, x2 · y2, . . . , xz · yz( 􏼁

� Epk x1, x2, . . . , xz( 􏼁 · Epk y1, y2, . . . , yz( 􏼁.

(1)

3.3. SVM Algorithm. SVM is a classical supervised learning
algorithm to solve two kinds of classification problems. (e
SVM algorithm will find the best hyperplane.(e classifier is
a decision function f(X) � 〈W · X〉 + b, f(X)≥ 0 expresses
positive class and f(X)< 0 expresses negative class.

(ere are two training methods for the SVM model: one
is based on the SMO algorithm and the other is based on the
gradient descent algorithm. Because the operation steps of
the SMO algorithm are more complex, which makes a lot
computation costs when using encrypted data.(erefore, we
choose gradient descent to realize the privacy preserving
SVM model training. In the SVM model training process
based on the gradient descent method, the objective function
L(X) � (1/2)|W|2 + C 􏽐

n
i�1 max(0, 1 − yi(〈W · X〉 + b)) �

(1/2)|W|2 + C 􏽐
n
i�1 loss needs to be minimized. When

yi(〈W · X〉 + b)≥ 1, it means that the classification is cor-
rect. (e loss � 0 and the parameters do not need to be
updated. When yi(〈W · X〉 + b)< 1, it means that the
classification is incorrect. (e loss � 1 − yi(〈W · X〉 + b)

and the parameters need to be updated.

4. System Overview

In this section, we will introduce our system model, security
goals, and threat model.

4.1. System Model. Our system model should achieve the
privacy preserving training and online disease diagnosis
process. (erefore, our system model is designed as shown
in Figure 2.

(ere are six participants in our systemmodel, which are
trusted authority (TA), medical centers (MCs), cloud storage
server (CSS), cloud computation server (CCS), diagnosis
service provider (DSP), and users.

(i) Trusted authority (TA): TA is the fully trusted party
of the whole system, which is used to generate and
distribute keys for other participants in the system.
After initialization, TA will stay offline.

(ii) Medical centers (MCs): Each MC has its own local
medical data. To reduce the local storage cost, MCs
will outsource the medical data to CSS for storage.

(iii) Cloud storage server (CSS): CSS has the ability to
store andmanage outsourced data. CSS can perform
privacy preserving computation with its powerful
computation power.

(iv) Cloud computation server (CCS): CCS assists CSS
to complete privacy preserving computation.

(v) Diagnosis service provider (DSP): DSP wants to
train a machine learning model on the outsourced
data from MCs and provides online aided disease
diagnosis for users. Due to the limited computation
and communication ability, DSP will outsource the
training and diagnosis to CSS.

(vi) Users: Users are patients or doctors who have
unlabeled samples and want to get the diagnosis
results. (e users will send encrypted diagnosis
requests to CSS and obtain the encrypted results.
(e users can decrypt the results with own private
key.

4.2. Security Goals. In order to meet the security require-
ments of outsourced training and diagnosis, our scheme will
achieve the following security goals.

(i) Medical data privacy: (e outsourced data of MCs
will not be leaked to other participants in the whole
machine learning process.

(ii) Model privacy: Other participants cannot learn any
useful information about the model of DSP.

(iii) Users privacy: (e diagnosis requests and results of
users will not be acquired by other participants.

(iv) Intermediate results privacy: In the execution of
protocols, any participant will not infer other
participants’ sensitive information through the in-
termediate results.

In our scheme, the training and diagnosis processes are
completed by CSS and CCS. All participants are semi-honest
(or honest-but-curious). Specifically, they will honestly
implement the secure computation protocols, but they will
try to analyze the sensitive data and intermediate results to
infer the useful information of other participants. Like the
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Figure 2: System model.
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previous works, we assume that CSS and CCS will not
collude. Because CSS and CCS belong to different com-
mercial companies, they will not collude with each other for
their own reputation.

4.3.5reatModel. In this paper, we will define three attacks
in our system model.

(i) Eavesdropping attack: (is attack means that an
adversary can eavesdrop and analyze data during
the data transmission. (e data transmission in-
cludes outsourcing process and the interaction
between participants in protocol implementation.

(ii) Honest-but-curious attack: All participants will
implement the protocol honestly, but they will infer
the useful information during the execution of
protocols.

(iii) Client-collusion attack: In the training and diag-
nosis process, some clients may collude to analyze
the useful information of other participants.

5. Proposed Scheme

In this section, we describe the proposed scheme in detail.
Our scheme mainly includes system initialization, privacy
preserving machine learning training, and online disease
diagnosis.

In order to accurately describe our proposed scheme, we
give the description of used notations in Table 1.

5.1. System Initialization. In the system initialization phase,
TA generates system parameters and distributes the pa-
rameters for MCs, CSS, CCS, and DSP, respectively. TA
sends the parameters through the secure communication
channel. (en, TA will stay offline. We assume that there are
m MCs in our system. Because the Paillier cryptosystem and
BFV cryptosystem can only encrypt integers, the floating
point numbers and negative numbers should be converted
into integers. (erefore, all participants should make data
conversion before encrypting their sensitive information.

5.1.1. Generate System Parameters

(1) Generate a public-private key pair
(PKP � (NP, g), SKP) of the Paillier cryptosystem
and a public-private key pair (PKB, SKB) of the BFV
cryptosystem. (e BFV plaintext space is NB. (e
public keys are public and the private keys are sent to
the CCS.

(2) Generate a public-private key pair (PKC
P, SKC

P) of the
Paillier cryptosystem and a public-private key pair
(PKC

B, SKC
B) of the BFV cryptosystem for CSS. (e

BFV plaintext space is NC
B . (e public keys are public

and the private keys are sent to CSS.
(3) Generate a public-private key pair (PKD

P , SKD
P ) of

the Paillier cryptosystem for DSP. (e public key is
public and the private key is sent to DSP.

(4) Generate a random integer ω ∈ NP. TA randomly
splits ω to m integers, satisfying ω1 + ω2 + · · · + ωm �

ω and sends ωi to MCi. (en, generate two lists H

and H′. Each list has m random integers,
H � (n1, n2, . . . , nm), ni ∈ NP, H′ � (n1′, n2′, . . . ,

nm
′), ni
′ ∈ NP. Each element in H and H′ represents

the ID of each MC. When MCi sends authentication
idi to CSS, MCi will hide gai and ωi with ni and ni

′,
respectively. (e (ni, ni

′) is sent to MCi. H and H′ are
sent to CSS.

5.1.2. Data Conversion. In the machine learning application
scenario, data and model parameters contain floating point
numbers and negative numbers.

For a floating point number x, we enlarge x to x · 2E (E is
the precision of floating point numbers). For example, given
a floating point number x � 3.61 and the precision E � 20,
we can convert x into an integer x′ � 3785359. For a
negative number y, we divide the plaintext space N (N is
expressed the plaintext space of the Paillier or BFV cryp-
tosystem) into two parts because all variables and inter-
mediate results in the process of training and prediction are
much smaller than N/2. An integer in [0, N/2) represents a
positive integer and (N/2, N − 1] represents a negative
integer. When encrypting the negative integer y, it is
converted to encrypt N − y. If y is both a floating point
number and a negative number, y is first converted into a
negative integer.

5.2. Privacy Preserving Machine Learning Training. (e
privacy preserving machine learning training process is
completed by CSS and CCS. We assume that the amount of
outsourced data is n.

5.2.1. Local Data Outsourcing. To protect the privacy of
MCs’ local data, MCs will encrypt the data before out-
sourcing.(e outsourcing process of MCi(i � 1, . . . , m) is as
follows.

(1) MCi generates a random integer ai ∈ ZNP
. Com-

puting pki � gai modN2
P as public key and the

private key is ski � ai.

Table 1: Notation and definition.

Notation Definition
l(x) (e key length of x

(PKP, SKP) Paillier public-private key pair of CCS
(PKB, SKB) BFV public-private key pair of CCS
(PKC

P, SKC
P) Paillier public-private key pair of CSS

(PKC
B, SKC

B) BFV public-private key pair of CSS
(PKD

P , SKD
P ) Paillier public-private key pair of DSP

idi (e authentication of MCi

E (e precision of floating point numbers
ai (e private key of MCi

[x]PK (e ciphertext of x under PK

L Classification numbers
d (e degree of polynomial
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(2) Computing hi � gai+ω modN2
P.

(3) For each plaintext data, such as x, MCi will make a
data conversion as mentioned in Section 5.1. (en,
compute [x]MCi

� gxrNP + hi to encrypt and out-
source the encrypted data to CSS for storage.

5.2.2. Secure Basic Building Blocks for Training. To complete
the privacy preserving outsourced training, we construct
some algorithms as basic building blocks based on the
Paillier cryptosystem: secure data aggregation (Block_1),
secure multiplication algorithm (Block_2), secure inner
product algorithm (Block_3), secure scalar multiplication of
vector algorithm (Block_4), and secure symbol judgment
algorithm (Block_5). (e algorithms will be executed with
CSS and CCS.

(1) Secure data aggregation algorithm (Block_1). CSS needs
to aggregate MCs’ outsourced data before starting machine
learning training. (e algorithm works as follows and is
described in Algorithm 1.

(1) CSS sends a training request to MCi, i � 1, 2, . . . , m.
(2) After receiving the training request, MCi computes

idi � (pki + ni,ωi + ni
′) as authentication ((e idi

indicates that CSS is allowed to use the outsourced
data of MCi for training) and sends to CSS.

(3) CSS obtains the pki,ωi of MCi through the idi and
computes ω � ω1 + ω2 + · · · + ωm. It should be
noted that ω can be obtained only after all MCs
have sent their authentication. (en, CSS com-
putes hi � gai+ω modN2

P and completes the
aggregation.

(2) Secure multiplication algorithm (Block_2). Given two
encrypted integers [x]PKP

and [y]PKP
, the algorithm needs to

compute [x · y]PKP
. (e algorithm works as follows and is

described in Algorithm 2.

(1) CSS generates two random integers R1, R2 and
R1, R2 ∈ ZNP

. (en, it computes by applying the
additive homomorphism, obtaining the following
results.

x + R1􏼂 􏼃PKP
� [x]PKP

· g
R1 ·,

y + R2􏼂 􏼃PKP
� [y]PKP

· g
R2 ·,

(2)

(en, sending them to CCS.
(2) CCS generates a random integer T, T ∈ ZNP

. It de-
crypts [y + R2]PKP

by using SKP. (en, it encrypts
(y + R2 + T) mod NC

P with PKC
P to get

[y + R2 + T]PKC
P
. Computing [xT + R1T]PKP

�

[x + R1]
T
PKP

and encrypting T with PKP. Sending
[y + R2 + T]PKC

P
, [xT + R1T]PKP

and [T]PKP
to CSS.

(3) CSS decrypts [y + R2 + T]PKC
P

with SKC
P and

computes y + T. (en, computing by applying the
additive homomorphism, obtaining the following
results.

[xy + xT]PKP
� [x]

y+T
PKP

,

xy − R1T􏼂 􏼃PKP
� [xy + xT]PKP

· xT + R1T􏼂 􏼃
− 1
PKP

,

R1T􏼂 􏼃PKP
� [T]

R1
PKP

.

(3)

Computing the result,

[xy]PKP
� xy − R1T􏼂 􏼃PKP

· R1T􏼂 􏼃PKP
. (4)

(3) Secure inner product algorithm (Block_3). Given two
encrypted vectors [X]PKP

, [Y]PKP
. (e algorithm will com-

pute [X · Y]PKP
and is described in Algorithm 3.

(4) Secure scalar multiplication of vector algorithm (Block_4).
Given a encrypted vector [X]PKP

and a encrypted integer
[y]PKP

, the algorithm will compute [y · X]PKP
and is de-

scribed in Algorithm 4.

(5) Secure symbol judgment algorithm (Block_5). Given an
encrypted integer [x]PKP

, the algorithm will compute the
sign of [x]PKP

. Let judge � 1 if x≥ 0 else judge � 0. (e
algorithm works as follows and is described in Algorithm 5.

(1) CSS chooses a random integer r, l(r)< l(NP)/2.
(en, it computes [x · r]PKP

� [x]r
PKP

by applying
the additive homomorphism and sends [x · r]PKP

to
CCS.

(2) CCS decrypts [x · r]PKP
. Let judge � 1 if x · r≥ 0 else

judge � 0. (en, it sends [judge]PKC
P
to CSS.

(3) CSS decrypts and obtains the symbol judge.

5.2.3. Privacy Preserving Outsourced Training withMulticlass
SVM. In this section, we construct a privacy preserving
outsourced training protocol to train a multiclass SVM
model using the proposed building blocks. DSP outsources
the training task to CSS and CSS completes the aggregation
of outsourced data. (en, CSS and CCS complete the model
training. After finishing the training, CSS transforms
([W1]PKP

, . . . [WL]PKP
) into ([W1]PKD

P
, . . . [WL]PKD

P
). To

achieve the transformation, we use the algorithm proposed
in reference [38].

For multiclass SVM training, there are two methods: one
to rest (ovr) and one to one (ovo). In order to improve the
efficiency and reduce the number of iterations, we choose the
ovr method for training.We need to construct L binary SVM
classifiers, each of which corresponds to one classification.
(e process is described in Algorithm 6.

5.3. Privacy Preserving Online-Aided Disease Diagnosis. In
this section, our proposed scheme consists of four steps:
diagnosis outsourcing, secret diagnosis request generation,
diagnosis values computation, and diagnosis result gener-
ation. (e privacy preserving online-aided disease diagnosis
is completed by CSS and CCS.

5.3.1. Diagnosis Outsourcing. To reduce the computation
and communication overhead, DSP outsources the SVM

6 Security and Communication Networks



model parameters to CSS and authorizes CSS to provide
diagnosis service for users.

(e SVM parameters of DSP are expressed as
(W1, W2, . . . , WL) ((ere are L classifiers),

W
i

� w
i
1, w

i
2, . . . , w

i
t+1􏼐 􏼑,

(i � 1, 2, . . . , L).
(5)

Input: [x]PKP
, [y]PKP

Output: [xy]PKP

CSS:
(1) R1, R2 ∈ ZNP

(2) [x + R1]PKP
� [x]PK1

· gR1

[y + R2]PKP
� [y]PKP

· gR2

(3) Send [x + R1]PKP
, [y + R2]PKP

to CCS.
CCS:

(4) T ∈ ZNP

(5) Decrypt [y + R2]PKP

(6) [xT + R1T]PKP
� [x + R1]

T
PKP

(7) Encrypt (y + R2 + T)modNC
P with PKC

P

(8) Encrypt T with PKP

(9) Send [xT + R1T]PKP
, [y + R2 + T]PKC

P
and [T]PKP

to CSS.
CSS:

(10) Decrypt [y + R2 + T]PKC
P
with SKC

P and Compute y + T

(11) [xy + xT]PKP
� [x]

y+T
PKP

(12) [xy − R1T]PKP
� [xy + xT]PKP

· [xT + R1T]− 1
PKP

(13) [R1T]PKP
� [T]

R1
PKP

(14) [xy]PKP
� [xy − R1T]PKP

· [R1T]PKP

ALGORITHM 2: Secure multiplication (Block_2).

Input: [X]PKP
, [Y]PKP

Output: [X · Y]PKP

CSS:
(1) Define [X · Y]PKP

� [1]PKP
.

(2) for i � 1⟶ X.length:
[X · Y]PKP

· � Block 1([xi]PKP
, [yi]PKP

)

end for

ALGORITHM 3: Secure inner product (Block_3).

Input: the authentication and outsourced data of MCi.
Output: the training data.
CSS:

(1) Send a training request to MCi, i � 1, 2, . . . , m.
MCs:

(2) for i � 1⟶ m:
MCi sends idi � (pki + ni,ωi + ni

′) to CSS
end for CCS:

(3) CSS obtains (pki,ωi), i � 1, 2, . . . , m

(4) Compute ω � ω1 + ω2 + · · · + ωm

(5) for i � 1⟶ m:
Compute hi � gai+ω modN2

P

For each outsourced data of MCi, such as [x]MCi
,

Compute [x]PKP
� [x]MCi

− hi to complete aggregate
end for

ALGORITHM 1: Secure data aggregation (Block_1).

Security and Communication Networks 7



For Wi and the corresponding class result classi, DSP
generates a t + 1-dimensional random integer vector
Ri � (Ri

1, Ri
2, . . . , Ri

t+1) and a random integer ri,
l(Ri

j) � l(ri)< l(NC
B)/2, l(Ri

j)< l(NB)/2. (en, DSP com-
putesWi + Ri and classi + ri to hide the parameters class results.

According to the combination of subtraction of L ran-
dom integer vectors, DSP constructs a combination table.
(e combination table has C2

L values, as shown in Table 2.
(e values in combination table are used to eliminate the
blinding factors in subsequent computation.

Input: [X]PKP
, [y]PKP

Output: [y · X]PKP

CSS:
(1) Define [y · X]PKP

� [1, 1, . . . , 1]PKP
.

(2) for i � 1⟶ X.length:
[yxi]PKP

� Block 1([y]PKP
, [xi]PKP

)

end for

ALGORITHM 4: Secure scalar multiplication of vector (Block_4).

Input: [x]PKP

Output: judge
CSS:

(1) Choose a random integer r, l(r)< l(NP)/2
(2) [x · r]PKP

� [x]r
PKP

(3) Send [x · r]PKP
to CCS

CCS:
(4) Decrypt [x · r]PKP

(5) if x · r≥ 0: judge � 1, else: judge � 0
(6) Encrypt judge with PKC

P

(7) Send [judge]PKC
P
to CSS

ALGORITHM 5: Secure symbol judgment (Block_5).

Input: outsourced data of MCs
([X1]PKP

, [y1]PKP
), . . . , ([Xn]PKP

, [yn]PKP
),

iterations T, learning rate learnrate,
regularization parameter z

Output: L encrypted binary SVM classifiers parameters
([W1]PKP

, . . . [WL]PKP
)

(1) for k � 1⟶ L:
for it � 1⟶ T:

[grad]PKP
� [Wk]PKP

for i � 1⟶ n:
(2) [Wk · Xi]PKP

� Block 3([Wk]PKP
, [Xi]PKP

)

(3) tmp � Block 2([yi]PKP
, [Wk · Xi]PKP

) · [1]− 1
PKP

(4) if Block 5(tmp) �� 0:
[yi · Xi]PKP

� Block 4(yi, Xi)

[grad]PKP
· � [Wj] · [yi · Xi]

z·(NP − 1)
PKP

end for
(5) [W]PKP

· � [grad]
learnrate·(NP − 1)
PKP

end for
end for

(6) return ([W1]PKP
, . . . , [WL]PKP

)

ALGORITHM 6: Secure multiclass SVM training.
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DSP encrypts Wi + Ri with PKB, class
i + ri with PKC

B , ri

with PKP and all values of combination table with PKC
B .

(en, DSP sends them as the outsourced parameters to CSS.
After receiving the outsourced parameters, CSS decrypts
[classi + ri]PKC

B
and the combination table with SKC

B . CSS
computes as follows:

classi
􏽨 􏽩

PKP

� classi
+ r

i
PKP

􏽨 􏽩 · r
i

􏽨 􏽩
− 1
PKP

,

i � 1, 2, . . . , L.
(6)

5.3.2. Secret Diagnosis Request Generation. For useri, the
symptom is expressed as Xi � (xi

1, xi
2, . . . , xi

t, 1) ((e last 1 is
added to facilitate the computation of vector inner product).
(e useri generates a t + 1-dimensional random integer
vector Ti � (Ti

1, Ti
2, . . . , Ti

j, . . . , Ti
t+1) and l(Ti

j)< l(NC
B)/2,

l(Ti
j)< l(NB)/2. (en, useri hides plaintext symptoms

Xi + Ti.
(e useri encrypts symptom Xi + Ti with PKB and en-

crypts Ti with PKC
B . Let S as the secret prediction request of

useri.

S � X
i
+ T

i
􏽨 􏽩

PKB

, T
i

􏽨 􏽩
PKC

B

􏼒 􏼓. (7)

(en, the useri sends S to CSS.

5.3.3. Diagnosis Value Computation. In our proposed di-
agnosis scheme, it is a multiclassification problem, so it is
necessary to compute the diagnosis value of each classifi-
cation. After receiving the secret prediction request S, CSS
decrypts [Ti]PKC

B
with SKC

B . (en, it computes [Xi + Ti]PKB
−

Ti by the homomorphic operation of the BFV cryptosystem.
According to the decision function f(X) � W · X + b of

the SVM algorithm, a diagnosis value needs to be computed
by one multiplication homomorphic operation and one
addition homomorphic operation. Because the BFV en-
cryption algorithm supports ciphertext packaging, batch
operation can be realized and the computation efficiency is
significantly improved. (e process is described in
Algorithm 7.

5.3.4. Diagnosis Result Generation. After computing the
diagnosis values, CSS obtains L encrypted diagnosis values
and each value corresponds to a class result.(en, CSS needs
to select the classification corresponding to the maximum
value from the L encrypted values as the diagnosis result.

(erefore, we design a secure maximum find protocol
and a secure comparison algorithm. In this process, CSS and
CCS jointly execute the protocol.

(1) Secure maximum finding. CSS sets an initial maximum
position pos � 1. (en, CSS executes L cycles and each cycle

executes a secure comparison algorithm to continuously
update the pos value.

After L cycles, CSS obtains the final diagnosis result
[classpos]PKP

and converts [classpos]PKP
into [classpos]PKuseriunder the public key PKuseri

of useri. To achieve the
transformation, we use the algorithm proposed in literature
[38]. (en, CSS sends [classpos]PKuseri

to useri. (e useri

decrypts the encrypted result with SKuseri
. (e process is

described in Algorithm 8.

(2) Secure comparison (SC). For the i-th cycle, CSS computes
[Δpos− i] � [(Wpos + Rpos)Xi]PKB

− [(Wj + Rj)Xi]PKB
. (en,

according to pos and j, computing index � pos · L + j. (e
index corresponds to the value (Rpos − Rj)index in the
combination table and computing as follows:

X
i

R
pos

− R
j

􏼐 􏼑index􏽨 􏽩
PKB

� X
i

􏽨 􏽩
PKB

· R
pos

− R
j

􏼐 􏼑index,

Δpos− j
′􏽨 􏽩

PKB

� Δpos− j􏽨 􏽩
PKB

− X
i

R
pos

− R
j

􏼐 􏼑index􏽨 􏽩
PKB

.
(8)

At this time, [Δpos− j
′]PKB

has eliminated (Rpos − Rj) · Xi

in [Δpos− j]PKB
.

CSS chooses t + 1 equal random integers
r′, R′ � (r′, . . . , r′) and l(r′)< l(NB)/2. Computing
[Δpos− j
′]PKB

� [Δpos− j
′]PKB

· R′. (en, CSS chooses t + 1 dif-
ferent random integers, R″ � (r1″, . . . , rt+1″), l(r1″) � · · · �

l(rt+1″)< l(NB)/2 and computing [Δpos− j
′]PKB

� [Δpos− j
′]PKB

+ R″. Summing all elements in R″ to get Rcss

and encrypting it with PKP. CSS sends [Δpos− j
′]PKB

, [Rcss]PKP

to CCS.
CCS decrypts [Δpos− j

′]PKB
with SKB and [Rcss]PKP

with
SKP, ((w

pos
1 xi

1 − w
j
1x

i
1)r′ + r1″, . . . , (w

pos
t+1 xi

t+1 − w
j
t+1x

i
t+1)r′

+rt+1″). (en, summing each dimension, s � sum((w
pos
1 xi

1 −

w
j
1x

i
1)r′ + r1″, . . . , (w

pos
t+1x

i
t+1 − w

j
t+1x

i
t+1)r′ + rt+1″).

CCS removes Rcss from s by computing
(s − Rcss)modNB. Let judge � 1 if s>NB/2, else judge � 0.

CCS encrypts judge with PKC
B and sends it to CSS. CSS

decrypts it and if judge � 1, updates the value of pos.
(e process is described in Algorithm 9.

6. Security Analysis

In this section, we analyze the security of the proposed
scheme. (e focus is on the outsourced data of MCs, the
SVM model parameters of DSP, the symptoms, and diag-
nosis results of users.

6.1. Security Analysis of Training. In the training phase, the
outsourced data of MCs and the SVM model parameters of
DSP need privacy preserving. (e training protocol is
composed of building blocks designed in Section 5.2.2,
which are completed by CSS and CCS. According to the

Table 2: Combination table.

(1, 2): index � 1 · L + 2 . . . (L − 1, L): index � (L − 1) · L + L

R1 − R2 . . . RL− 1 − RL
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Input: [Xi]PKB
, [Wj + Rj]PKB

, j � 1, 2, . . . , L

Output: L encrypted diagnosis values
[(W1 + R1)Xi]PKB

, . . . , [(WL + RL)Xi]PKB

CSS:
(1) for j � 1⟶ L:

[(Wj + Rj)Xi]PKB
� [Wj + Rj]PKB

· [Xi]PKB

end for

ALGORITHM 7: Diagnosis value computation.

Input: L diagnosis values and corresponding class results
[(Wj + Rj)Xi]PKB

, classj, j � 1, 2, . . . , L;
initial pos � 1

Output: [classpos]PKuseriCSS:
for j � 2⟶ L:

(1) judge � SC([(Wpos + Rpos)Xi]PKB
, [(Wj + Rj)Xi]PKB

)

(2) if judge � 1:
pos � i

end for
(3) Transform [classpos]PKP

into [classpos]PKuseri
with CCS

(4) Send [classpos]PKuseri
to useri.

useri:
(5) useri decrypts [classpos]PKuseri

with SKuseri
.

ALGORITHM 8: Secure maximum finding.

Input: [(Wpos + Rpos)Xi]PKB
, [(Wj + Rj)Xi]PKB

Output: judge
CSS:

(1) [Δpos− j]PKB
�

[(Wpos + Rpos)Xi]PKB
− [(Wj + Rj)Xi]PKB

(2) index � pos · L + j

(3) [Xi(Rpos − Rj)index]PKB
� [Xi]PKB

· (Rpos − Rj)index
(4) [Δpos− j

′]PKB
� [Δpos− j]PKB

− [Xi(Rpos − Rj)index]PKB

(5) Generate R′.
(6) [Δpos− j

′]PKB
� [Δpos− j

′]PKB
· R′

(7) Generate R″ � (r1″, r2″, . . . , rt+1″).
(8) [Δpos− j

′]PKB
� [Δpos− j

′]PKB
+ R″

(9) Rcss � r1′ + r2′ + · · · + rt+1′
(10) Send [Δpos− i

′]PKB
, [Rcss]PKP

to CCS.
CCS:

(11) Decrypt [Δpos− i
′]PKB

, [Rcss]PKP
.

(12) s � sum((w
pos
1 xi

1 − w
j
1x

i
1)r′ + r1″, . . .,

(w
pos
t+1x

i
t+1 − w

j
t+1x

i
t+1)r′ + rt+1″)

(13) s � (s − Rcss)modNB

(14) ifs>NB/2: judge � 1
else: judge � 0

(15) Encrypt judge. Send it to CSS
CSS:

(16) Decrypt [judge]PKC
B

ALGORITHM 9: Secure comparison (SC).
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threat models proposed in Section 4.3, we analyze the se-
curity of the training protocol.

6.1.1. Eavesdropping Attack. (e data transmission process
in the training phase includes that MCs outsources the
encrypted data to CSS and the interactions of training
protocol between CSS and CCS.

In the outsourcing process, the data of MCi have been
encrypted. MCi combines the system public key PKP, pa-
rameter ω, and its own public key gai to ensure that the data
are hidden while encrypting. Suppose an adversary obtains
the private key SKP and eavesdrops when MCs outsource
their data to CSS. Because the data of MCi have been
encrypted, such as [x]MCi

� gxrNP + hi, the adversary cannot
obtain any useful information. Similarly, the authentications
are also hidden by random numbers. In the training protocol
execution process, CSS and CCS will interact and the
transformed data have been encrypted and hidden the real
values with random numbers. (e adversary also cannot
obtain any useful information.

6.1.2. Honest-But-Curious Attack. During the training
phase, CSS and CCS will get some intermediate results from
the proposed building blocks in Section 5.2.2.

In the Block_2, CSS hides x, y with R1, R2 by homo-
morphic operation before sending them to CCS. (en, CCS
sends [xT + R1T]PKP

, [y + R2 + T]PKC
P
and [T]PKP

to CSS
after computing. (erefore, both CSS and CCS cannot learn
any useful information about x, y. Because the Block_3 and
Block_4 are designed based on the Block_2, we will not
analyze them. In the Block_5, CSS hides x with r and
sending [x · r]PKP

to CCS. CCS can only know the symbol of
x, but cannot obtains the real value of x. CCS only returns
the result judge (0 or 1) to CSS. (rough the above-
mentioned analysis, CSS and CCS cannot learn any useful
information in the training process.

6.1.3. Client-Collusion Attack. For MCs, each MCi only
know its own ωi. (erefore, if (m − 1) MCs collude with
each other to steal the privacy of another MC, they cannot
learn any useful information.

6.2. Security Analysis of Disease Diagnosis. In the diagnosis
phase, the SVM parameters of DSP, the symptom Xi and the
diagnosis result classpos of useri need privacy preserving.(e
diagnosis process consists of diagnosis outsourcing, secret
diagnosis request generation, diagnosis value computation,
and diagnosis result generation. (erefore, we conduct se-
curity analysis on the main steps by the threat model.

6.2.1. Eavesdropping Attack. (e data transmission process
includes that DSP outsources [Wi + Ri]PKB

, [classi + ri]PKC
B
,

[ri]PKP
, i � 1, 2, . . . , L and [R1 − R2]PKC

B
, . . . ,

[RL− 1 − RL]PKC
B
to CSS, useri sends request S to CSS and the

interaction of diagnosis process between CSS and CCS.

(rough the encrypted data of outsourcing process, it can
be seen that the adversary(CCS) can only decrypt [Wi + Ri]PKB

and [ri]PKP
with SKB and SKP. However, the adversary cannot

learn Wi because of the Ri and the ri do not contain any useful
information. When useri sends S to CSS, the symptom Xi may
be eavesdropped and decrypted by the adversary, but Xi is
hidden by randomnumbers. In the interaction of SC algorithm
between CSS and CCS, all transmitted data are hidden by
random numbers and ciphertext state, so the adversary cannot
learn any useful information.

6.2.2. Honest-But-Curious Attack. In the diagnosis value
computation process, CSS can only obtain the L encrypted
diagnosis values under PKB and does not know the cor-
responding classification meaning. (e whole process is
executed in the ciphertext state, so CSS cannot learn any
useful information. (e process of diagnosis result gener-
ation consists of secure maximum finding protocol and
secure comparison algorithm. When CSS and CCS execute
the secure comparison algorithm, CSS computes the dif-
ference between the two encrypted vectors to be compared.
(e obtained difference vector can confuse the positive and
negative of the two numbers on each dimension of the
original two vectors. At the same time, random integers are
used to hide the difference vector. After decrypting the
difference vector, CCS can eliminate the random number
only after summing. During this process, CSS and CCS
cannot obtain any useful information.

After CSS and CCS execute secure maximum finding
protocol, CSS obtains the diagnosis result [classpos]PKP

. When
performing key conversion on [classpos]PKP

, CSP hides classpos
with a random integer R. (en, sending [classpos + R]PKP

to
CCS. CCS can decrypt it. However, because there is a random
integer hidden, CCS cannot obtain classpos.

6.2.3. Client-Collusion Attack. For all users, they can only
get the diagnosis results and cannot get any other infor-
mation. (erefore, our proposed scheme can resist the
client-collusion attack.

7. Performance Evaluation

In this section, we implemented our scheme and evaluated
the performance of training and diagnosis.

Our experimental environment is shown in Table 3.
In our experiments, we evaluated our proposed scheme

with a real dataset from UCI machine learning library called
dermatology. (e dermatology dataset is a multi-
classification dataset with 6 categories and 34 symptoms.

7.1. Privacy PreservingMachine LearningTraining Evaluation

7.1.1. Effect of Key Length on Computation Overhead.
(e key length in cryptosystem has a great impact on effi-
ciency and security. (erefore, we tested the data encryption
time and main building blocks time (Block_1 and Block_3),
which have high computation overhead. (e test results are
shown in Table 4.
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From Table 4, it can be seen that the increase of key
length has a great impact on the computation overhead.
Based on the experimental results and security consider-
ations, the key length of the Paillier cryptosystem is set to
1024 bit in the training phase.

7.1.2. Privacy Preserving Multiclass SVM Training Analysis.
In order to meet the requirements of data encryption, we
convert all floating-point numbers to integers. (e con-
version accuracy E of floating-point numbers has a great
impact on the accuracy of the SVM model. We tested the
accuracy of the SVM model under different E values; the
results are shown in Figure 3.

(rough the abovementioned experimental analysis, it
can be seen that the larger the E, the higher the accuracy of
the model. With the increase of E, the accuracy of the model
tends to be stable. When E � 20, the accuracy of the model is
the highest. At the same time, we also used the gradient
descent method to train the SVM model in the plaintext
state. We compared the accuracy with the model trained in
ciphertext state and the results are shown in Table 5.

(rough the abovementioned experimental analysis, it
can be seen that the accuracy of our proposed scheme is the
same as the plaintext state (98.61%). (erefore, it is verified
that our proposed scheme is correct and available.

7.2. Privacy Preserving Online-Aided Disease Diagnosis
Evaluation. We implemented our proposed scheme by
using SEAL library in the diagnosis phase.

7.2.1. Noise Effect of BFV Cryptosystem. When using the
BFV cryptosystem for homomorphic operation, the influ-
ence of noise needs to be considered. (e noise of ciphertext
will be increased when the multiplication homomorphic
operation is carried out. If the noise is too large after
computation, the correct result cannot be obtained after
decryption.

(erefore, the BFV cryptosystem in SEAL will set the
noise budget during initialization. If the noise budget is
greater than 0 after the computation, it can be decrypted
correctly.(e value of noise budget is related to the setting of
parameters. We evaluated the influence of poly module

degree (d) on the encryption time, the change of noise
budget after homomorphic operation, the computation time
and whether the decryption result is correct. (e results are
shown in Table 6. It can be seen that the noise consumption
of the BFV cryptosystem is relatively large when performing
multiplication homomorphism, so the BFV cryptosystem
can only perform multiplication homomorphism for a
limited number of times. When computing the diagnosis
values, only one inner product operation and one addition
operation are required. (erefore, it is completely feasible to
use the BFV cryptosystem.

We comprehensively consider the encryption time and
computation time and ensure that the computation results
can be decrypted correctly. (e parameter we set is
poly module degree(d) � 8192.

7.2.2. Influence of Different Classification Numbers on
Computation Overhead. When using the BFV cryptosystem
to encrypt data, multiple plaintext data can be packaged and
encrypted into a ciphertext. (e number of classifications is
L.

Table 3: Experimental environment.

Operating system Windows 10
CPU Intel (R) Core(TM)i7-10510U, 1.80GHz, 2.30GHz
Memory 8G
Program language C++

Table 4: Computation overhead under different key length.

Key length (bit) Data encryption (s) Block_1 (s) Block_3 (s)
l � 256 4.15e 10 − 4 2.08 e10 − 5 0.094
l � 512 2.52e 10 − 3 5.0e 10 − 5 0.417
l � 1024 0.0153 2.1e 10 − 4 2.52
l � 2048 0.103 9.9e 10 − 4 17.2
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Figure 3: (e influence of precision.

12 Security and Communication Networks



We tested the impact of di�erent L on useri andDSP.
e
results are shown in Figure 4(a). With the increase of L, the
encryption time of DSP is gradually increasing, and the
encryption time of useri can be considered as unchanged.

We also tested the impact of di�erent L on the diagnosis
values computation of CSS. 
e results are shown in
Figure 4(b). With the continuous increase of L, the com-
putation time for CSS is also increasing. 
e process of

Table 5: Comparison analysis of model accuracy.

Dataset Plaintext state Our proposed scheme
Dermatology 98.61% 98.61%

Table 6: 
e in�uence of poly modulus degree (d) on noise budget.

d Encryption time (s) Initial noise budget (bit) Noise budget (bit) after operation Computation time (s) Decryption result
(correct or wrong)

2048 0.013 2 0 0.012 ✕
4096 0.023 9 0 0.031 ✕
8192 0.69 110 64 0.123 ✓
32768 1.178 761 713 2.268 ✓
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generating diagnosis result is jointly completed by CSS and
CCS. We tested the effect of different L on the diagnosis
result generation. (e results are shown in Figure 4(c). With
the continuous increase of L, the time for CSS and CCS is
also increasing.

7.2.3. Comparison Analysis of Secret Diagnosis Request
Generation and Diagnosis Values Computation. In our
proposed scheme, secret diagnosis request generation can be
regarded as data encryption of useri and diagnosis value
computation can be regarded as homomorphic operation.
We compared with the other three privacy preserving
schemes. (e results are shown in Table 7.

(rough the comparison analysis, it can be seen that the
time of data encryption in our proposed scheme is signif-
icantly reduced compared with [38, 39]. In the computation
of decision function, our scheme has significantly reduced
the computational cost compared with the scheme in
[39, 40]. At the same time, it can be seen from the total time
that our proposed scheme is significantly lower than the
other three schemes.

Next, we make further analysis. (e names of partici-
pants may be slightly different in different schemes. In order
to facilitate analysis, we divided participants into cloud
server and client. We compared the computation overhead

of cloud server and client, respectively.(e results are shown
in Tables 8 and 9.

In our proposed scheme, the client only needs to encrypt
the data and can be offline after uploading the data to the
cloud server. (e cloud server only needs to compute the
decision function. (is model reduces the computation
overhead of the client to the greatest extent and performs
privacy preserving computation through the powerful
computing power of the cloud server. In scheme [38], the
cloud server does not participate in the whole process, so it
brings heavy computation overhead to the client. In scheme
[39], the computation of the diagnosis values needs to be
completed by the cloud server and the client. (erefore, it
not only brings heavy computation overhead to the client
but also requires the client to always stay online in this
process.

7.2.4. Comparison Analysis of Diagnosis Result Generation.
In our proposed scheme, after CSS completes the diagnosis
values computation, it will jointly execute the secure pro-
tocol with CCS to generate the diagnosis result. We con-
tinued to make comparison analysis with schemes in
[38–40]. (e results are shown in Table 10.

(rough the comparison analysis in Table 10, it can be
seen that the computation time of our proposed scheme is

Table 7: Comparison analysis.

Schemes Data encryption (s) Diagnosis values computation (s) Total time (s)
Reference [38], l � 512 0.658 0.005 0.663
Reference [39], l � 512 0.57 0.552 1.122
Reference [40], l � 512 0.004 1.092 1.096
Ours 0.008 0.096 0.104

Table 8: Comparison analysis of the cloud server.

Schemes Data encryption (s) Diagnosis value computation (s) Total time (s)
Reference [38], l � 512 0 0 0
Reference [39], l � 512 0.57 0.001 0.571
Reference [40], l � 512 0 1.092 1.092
Ours 0 0.096 0.096

Table 9: Comparison analysis of the client.

Schemes Data encryption (s) Diagnosis value computation (s) Total time (s)
Reference [38], l � 512 0.658 0.005 0.663
Reference [39], l � 512 0 0.551 0.551
Reference [40], l � 512 0.004 0 0.004
Ours 0.008 0 0.008

Table 10: Comparison analysis of diagnosis result generation.

Schemes Cloud server computation (s) Client computation (s) Diagnosis result generation (s)
Reference [38], l � 512 1.584 0.097 1.681
Reference [39], l � 512 0.007 0.041 0.048
Reference [40], l � 512 0.101 0 0.101
Ours 0.071 0 0.071
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significantly lower than the scheme in references [38, 40]. In
our proposed scheme, the client does not need to participate
in the process of diagnosis result generation. (e schemes in
references [38, 39] require the participation of the client,
which brings heavy computation overhead to the client.

7.2.5. Comprehensive Comparison Analysis. We made a
comparison analysis of the whole privacy preserving online
disease diagnosis process. It is divided into the secret di-
agnosis request generation (data encryption), diagnosis
value computation, and diagnosis result generation. (e
results are shown in Table 11.

(rough the comparison analysis in Table 11, the total
time of our proposed scheme is significantly lower than
the schemes in references [38–40]. Considering that in the
actual application scenario, a large number of users will
constantly initiate secret diagnosis requests. It is very
important to be able to quickly respond to the diagnosis
results for users. (erefore, our scheme has more practical
application value. (en, we made a summary as shown in
Table 12.

8. Conclusion

In this paper, we propose an efficient and privacy pre-
serving outsourced multiclass SVM training and online-
aided disease diagnosis scheme. We design some secure
basic operation algorithms for machine learning training
over the outsourced data from multiple data owners. We
achieve a privacy preserving multiclass SVM training
based on the basic operation algorithms. In the diagnosis
phase, we achieve a privacy preserving multiclass diag-
nosis through our proposed the secure maximum find
algorithm and secure comparison algorithm. Security
analysis proves that our proposed scheme ensures that
outsourced data, model parameters, users’ symptoms, and
diagnosis results will not be leaked. Experimental evalu-
ation illustrates that our proposed scheme significantly
reduces the computation overhead. In the future, we will
study more efficient and privacy preserving machine
learning schemes.
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