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In this paper, we study the privacy-preserving data publishing problem in a distributed environment. (e data contain sensitive
information; hence, directly pooling and publishing the local data will lead to privacy leaks. To solve this problem, we propose a
multiparty horizontally partitioned data publishing method under differential privacy (HPDP-DP). First, in order to make the
noise level of the published data in the distributed scenario the same as in the centralized scenario, we use the infinite divisibility of
the Laplace distribution to design a distributed noise addition scheme to perturb the locally shared data and use Paillier encryption
to transmit the locally shared data to the semitrusted curator.(en, the semitrusted curator obtains the estimator of the covariance
matrix of the aggregated data with Laplace noise and then obtains the principal components of the aggregated data and returns
them to each data owner. Finally, the data owner utilizes the generative model of probabilistic principal component analysis to
generate a synthetic data set for publication. We conducted experiments on different real data sets; the experimental results
demonstrate that the synthetic data set released by the HPDP-DP method can maintain high utility.

1. Introduction

(e ability of people to collect and analyze data is gradually
improving with the development of the artificial intelligence.
Sometimes the data are stored by different sites(data
owners), and each site holds a smaller number of samples.
For example, in Figure 1, there are three hospitals, the
patients in each hospital are different from each other, but
the data features of each patient are the same. In order to
better mine the useful information behind the data, a large
number of samples are needed. Pooling data in one central
location enables efficient data analysis and mining, but data
contain sensitive privacy; directly sharing or pooling the data
will lead to privacy leakage [1, 2], which prevents people
from sharing data. (at is to say, data are facing serious
privacy leakage risks in the process of data sharing, network
transmission, and storage [3]. It is important to protect the
privacy of shared data and weigh the security and availability
of data [4, 5]. (erefore, it is desirable to propose an efficient
distributed algorithm, which can provide the utility close to

the centralized case and protect the privacy of data. In recent
years, there have been some researches on privacy-pre-
serving data publishing and sharing, for example, the
kanonymity [6] technology, the encryption techniques, such
as lattice-based cryptography [7] and quantum cryptography
[8, 9]. (e differential privacy [10] has been widely used for
privacy-preserving data publishing; privacy-preserving data
publishing based on differential privacy has become a re-
search hot spot [11–15].

However, there are still some challenges when using the
differential privacy technique to protect the privacy of the
published data. One is that the data are stored by different
data owners; directly pooling and publishing the data will
lead to privacy leakage. When data are stored by multiple
data owners, as the number of data owners increases, if
differential privacy is used independently to add noise to the
locally shared data, the utility of the published data will be
reduced. In view of this, we propose a horizontally parti-
tioned data publication approach with differential privacy.
We make the following contributions:
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(1) We propose a method for horizontally partitioned
data publication with differential privacy (HPDP-
DP). In a distributed environment, data are owned
by multiple parties. We use the weighted average of
the noised covariance matrices of the local data to
estimate the covariance matrix of the pooled data.
(e data owners and a semitrusted curator collab-
orate to get the principal components of the pooled
data and generate a synthetic data set for publishing.

(2) In the distributed scenario, in order to make the
noise level of the aggregated data the same as in the
centralized scenario, the HPDP-DP method utilizes
the infinite divisibility of the Laplace distribution and
Paillier homomorphic encryption to alleviate the
effects of noise and can achieve the same noise level
as the centralized scenario.

(3) We evaluate the performance of HPDP-DP method
through experiments on real data sets, and the ex-
perimental results show that HPDP-DP method can
generate synthetic data with high efficiency.

2. Related Work

In this section, we introduce the research status of privacy-
preserving data release based on differential privacy in the
centralized and distributed scenarios, respectively.

2.1. Privacy-Preserving Data Publishing in Centralized
Environment. In recent years, there are many researches on
privacy-preserving data publishing based on differential
privacy. Jiang et al. [16] proposed a method that adding

Laplace noise to the covariance matrix and the projection
matrix and then using the noisy projection matrix to restore
and generate the synthetic data set for publishing. Zhang
et al. proposed the PrivBayes method in [17]; they used the
relationship between the features to build a Bayesian net-
work. (ey added Laplace noise to the low-dimensional
marginal distribution to make the Bayesian network satisfy
differential privacy, and then they used the Bayesian network
to generated a synthetic data set for publishing. Chen et al.
proposed the Jtree method in [18]. First, they proposed a
sampling-based testing framework that is used to explore
pairwise dependencies while satisfying differential privacy.
(en, they applied the connection tree algorithm to con-
struct an inference mechanism to infer the joint data dis-
tribution. Finally, they efficiently generated a synthetic data
set by using the noise margin table and inference model. Xu
et al. [19] proposed DPPro scheme; they released high-di-
mensional data by using randomly projected.(ey projected
the original high-dimensional data into a randomly selected
low-dimensional subspace and added noise to the low-di-
mensional projected data. (ey theoretically demonstrated
that the data published by the DPPro method have similar
squared Euclidean distances to the original data. In order to
solve the problem of dimensional disaster in high-dimen-
sional data publishing, Zhang et al. [20] presented the
PrivHD method with the junction tree. First, they used
exponential mechanism to construct a Markov network; in
order to reduce the candidate space, high-pass filtering
technique is used in sampling. (en, they used the maxi-
mum spanning tree method to build a better joint tree. At
last, a high-dimensional synthetic data set is generated for
publication. Zhang et al. [21] presented the PrivMNmethod.

Figure 1: Aggregate data from different hospitals.
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(ey first constructed a Markov model to express the re-
lationship of features. (en, they used the Laplace mecha-
nism to add noise to the marginal distribution to generate
the noisy marginal distribution table. Finally, they used the
noisy marginal distribution to generate a synthetic data set
for publishing. Gu et al. [22] proposed the PPCA-DP
method; they first used the principal component analysis to
reduce the dimensionality of high-dimensional data and
then added Laplace noise to the low-dimensional projection
data; finally, they used the generative model of probabilistic
principal component analysis to generate a synthetic data set
for publishing. (e above are all studies on privacy-pre-
serving data publishing in centralized scenarios.

2.2. Privacy-Preserving Data Publishing in Distributed
Environment. At present, most of the existing privacy-
preserving data publishing works focus on the centralized
scenario; there are fewer studies on privacy-preserving data
publishing in distributed scenario. (e multiparty data re-
lease scenario studied in this paper is that each data owner
owns a data set and uses the differential privacy technology
to protect the privacy of the local data set rather than the
scenario that multiple individuals keep their data locally.(e
latter typically utilize the local differential privacy [23]
techniques to protect the privacy of individual data [24, 25].
In the following, we will introduce the research status of
privacy-preserving data release in multiparty data release,
where each data owner owns a data set.

Alhadidi et al. [26] proposed the first noninteractive two-
party horizontally partitioned data publication method that
satisfies differential privacy and secure multiparty compu-
tation. (e data set published by this method is suitable for
classification tasks. Hong et al. [27] constructed the
framework (CELS protocol) that enables distributed parties
to securely generate outputs while satisfying differential
privacy. (e security and differential privacy guarantees of
the protocol are proved. Ge et al. [28] presented the DPS-
PCA algorithm. Data owners collaborated to compute the
principal components while protecting the privacy of data.
(e DPS-PCA algorithm can trade off the relationship be-
tween the accuracy of estimating principal components and
the degree of privacy protection, but this method only
outputs a low-dimensional subspace of high-dimensional
sparse data. An efficient and scalable distributed PCA
protocol is proposed byWang et al. [29] for the computation
of principal components of split horizon data in a distrib-
uted environment. First, the shared data are encrypted and
sent to a semitrusted third party. Second, the shared data are
aggregated by a semitrusted third party, and the aggregated
result is sent to the data consumer. Finally, the data con-
sumer performed a principal component analysis and ob-
tained the principal components of the pooled data. Cheng
et al. [30] presented the DP-SUBN3 approach; the data
owners built a Bayesian network with the assistance of a
semitrusted curator, and then the Bayesian network is used
to generate a synthetic data set. In DP-SUBN3 approach, the
four stages of correlation quantification, structure initiali-
zation, structure update, and parameter learning all need to

access the local data set, and each stage satisfies differential
privacy, which in turn makes the DP-SUBN3 approach
satisfy differential privacy. For the privacy protection of data
publishing in arbitrary partitions between two parties, Wang
et al. [31] presented the first distributed algorithm, which
generates anonymous data from two parties. In order to
prevent both parties from leaking private information, the
anonymization process satisfies both differential privacy and
secure two-party computation. Gu et al. [32] presented the
PPCA-DP-MH approach. (e data owners collaborate with
a semitrusted curator to reduce the dimensionality of the
data, and then the data owners used the probabilistic gen-
erative model of principal component analysis to generate a
published data set. In the PPCA-DP-MH method, since
multiple data owners add noise to the data locally and in-
dependently, the utility of publishing data gradually de-
creases as the number of data owners increases. In response
to this challenge, we propose the HPDP-DP method in this
paper. We design the generation and addition scheme of
correlated noise, so that the utility of publishing data will not
decrease with the increase of data owners, and even the
utility of publishing data will gradually increase with the
increase of data owners.

3. Preliminaries

3.1. Probabilistic Principal Component Analysis (PPCA).
Principal component analysis is one of the commonly used
dimensionality reduction methods. Principal component
analysis is a statistical analysis method that converts multiple
variables into a few hidden variables through dimensionality
reduction techniques. (ese fewer low-dimensional and not
correlated hidden variables are also called principal com-
ponents. (e principal components can reflect most of the
information of the original variables. Next, the main process
of finding principal components is introduced. First,
computing the covariance matrix Σ of the data. (en per-
form eigenvalue decomposition on the covariance matrix Σ,
Σ � UΛUT, where Λ is a diagonal matrix and the elements
on the diagonal are the eigenvalues of the matrix Σ,
Λ � diag(λ1, λ2, . . . , λp), λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0. (e corre-
sponding eigenvectors are as follows: u1, u2, . . . , up which
are called the principal components. U is an orthogonal
matrix consisting of the eigenvectors. Usually, the top k

principal components retained are determined by the cu-
mulative contribution rate c � 

k
i�1 λi/

p
i�1 λi.

However, Michael et al. [33] proposed that the principal
component analysis (PCA) is a nongenerative model, they
presented that the principal component analysis (PCA) also
has a generative model called probabilistic principal com-
ponent analysis (PPCA). (e most common model to as-
sociate low-dimensional latent variables with high-
dimensional observable variables is the factor analysis
model, i.e. x � Ws + μ + ξ, where x is p -dimensional ob-
servation vector consisting of the p original variables, s is a k

-dimensional vector consisting of k latent variables,
ξ ∼ N(0,Ψ), the matrix W associates the vector x with the
vector s. (e vector μ allows the model to have a nonzero
mean vector.
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Theorem 1 [33]. From Figure 2 and the latent variable
model x �Ws + μ + ξ, when ξ ∼ N(0, σ2I), s ∼ N(0, Ik),
then x|s ∼ N(Ws + μ, σ2Ip), σ > 0,W ∈ Rp×k, where the
maximum likelihood estimation of μ, σ2 , and W are

μ̂ � μ̃,

σ̂2 �
1

p − k
∑
p

i�k+1
λi,

Ŵ � Uk Λk − σ̂2I( )
1
2
,

(1)

where μ̃ is the mean vector, the column vectors in Uk is the
eigenvectors corresponding to the top k eigenvalues of the
covariance matrix.

3.2. Di�erential Privacy. Di�erential privacy is a strong
privacy protection model independent of background
knowledge. If the output of a privacy-preserving algorithm is
insensitive to small changes in the input, the algorithm
satis�es di�erential privacy. �e essence of di�erential
privacy is to randomly perturb the query results, so that
people cannot infer the original input information based on
the query results.

De�nition 1 (Di�erential Privacy) [10]. A random algorithm
M satis�es ϵ di�erential privacy, if for any two neighboring
data sets D, D̂ (only one record di�ers between the two data
sets) and for any S(S ∈ Rang(M)) there is

ln
Pr M(D) ∈ S{ }
Pr M(D̂) ∈ S{ }

∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣
≤ ε, (2)

ε is a small positive real number, which is also called privacy
budget.

In the De�nition 1, ε is used for controlling the prob-
ability ratio of the random algorithm M to obtain the same
output on the two neighboring data sets D and D̂; it re�ects
the level of privacy protection that the algorithm M can
provide.

De�nition 2 (Sensitivity). [10]. Let f be a function that maps
a data set into a �xed size vector of real numbers,
f: D⟶ Rd, for any neighboring data sets D and D̂, the
sensitivity of f is de�ned as follows:

Δf � max
D,D̂

‖f(D) − f(D̂)‖1, (3)

where ‖ · ‖1 denotes the L1 norm.

De�nition 3 (Laplace mechanism). [34]. For any function
f: D⟶ Rd, if the random algorithm M satis�es the
equation:

M(D) � f(D) + Lap1
Δf
ε

( ), . . . , Lapd
Δf
ε

( )( ), (4)

then the algorithm M satis�es ε di�erential privacy,
Lap1(Δf/ε), . . . , Lapd(Δf/ε) are independent Laplace ran-
dom variables.

Theorem 2 [35]. Let Y ∼ Laplace (λ), then, the distribution
of Y is in�nitely divisible. Furthermore, for every integer
M≥ 1, Y � ∑Mm�1(Y1m − Y2m), where Y1m and Y2m are
i.i.d. with the Gamma density f(x) � ((1/λ)(1/n)/
Γ(1/n))x(1/n)− 1e− (x/λ), x≥ 0.

Theorem 3 (Sequential Composition). [34]. Let M1,
M2, . . . ,Mn be a series of privacy algorithms, and their
privacy budgets are ε1, ε2, . . . , εn , for the same data setD, the
combined algorithm M(M1(D),M2(D), . . . ,Mn(D)) pro-
vides ∑ni�1 εi di�erential privacy.

Theorem 4 (Parallel Composition). [34]. Let M1,
M2, . . . ,Mn be a series of privacy algorithms, which privacy
budgets are ε1, ε2, . . . , εn, D1, D2, . . . , Dn are disjoint data
sets, the combined algorithm M(M1(D1),M2(D2), . . . ,
Mn(Dn)) provides max1≤i≤nεi di�erential privacy.

3.3. Paillier Encryption andDecryption. In this paper, we use
Paillier encryption scheme [36] to encrypt the local shared
data before being aggregated.�e Paillier encryption scheme
is described as follows:

(1) Key generation: n � pq, where p and q are large
primes, λ � lcm(p − 1, q − 1). Euler functionΦ(n) �
(p − 1)(q − 1), g ∈ Z∗n2 , the (n, g) is public key and
λ is private key.

(2) Encryption: plaintext m< n, randomly select r< n,
ciphertext c � gm · rn mod n2 .

(3) Decryption: ciphertext c< n2, plaintext m �
(L(cλ mod n2)/L(gλ mod n2)) mod n, where L(u) �
(u − 1)/n.

Paillier encryption is additively homomorphic. We use
[[m]] to represent the encrypted ciphertext of m. �en,
∀m1, m2 ∈ Zn, k ∈ N, [[m1]] · [[m2]] � [[m1 +m2]] and
[[m]]k � [[k ·m]].

4. The HPDP-DP Method

4.1. Problem Statement. �ere existM(M≥ 2) data owners,
the m-th data owner Pm holds a local data set denoted as
Xm � xm1 , xm2 , . . . , xmNm

{ }, Nm is the number of individuals
owned by data owner Pm,m � 1, . . . ,M, N � ∑Mm�1Nm.
Each individual is a p-dimensional vector. �e data sets
X1, X2, . . . , XM can be viewed as horizontally split the in-
tegrated data set X � ∪Mm�1Xm byM data owners. �at is all
the local data sets have the same attributes and do not in-
tersect with each other. Our goal is to design an algorithm
that can publish these horizontally partitioned data sets
privately; speci�cally, it is that with the assistance of a

s x

Figure 2: Graphical model for principal component analysis.

4 Security and Communication Networks



semitrusted curator, the M data owners and the curator
collaborate to publish a synthetic data set X � ∪M

m�1
Xm,

which has the same scale and statistical properties as the data
set X � ∪M

m�1Xm. Typically, we assume that the data owners
and the curator are honest-but-curious, that is, they will
follow the protocol but try to find out as much secret in-
formation as possible.

In view of the above scenario, we propose a horizontally
partitioned data publishing method with differential privacy
(HPDP-DP). (e Algorithm 1 depicts the HPDP-DP algo-
rithm. First, the data owner perturbs the local scatter matrix
with random noise that obeys the Gamma distribution and
sends it to the semitrusted curator. (en the semitrusted
curator aggregates all the local scatter matrices to get the noisy
estimator of the covariance matrix of the pooled data. (e
semitrusted curator performs eigenvalue decomposition on
the covariance matrix to get the principal components and
then the top k principal components are sent to each data
owner. At last, each data owner uses the top k principal
components and the generative model of probabilistic
principal component analysis to generate a synthetic data set.

In order to reduce the impact of noise on the availability
of published data, the HPDP-DP algorithm employs a

distributed Laplace mechanism to add noise to the local
scatter matrix. According to (eorem 2, the infinite addi-
tivity of Laplace distribution, we perturb the local scatter
matrix with the noise follows a Gamma distribution, which
makes the estimator of the covariance matrix of the pooled
data contain the same level of noise as the centralized scene.
Inspired by [37], since the step of perturbing the local scatter
matrix with gamma-distributed noise does not satisfy dif-
ferential privacy, we will use the Paillier encryption scheme
to encrypt the perturbed scatter matrix to protect the privacy
of local data.(eHPDP-DP algorithmmainly consists of the
following stages.

Initialization phase: in the initialization phase, the
Paillier cryptographic system generates the public key
(n, g) and the private key λ. (e system also generates M +

1 factors θ0, θ1, . . . , θM, where θm ∈ Zn2, m � 0, 1, 2, . . . , M

and θ0 · θ1 · · · · · θM � 1. (e factor θ0 and the private
key λ are secretly sent to the curator. (e public key (n, g)

and θm are secretly sent to the data owner Pm,
m � 1, 2, . . . , M.

Perturbation and encryption phase: each data owner
randomly perturbs the local scatter matrix. (e scatter
matrix of the data owner Pm is given by

Input: Data sets Xm , m � 1, 2, . . . , M. Private key λ, public key (n, g). θm(m � 0, 1, 2, . . . , M), where θ0 · θ1 · · · · · θM � 1. Privacy
budget ε and cumulative contribution rate c

Output: Synthetic data set X � ∪M
m�1

Xm

(1) form � 1 to Mdo
(2) Data owner generates p × p noise matricesBm1 � (bm1

ij )p×p and Bm2 � (bm2
ij )p×p, letBm1 and Bm2 be the symmetric matrix with the

upper triangle (including the diagonal) entries are sampled from Gamma (1/M, p + p2/Mε), and set bm1
ji � bm1

ij , bm2
ji � bm2

ij ,∀i< j.
(3) Compute: Lm � (lmij )p×p � 

Nm

k�1(x
m
k − μm)(xm

k − μm)T

(4) Compute: Lm � (l
m

ij )p×p � (lmij + bm1
ij − bm2

ij )p×p

(5) fori � 1 to pdo
(6) forj � 1 to pdo
(7) Compute: θm · [[l

m

ij ]]←θm · g
lm
ij

+bm1
ij − bm2

ij · rn mod n2

(8) end for
(9) end for
(10) end for
(11) returnCm � (θm · [[l

m

ij ]])p×p, m � 1, 2, . . . , M

(12) Compute the Hadamard product: C←(θ0)p×p°C1°C2°· · ·°CM
(13) Decrypt C: L � (

M
m�1(lmij + bm1

ij − bm2
ij ))p×p←C

(14) Compute: Σ � (1/N)L

(15) Eigenvalue decomposition of matrix Σ, return eigenvalues in descending order λ1 ≥ λ2 ≥ · · · ≥ λp ≥ 0 , and corresponding
eigenvectors u1,u2, . . . , up

(16) fork � 1 to pdo
(17) ifk

i�1 λi/
p

i�1 λi ≥ cthen
(18) Λk � (λ1, λ2, . . . , λk)

(19) Uk � (u1,u2, . . . , uk)

(20) end if
(21) end for
(22) returnΛk, Uk

(23) form � 1 to Mdo
(24) Compute Sm � Xm × Uk

(25) Use the model defined in (eorem 1 to generate a synthetic data set Xm

(26) end for
(27) return X � ∪M

m�1
Xm

ALGORITHM 1: HPDP-DP algorithm.
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Lm � l
m
ij 

p×p
� 

Nm

k�1
xm

k − μm
(  xm

k − μm
( 

T

� 

Nm

k�1
xm

k xm
k( 

T
− Nmμ

m μm
( 

T
.

(5)

where μm � (1/Nm) 
Nm

k�1 x
m
k .

(e data owner Pm generates two p × p symmetric
random matrices Bm1 � (bm1

ij )p×p and Bm2 � (bm2
ij )p×p; bm1

ij

and bm2
ij are sampled from Gamma((1/M), (p + p2 )/Mε),

1≤ i≤ j≤p . (en, the local noisy scatter matrix is Lm �

(l
m

ij )p×p � (lmij + bm1
ij − bm2

ij )p×p. Using the public key (n, g)

and θm to encrypt each element of Lm to get the encrypted
matrix Cm � (θm[[l

m

ij ]])p×p � (θm · g
lm
ij

+bm1
ij − bm2

ij · rn·

modn2)p×p which will be sent to the curator,
m � 1, 2, . . . , M.

Aggregation and decryption phase: After receiving these
encrypted matrices C1, C2, . . . , CM, the curator performs the
Hadamard product on these encrypted matrices. We use the
symbol ° as the Hadamard product of matrices.

θ0( p×p°C1°C2°· · ·°CM � θ0 

M

m�1
θm · g

lm
ij

+bm1
ij − bm2

ij · r
n

· modn
2⎛⎝ ⎞⎠

p×p

� 
M

m�1
·g

lm
ij

+bm1
ij − bm2

ij · r
n

· modn
2⎛⎝ ⎞⎠

p×p

� g

m�1Ml

m
ij + 

M

m�1 b
m1
ij − b

m2
ij  · r

Mn
· modn

2⎛⎝ ⎞⎠

p×p

� g

m�1Ml

m
ij + Lap p + p

2/ε  · r
Mn

· modn
2⎛⎝ ⎞⎠

p×p

� 
M

m�1
l
m
ij + Lap

p + p2

ε
 ⎡⎣ ⎤⎦⎡⎣ ⎤⎦⎛⎝ ⎞⎠

p×p

,

(6)

where 
M
m�1(bm1

ij − bm2
ij ) ∼ Lap((p + p2)/ε) holds due to

(eorem 2. (e curator decrypts the above results to get the
sum of local scatter matrices with Laplace noise
L � 

M
m�1

Lm � 
M
m�1 Lm +(Lap((p + p2)/ε))p×p, which is

used as an estimation of the scatter matrix of the pooled data,
and then the estimation of the covariance matrix of the
pooled data is Σ � (1/N)L.

In this stage, our idea is to use the weighted average of
the local covariance matrices to estimate the covariance
matrix of the pooled data. Assuming that the covariance
matrix of data owner Pm is Σm, the relationship with the
scatter matrix is Σm � (Lm/Nm), and then the estimation of
the covariance matrix of the pooled data is
Σ � 

M
m�1(Nm/N)Σm � (1/N) 

M
m�1

Lm � (1/N)L.
Principal component analysis phase: the curator performs

eigenvalue decomposition on matrix Σ . (e curator gets the
eigenvectors (the top k principal components) u1,u2, . . . , uk

and then sends them to each data owner.
Generate synthetic data set phase: Each data owner uses

the returned top k principal components and the generative
model of probabilistic principal component analysis in
(eorem 1 to generate a synthetic data set.

4.2. Analysis

4.2.1. Security Analysis

Theorem 5. "e data set owned by Pm is Xm and its cor-
responding scatter matrix is Lm � (lmij )p×p, m � 1, 2, . . . , M.
Defining the query function,

f X1, X2, . . . , XM(  � 

M

m�1
Lm, (7)

the output result intended to be protected. Bm1 � (bm1
ij )p×p

and Bm2 � (bm2
ij )p×p are symmetric random matrices will be

added to Lm, bm1
ij and bm2

ij are sampled from
Gamma((1/M), (p + p2/Mε)), 1≤ i≤ j≤p. If the random
algorithm M holds

M X1, X2, . . . , XM(  � f X1, X2, . . . , XM( 

+ 
M

m�1
Bm1 − Bm2( ,

(8)

then the algorithm M satisfies ε differential privacy.
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Proof. According to (eorem 2, it can be known each el-
ement of 

M
t�1(Bm1 − Bm2) obeys Lap(p(1 + p)/ε). So, next

we will prove if algorithm M holds

M X1, X2, . . . , XM(  � f X1, X2, . . . , XM(  + B, (9)

B � (bij)p×p is a symmetric random matrix and bij is
sampled from Lap(p(1 + p)/ε) , 1≤ i≤ j≤p, then the al-
gorithm M satisfies ε differential privacy.

We denote the two neighboring data sets as
X � ∪M

m�1Xm and X � ∪M
m�1

Xm; there is only one
individual is different, without losing general assumption,
suppose the different individuals are in XM and XM.
We denote the only two different individuals as xM

NM
∈ XM

and xM
NM
∈ XM. Assume that all individual data have

been normalized to the [0,1] interval. (e estimation of the
scatter matrices of X and X are as follows:

L � 
M

m�1
Lm � 

M

m�1
l
m
ij 

p×p
, (10)

and

L � 
M− 1

m�1
Lm + LM � 

M− 1

m�1
l
m
ij 

p×p
+ l

M

ij 
p×p

. (11)

Let B � (bij)p×p and B � (bij)p×p be two independent
symmetric random matrices, where bij and bij are sampled
from Lap(p(1 + p)/ε), 1≤ i≤ j≤p.

Let S � L + B and S � L + B , then the log ratio of the
probabilities of S and S at a point H is given by

ln
P H|X{ }

P H| X 




� ln

P H − L|X{ }

P H − L| X 




. (12)

According to the definition of differential privacy (Defi-
nition 1), we need to prove that the following inequalities holds:

ln
P H|X{ }

P H| X 




� ln

P H − L|X{ }

P H − L| X 




≤ ε. (13)

(e mean vectors of XM and XM are as follows:

μM
�

1
NM



NM

k�1
xM

k , (14)

and

μM
�

1
NM



NM− 1

k�1
xM

k + xM
NM

⎛⎝ ⎞⎠, (15)

so μM � μM + (1/NM)(xM
NM

− xM
NM

). Hence, we have the
following:

l
M
ij − l

M

ij



 � 

NM

k�1
x

M
ik x

M
jk − NMμM

i μM
j − 

NM− 1

k�1
x

M
ik x

M
jk + x

M
iNM

x
M
jNM

− NMμM
i μM

j
⎛⎝ ⎞⎠





� x
M
iNM

x
M
jNM

− x
M
iNM

x
M
jNM

+ NM μM
i μM

j − μM
i μM

j 




� x
M
iNM

x
M
jNM

− x
M
iNM

x
M
jNM

+ μM
i x

M
jNM

− x
M
jNM

  + μM
j x

M
iNM

− x
M
iNM

  +
1

NM

x
M
iNM

− x
M
iNM

  x
M
jNM

− x
M
jNM

 





� x
M
iNM

− x
M
iNM

  x
M
jNM

− μM
j  + x

M
jNM

− x
M
jNM

  x
M
iNM

− μM
i 





≤ x
M
iNM

− x
M
iNM

  x
M
jNM

− μM
j 



 + x
M
jNM

− x
M
jNM

  x
M
iNM

− μM
i 



≤ 2.

(16)

(erefore, the following formula holds:

ln
P H|X{ }

P H| X 




� ln

P H − L|X{ }

P H − L| X 





�
ε

p(1 + p)


1≤i≤j≤p
hij − l

M

ij



 − hij − l
M
ij



 

≤
ε

p(1 + p)


1≤i≤j≤p
l
M
ij − l

M

ij





≤
ε

p(1 + p)
p(1 + p) � ε.

(17)

So the conclusion of (eorem 5 holds.
Security against external attacks: external attacker will

eavesdrop on data sent by local data owners to the curator.
According to the semantic security of Paillier encryption
against plaintext attacks, external attacker unable to decrypt
data (θm · g

lm
ij

+bm1
ij − bm2

ij · rn · modn2)p×p without knowing
private key λ and θm, 1≤m≤M. External attacker may also
eavesdrop on the aggregated value of the data owners
(g

M

m�1 lm
ij

+bm1
ij − bm2

ij · rMn · mod n2)p×p, external attacker unable
to decrypt data without knowing private key λ. Even though
the external attacker get the sum of scatter matrices with
noise (

M
m�1 lmij + bm1

ij − bm2
ij )p×p, because it contains Laplace

noise, so the local data are still safe according to (eorem 5.
Security against internal attacks: internal adversaries are data
owners and the curator. (e data owner Pm holds θm
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secretly, the rest of the data owners and the curator cannot
decrypt (θm · g

lm
ij

+bm1
ij − bm2

ij · rn · modn2)p×p without private
key λ and θm unless the curator colluded with the M − 1
data owners. (e curator can use private key λ and θ0 to
decrypt the aggregated value (

M
m�1 (θm · g

lm
ij

+bm1
ij − bm2

ij · rn·

modn2)p×p, but the curator can only get the aggregated value
with Laplace noise, so the local data are safe according to
(eorem 5. □

4.2.2. Complexity Analysis. Computation time cost analysis:
the total time complexity of Algorithm 1 is O(Mp2 + Mn),
where M is the number of data owners, p is the number of
attributes, n � n1 + n2 + · · · + nM, nm is the number of
samples owned by data owner Pm, m � 1, 2, ·, M . It is due to
the following facts. In Algorithm 1, the major computational
cost of Algorithm 1 is reflected in lines 1–11, lines 16–21, and
lines 23–26. (e lines 1 − 11 are to perturb and encrypt the
scatter matrix of the local data of the M data owners, and the
time complexity is O(Mp2). (e lines 16 − 21 are to perform
principal component analysis on the aggregated scatter
matrix, and its time complexity is O(K), where K is the
number of retained principal components, which is pro-
portional to p, so the complexity is O(p). (e lines 23 − 26
are that each data owner uses (eorem 1 to generate a
published data set, and the time complexity is
O(Mn1 + Mn2 + · + MnM) � O(Mn). In summary, the time
complexity of Algorithm 1 is O(Mp2 + p + Mn), which is
O(Mp2 + Mn) .

Communication cost analysis. (ere exist three stages that
incur communication costs. (e first stage is the M data
owners send the local scatter matrix to the curator, the size of
the message sent by each data owner is p2, the total size of
the message sent in this stage is Mp2. (e second stage is the
curator sends the top K eigenvalues and their corresponding
eigenvectors to each data owner; the total size of the message
sent in this stage is MpK2.(e third stage is each data owner
sends the synthetic data set to the curator; the size of the
message sent by data owner Pm is nmp, m � 1, 2, . . . , M; the
total size of the message sent during this stage is
np � (n1 + n2 + · · · + nM)p.

5. Experiment

In this section, we experimentally evaluate the performance
of HPDP-DP algorithm by comparing with the DP-SUBN3

algorithm [30]. We conduct experiments on different real
data sets that are NLTCS [38] and Adult [39] data sets.
NLTCS data set contains 21574 individuals, each individual
has 16 attributes. Adult data set contains 45222 individuals,
each individual has 15 attributes. We use the method in [30]
to preprocess the Adult data set. After processing, the
number of attributes in the Adult data set is 52. We use SVM
classification accuracy to evaluate the performance of
HPDP-DP algorithm. We train multiple classifiers on
published synthetic data sets. For NLTCS data set, predicting
whether a person is unable to go outside and whether a
person is unable to manage money. For Adult data set,

predicting whether a person holds a postsecondary degree
and whether a person earns more than 50K. In each clas-
sification task, we use 20% of the individuals as the test set
and 80% of the individuals as the training set. Each ex-
periment is run five times, and the average results are re-
ported. (e number of retained principal components is
determined by the cumulative contribution rate c. (e cu-
mulative contribution rate c is set to 0.8 for NLTCS data set
and 0.95 for Adult data set. In order to measure the per-
formance of the HPDP-DP algorithmmore clearly, the same
SVM classifier are trained on the original data set; we label
the SVM classification accuracy on the original data set with
“No Privacy.”

5.1. "e Impact of the Number of Principal Components
Retained on the SVM Classification Accuracy. In this
section, we train multiple classifiers to study the influence of
the number of principal components retained on the SVM
classification accuracy. In this set of experiments, the
number of data owners is set to 3; the privacy budget ε is set
to 0.5.

For the Adult data set, Figures 3(a) and 3(c) show the
cumulative contribution rate and individual contribution
rate of the principal components. Because there are more
attributes after preprocessing the Adult data set, so we only
marked the corresponding SVM classification accuracy
when the number of retained principal components k are
5, 10, 15, 20, 25, 30, 35, and 40 in Figures 3(b) and 3(d). For
the NLTCS data set, it can be seen from Figures 3(e) and 3(g)
that the contribution rate of only the first principal com-
ponent has reached more than 30%. (e cumulative con-
tribution rate of the top seven principal components can
reach 80%, and it can be seen from Figures 3(f) and 3(h) that
the corresponding SVM classification accuracy can reach
more than 80%.

(e common conclusion is that when the cumulative
contribution rate increases (the number of principal com-
ponents retained increases), the SVM classification accuracy
increases accordingly. (is phenomenon is consistent with
the principle of principal component analysis. (e principal
components are not correlated with each other and contain
the information of the original data. (e more principal
components retained, the more information of the original
data contained in the published data, and the better the
performance of the published data set.

5.2. Performance Comparison of HPDP-DP and DP-SUBN3

with Different Privacy Budgets. In this part of the experi-
ments, we fixed the number of data owners to three while
making the privacy budget ε take different values. Figure 4
shows the impact of privacy budgets on HPDP-DP and
DP-SUBN3 algorithms. Figures 4(a) and 4(b) show the
SVM classification accuracy of the HPDP-DP and DP-
SUBN3 algorithms on Adult data set. Figures 4(c) and
4(d) show the SVM classification accuracy of the HPDP-
DP and DP-SUBN3 algorithms on NLTCS data set. From
Figure 4, except for the salary classifier of the Adult data
set, the performance of HPDP-DP algorithm is
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Figure 3: Continued.
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signi�cantly better than DP-SUBN3 algorithm. Even for
the salary classi�er of the Adult data set, the SVM
classi�cation accuracy of HPDP-DP algorithm is still
not lower than DP-SUBN3 algorithm. From Figure 4,
the experimental results show that the SVM classi�cation
accuracy of both synthetic data sets released by
HPDP-DP and DP-SUBN3 algorithms increases with
the increase of the privacy budget. �is is because,
according to the de�nition of di�erential privacy, when
the privacy budget ε increases, the degree of privacy
protection decreases and the availability of the released
data increases.

5.3. �e Impact of the Number of Data Owners on the SVM
Classi�cation Accuracy. In order to study the e�ect of the
number of data owners on the performance of the HPDP-
DP algorithm, in this section, we set the number of data
owners to 2, 4, 6, 8, and 10. We �x the privacy budget ε to
0.2. �e results in Figure 5 show that the performance of
HPDP-DP algorithm is better than that of DP-SUBN3

algorithm. We can observe that when the number of data
owners increases, the SVM classi�cation accuracy of the
synthetic data sets released by HPDP-DP and DP-SUBN3

algorithms increases accordingly. For DP-SUBN3 algo-
rithm, the reason is that when the number of data owners
increases, the number of update iterations in DP-SUBN3

algorithm increases, which helps to get better Bayesian
network. For HPDP-DP algorithm, we use the weighted
average of the local covariance matrices as an estimate of
the covariance matrix of the pooled data, and the esti-
mation e�ect will get better as the number of data owners
increases. At the same time, we use the distributed Laplace
mechanism to add noise to the shared data, so even when
the number of data owners increases, the aggregated result
still contain only one share of random noise (the same level
as the centralized scene). �e scale of random noise is
determined only by the privacy budget and the sensitivity.
�erefore, the SVM classi�cation accuracy of the synthetic
data set released by HPDP-DP algorithm increases as the
number of data owners increases.

6. Conclusion

In this paper, in order to privately publish the horizontally
partitioned data owned by multiple parties, we present a
multiparty horizontally partitioned data publishing method
with di�erential privacy. We use the weighted average of the
covariance matrices of the local data to estimate the co-
variance matrix of the pooled data and then obtain the
principal components of the pooled data. In order to protect
the privacy of the local data and improve the utility of the
published data, we exploit the in�nite divisibility of the
Laplace distribution to add noise to the locally shared data to
improve the utility of the published data. �e experimental
results show that the synthetic data set released by the
HPDP-DP algorithm can maintain high utility. However,
this paper also has limitations. (1) �e principal component
analysis is only suitable for linear dimensionality reduction
and not for nonlinear dimensionality reduction. (2) �e
HPDP-DP algorithm is only suitable for horizontally par-
titioned data publishing, not for vertically partitioned data
publishing. We will conduct research on these aspects in the
future.
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