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Trusted execution environments (TEEs) are on the rise in devices all around us ranging from large-scale cloud-based solutions to
resource-constrained embedded devices. With the introduction of ARM TrustZone-M, hardware-assisted trusted execution is
now supported in IoT nodes. TrustZone-M provides isolated execution of security-critical operations and sensitive data-gen-
erating peripherals. However, TrustZone-M, like all other TEEs, does not provide a mechanism to monitor operations in the
trusted areas of the device and software in the secure areas of an IoTdevice has access to the entire secure and nonsecure software
stack. 'is is crucial due to the diversity of device manufacturers and component suppliers in the market, which manifests trust
issues, especially when third-party peripherals are incorporated into a TEE. Compromised TEEs can be misused for industrial
espionage, data exfiltration through system backdoors, and illegal data sharing. It is of utmost importance here that system
peripheral behaviour in terms of resource access is in accordance with their intended usage that is specified during integration.We
propose TEE-Watchdog, a lightweight framework that establishes MPU protections for secure system peripherals in TrustZone-
enabled low-end IoT devices. TEE-Watchdog ensures blocking unauthorized peripheral accesses and logging of application
misbehaviour running in the TEE based on a manifest file. We define lightweight specifications and structure for the application
manifest file enlisting permissions for critical system peripherals using concise binary object representation (CBOR). We im-
plement and evaluate TEE-Watchdog using aMusca-A2 test chipboard. Ourmicrobenchmark evaluations on CPU time and RAM
usage demonstrated the practicality of TEE-Watchdog. Securing the system peripherals using TEE-Watchdog protections induced
a 1.4% overhead on the latency of peripheral accesses, which was 61microseconds on our test board. Our optimized CBOR-
encoded manifest file template also showed a decrease in manifest file size by 40% as compared to the standard file formats,
e.g., JSON.

1. Introduction

'e Internet of things (IoT) is a network of data-generating
and data-consuming devices encompassing critical infra-
structures of future systems. 'e data generated by these
devices are typically sensitive in nature as it can be personal
data generated from personalized healthcare systems (health
monitoring devices), confidential data from industrial
control systems revealing information from the operations,
or privacy-critical user data from home monitoring systems.
We observe a fast-paced development of the application

frameworks for these systems such as Samsung Smart'ings
[1] and Apple HomeKit [2]. However, most of the appli-
cations themselves are not designed with security in mind
but remain focused on performance and functionality
raising several security concerns. 'e IoTdevices build upon
and enable third-party component suppliers (such as sen-
sors, cameras, and microphones) and application developers
to be a part of the underlying framework. 'e heterogeneity
of these component suppliers and the lack of security
standards and privacy-preserving protocols hinder the
trusted computing base (TCB) of IoT devices. When such a
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third-party component/peripheral is integrated into the
existing framework, it introduces potential risk due to the
accompanying software stack/driver [3]. Hence, the data
collected by these peripherals are also a concern for device
owners due to privacy reasons. Ditio [4] proposes a solution
to address this problem for smartphones and gives security
assurance to users. It records system peripheral activity (like
sensors), which can later be inspected by an auditor for
compliance with user-defined policies. Trusted execution
environments (TEEs) such as ARMTrustZone [5], Intel SGX
[6], and Keystone [7] provide a mechanism to partition
system resources and peripherals into secure and nonsecure
processing environments to enable isolation of critical
components from the rest of the system. Hence, using
TrustZone we can separate security-critical operations such
as key management, crypto-operation, DRM, sensitive pe-
ripherals, and their associated drivers into the secure areas of
device. 'e system components in the secure areas also have
access to the entire system resources. 'is hardware-based
isolation provides strong security guarantees to device users
and owners.

2. Challenge

If a secure application is compromised (due to an undetected
vulnerability), it becomes very challenging to detect this
compromise and deploy remedial actions. Several examples
of implementing stealthy rootkits in such compromised
TEEs [8, 9] exist. 'us, the device users trust that software in
secure areas of the device is not buggy, has backdoors, or will
not abuse the privileged access to manipulate or exfiltrate
data since they can also have access to the network stack.'e
fundamental problem is that in a multi-vendor environ-
ment, the device manufacturer has to ensure vendor trust
(i.e., component vendors trusting each other for data
handling) and user trust (i.e., trust of user on the device
manufacturer even though individual components of the
device have distinct origins). Industrial espionage in case of
conflict of interest between vendors and illegal file sharing
using compromised secure areas are some potential ways
TEE-enabled systems can be exploited. 'e need for a so-
lution that forces peripherals and their software to behave as
agreed upon during integration cannot be more emphasized.
In case of conventional IoT devices including smartphones,
smart TVs, and smart vehicles, the component vendors and
suppliers are fewer and well-known. Moreover, the security
of the underlying architecture and applications is matured
over years of research and development. On the other hand,
IoTdevice vendors are still emerging rapidly, resulting in the
spread of unregulated IoTdevices. With the introduction of
TrustZone-M (TZ-M) for Cortex-M-based devices (i.e., low-
end IoT nodes), the hardware-based TEE for isolated exe-
cution of critical operations is available to the IoT world as
well.'is enables the separation of critical components from
system operations, but the problem discussed above is now
equally applicable to low-end devices. As a result, intro-
ducing these devices in our proximity without well-defined
trust anchors threatens our privacy and safety. 'e major
problem posed here is that software running in the secure

areas of a TrustZone-M enabled device lacks fine-grained
access to the system peripherals. 'is raises concerns about
the intended usage of the installed peripherals and the way
they are actually used. Running conventional antivirus
systems increases the code base of secure areas, which is
impractical, and hence, these methods are not suggested.

In this study, we present TEE-Watchdog (shown in
Figure 1), a framework to map user/vendor-defined policies;
i.e., CBOR policy associated with peripherals (fingerprint
sensor in Figure 1) to the system memory, efficiently detect
access violations, and register policy-violating application’s
behaviour, which after audit helps select appropriate re-
medial actions. We implement a Security Manager com-
prising of a policy converter, a policy enforcement module,
and a logging module. We introduce an optimal structure for
access policies in the manifest file, an access table, and a
system log file containing the necessary information for
analysis of malicious behaviour. TEE-Watchdog’s optimized
design is implemented with minimal modifications to the
secure fault handlers and bootloader. TEE-Watchdog en-
forces memory accesses based on policies using a memory
protection unit (MPU). TEE-Watchdog adds system
structures such as manifest file, access table, and log file to
establish the entire framework. With the combination of
these mechanisms, besides providing a runtime secure pe-
ripheral access monitoring and behaviour logging mecha-
nism for the secure peripherals in TrustZone-M-enabled
IoT, we ensure the following: (i) fine-grained access control
over secure system peripherals, (ii) immutability of pro-
posed system components, i.e., the Security Manager and
access table, and (iii) confidentiality and integrity of the log
file.

3. Contributions

'e main contributions of our TEE-Watchdog paper are as
follows:

(i) A mechanism to protect against unauthorized,
curious access of critical resources by trusted ap-
plications in the TrustZone-based TEE of IoT
devices.

(ii) We propose a lightweight manifest file specification
(in CBOR), for trusted apps running in TEE.

(iii) We propose an automated translation mechanism
to convert application’s access policies into a plat-
form-dependent and tamper-resistant access table.

(iv) Exploiting the MPU, we provide detection, block-
ing, and behavioral logging of the policy-infringing
suspicious application within TEE.

(v) We implement and evaluate TEE-Watchdog using
real IoT hardware (Musca-A evaluation board) and
present its applicability in an IoT water meter use
case by ARM for low-power IoT devices.

'e rest of the study is structured as follows. Related
work is discussed in Section 1. In Section 2, we discuss in
detail the technologies and background needed to under-
stand TEE-Watchdog. Section 3 describes the threat model
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followed by the TEE-Watchdog design in Section 4. 'e
implementation details are explained in Section 5. In Section
6, we follow the implementation with the performance
evaluation and results. We discuss a use case of TEE-
Watchdog in Section 7. Security analysis of our proposed
design is discussed in Section 8. 'e study concludes with
Section 9.

4. Related Work

In the following section, we discuss the related literature:
trusted execution environments, incidents of breaching
TEEs, policy-based access of peripherals in IoT, and sand-
boxing IoT applications.

4.1. Trusted Execution Environments (TEEs). Trusted exe-
cution environments provide an isolated environment for
software processing and execution where critical system
components can be separated using virtualization or
hardware-based mechanisms. Many approaches to protect
code and data exist [5–7, 10–13] for embedded systems,
commodity PCs, cloud environments, etc. Intel Software
Guard Extensions [14] provide a platform for commodity
PCs and cloud environments to set up secure isolated do-
mains called enclaves for isolated execution of application.
ARM TrustZone provides mechanisms to separate appli-
cation code, system resources, and peripherals into secure
and normal worlds where the critical operations execute in
the secure domain and all other operations including OS

operate in the normal domain. With the introduction of
TrustZone-M by ARM, resource-constrained IoT devices
can also create TEEs for the isolation of critical operations.
Prior to the introduction of TrustZone-M, techniques such
as [13, 15, 16] provided efficient ways to isolate varying levels
of code in microcontrollers and IoT devices based on their
criticality.

4.2. Breach of TEEs. TEEs were introduced to secure soft-
ware execution and operation on critical data, and their
security guarantees rely on a small TCB and strong isolation
mechanisms, but recently, with the expansion of IoT do-
main, the number of incidents of TEE exploitation is
drastically increasing. Examples of incidents of TEE breach
in the past decade are Boomerang [17], Armageddon [18],
and attack on Qualcomm’s Secure Execution Environment
[19]. Boomerang is a class of vulnerabilities that arise in TEE
due to the semantic gap between the trusted and untrusted
domains on a TEE-enabled device and enables a normal
world attacker to take control of other resources in the
normal world of higher privilege using the privileged trusted
domain. In Qualcomm’s Secure Execution Environment, the
communication channel manager was used to exploit an
integer overflow vulnerability and write to the secure
memory. Armageddon demonstrates that powerful cross-
core cache attacks such as prime + probe, flush + reload, and
evict + reload can be used to monitor secure domain activity
from the normal world. All these vulnerabilities lead to
compromise of the secure domain where stealthy rootkits
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Figure 1:'is figure represents the overview of the proposed mechanism and its interaction with the existing IoTsystem. It is proposed that
peripherals (such as keypad, sensor, and fingerprint scanner) are shipped to the IoT device manufacturer together with CBOR-encoded
manifest files approved and signed by a trusted authority. 'e IoT device manufacturer can also use self-approved signed policies. 'is
CBOR file defines the required resources and the IoT application needs to perform its normal operation. 'e IoTdevice is configured with
the policies, and TEE-Watchdog enforces the policies to protect against any malicious behaviour by the third-party software in the TEE.
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can be installed. Since there are no ways in the existing
infrastructure to monitor the secure areas of a TEE-enabled
device, it is very difficult to identify whether there is a se-
curity breach in the secure domain (as shown in [20, 21]).
With the availability of TrustZone-M for resource-con-
strained IoTdevices, these attacks become equally applicable
to low-end IoT devices. As the Web of IoT expands around
the user, the threat to privacy with data abuse is even greater.
Hence, we propose a mechanism to monitor the access of
data-generating peripherals by software in the secure world
of TEE-enabled IoT.

4.3. Policy-Based Access of Peripherals in IoT. IoT devices,
such as smartphones, tablets, wearables, smart-home as-
sistants (e.g., Google Home and Amazon Echo), and wall-
mounted cameras, come equipped with various sensors,
notably camera and microphone. 'e threat is greater in a
multi-vendor environment, and it becomes crucial that
applications should be allowed to access only those pe-
ripherals that are a functional requirement. FlowFence [22]
is a system that requires consumers of sensitive data to
declare their intended data flow patterns, which it enforces
while blocking all other undeclared flows. FlowFence is
designed for smartphones and IoT devices with a few
gigabytes of runtime memory. Similarly, Android applica-
tions have manifest files associated with their functionality
enlisting the required permissions of the system sensors,
peripherals, resources, etc. 'ese manifests are utilized to
specify access permissions, data flows, etc. [23]. 'e class of
IoT devices with TrustZone-M enabled is among highly
resource-constrained devices with few kilobytes of RAM.
Hence, the implementation of such solutions becomes in-
feasible in low-end platforms. In low-end devices that have
TrustZone-M support, misbehaviour by third-party appli-
cations in the secure domain is equally likely [24, 25]. Ditio
[4] is a designed to enable auditing of sensor activities in
modern mobile and IoT devices (in the normal world). It
records sensor activity logs that can be later inspected by an
auditor and checked for compliance with a given policy. It is
based on a hybrid security monitor architecture that le-
verages both ARM’s virtualization hardware and TrustZone.
However, it does not provide any mechanism to block
unauthorized access or violation of the compliance policies,
neither does it support detection of misbehaving sensors in
the secure world of TrustZone-enabled devices.

4.4. Sandboxing IoT Applications. Isolating software mod-
ules from interfering with each other, also known as
sandboxing code, is a way to prevent software from affecting
each other’s functionality. It is utilized for preventing faults
in one software affecting another, for preventing interfer-
ence between applications, enabling previously approved
behaviour of applications, etc. ARMor [26], ARMLock [27],
and uSFI [28] are software fault isolation mechanisms ap-
plied to normal operating world, which prevent code from
adversely affecting each other using hardware and software
means. We propose our solution influenced by this concept
of sandboxed modules in the secure world of a TrustZone-

enabled device. When secure software becomes active, a
subset of memory-mapped peripherals becomes visible to
the software. 'is subset is enabled by leveraging the MPU
and is in accordance with the usage policies discussed in
detail in Section 4. To the best of our knowledge, our
proposed solution is the first attempt that looks closely at
monitoring behaviour of secure applications and automated
blocking of peripheral access based on policies in manifest
files. Our proposed solution can be used with any of the
previously discussed code isolation mechanisms and TEEs
that support TrustZone MPU-like protection and a mech-
anism to handle memory-managed faults.

5. Technologies Used in TEE-Watchdog

In this section, we discuss the fundamental technologies
used in the design of TEE-Watchdog.

5.1. ARM TrustZone’s MPU-Based Protections. Embedded
systems and low-end IoTdevices have strict energy budgets.
'ese are battery-operated and usually designed to run
unattended for years on the same batteries. 'us, instead of
integrating full-fledged memory management units
(MMUs), these systems use primitive access controllers such
as memory protection units (MPUs) that provide secure and
trusted execution capabilities to IoT devices [29]. MPUs are
programmable blocks present in the processor that enable
system developer to divide system memory (flash, RAM,
ROM,MMIO) into a number of regions that can be assigned
access permissions.'eMPU can be configured to support 8
or 16 regions by privileged software using a series of 32 bit
memory-mapped registers. 'e ARMv8-M architecture has
8 available MPU regions [30]. 'e Region Attribute and Size
Register (RASR) is used to define the region size and
memory attributes of an MPU region. 'e Cortex-M23 and
Cortex-M33 can have up to twoMPUs (one for secure world
and one for normal world) if the TrustZone security ex-
tension is implemented and enabled. 'e secure and non-
secure MPU can be configured independently with a
different number of MPU regions to protect memory for the
associated security domain. An MPU-based access control
allows management of regions by setting (i) shareability, (ii)
access permissions (read/write), and (iii) code execution
permission. 'e MPU_RBAR register, which is a 32 bit
memory-mapped register, stores the starting address of the
MPU-protected region and the access permissions (Table 1
describes the register’s bits). All memory accesses to that
region are overseen by the MPU, including instruction
fetches and data accesses from the processor, which can
trigger a fault exception when an access violation is detected.
As a result of these fault exceptions, the processor populates
the MemManage Fault Status Register (MMFSR) and the
MemManage Fault Address Register (MMFAR).

5.2. MemManage Fault Status Register. In ARMv8-M ar-
chitecture with main extension, fault status registers (xFSR)
are available to allow fault handlers to identify the cause of
the fault exceptions. Each fault has an associated FSR. When
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a fault occurs, the processor pushes several CPU registers on
the stack before entering the fault handler. 'ese 32 bit
registers can be inspected to further debug the cause of the
fault. For MemManage faults triggered as a result of an
illegal access on an MPU-protected region, the MMFSR bits
can be accessed to identify the nature and cause of the fault.
'e MMFSR indicates the cause of the fault. By checking the
values of bit 0 to 7, we can locate what type of access caused
the fault. For example, if bit 0 of the MMFSR is set it in-
dicates that an instruction fetch was attempted from a lo-
cation, which did not have execution permission as perMPU
configurations. Table 2 summarizes the function of various
bits of the MMFSR.

5.3. MemManage Fault Address Register. 'e MemManage
Fault Address Register (MMFAR) is also populated when a
MemManage fault occurs. It contains the address of the
location that generated a MemManage fault. In other words,
this register is updated with the address of a location that
produced a MemManage fault and can be used to retrieve
the faulting address. 'eMMFAR address is valid only if the
MMARVALID bit of MMFSR is set.

5.4. Manifest Files in IoT. Manifest files are a collection of
metadata about the firmware or applications of an IoT
device, including information about software location,
supported devices, access policies associated with software
modules regarding the accessibility of system components,
and cryptographic information protecting the manifest.
Manifest files are often platform-specific, and platform
vendors provide application developers and vendors with a
set of rules and instructions that the metadata file should
comply with. Android manifests for smartphones contain
access permissions about system peripherals, which the
application requires access to (shown in Figure 2(a)). An-
droid application developers have to comply with an XML-
based template for the manifest file [31]. IoT firmware has
associated manifest files, which are required to ensure secure
over-the-air updates in zero-touch IoTdevices. Ubuntu also
enlists specifications [32] regarding packaging format

intended to be used by third-party applications in a JSON-
based manifest (Figure 2(b)). Trusted Firmware-M (TF-M),
a TrustZone-M reference implementation, is under devel-
opment for IoTdevices [10]. Figure 2(c) shows an example of
a manifest file associated with TF-M, containing details
about a system partition, its priority, peripherals, etc.

5.5. Concise Binary Object Representation. Concise Binary
Object Representation (CBOR) is a binary serialization data
format that the Internet Engineering Task Force (IETF)
proposes for IoT applications [33]. It is an ideal fit for IoT
environments as it contributes to the goal of a lightweight
stack for resource-constrained IoT devices. 'e encoders
and decoders for CBOR are implemented with a small
codebase. Its minimal code footprint and small message size
make it suitable even for most constrained IoT devices with
kilobytes of RAM. We use CBOR to implement the manifest
file (discussed in Section 4.1).

6. Threat Model/Attack Model

In our threat model, we define and distinguish three classes
of attackers. First, a trustworthy vendor could run an in-
secure third-party’s piece of code/API in TEE unknowingly;
this could be due to leaving known vulnerabilities in the code
from the beginning or code becoming vulnerable over a
passage of time. 'is allows any attacker (A1) to exploit the
known vulnerabilities. Second, the vendor herself is semi-
trusted for being honest but curious and is able to access
other application data in the secure world (A2). 'ird, a
large number of IoTdevices are now being manufactured by
unknown and untrusted vendors who also do not have the
mechanisms to maintain a secure supply chain (https://blog.
checkpoint.com/2017/03/10/preinstalled-malware-
targeting-mobile-users/); such untrusted IoTvendors and/or
individual component suppliers could behave maliciously to
collect critical end-user data (A3).

Our attack model is based on a primary assumption that
a service running in the secure world has autonomous access
and control over the entire system resources (both normal
and secure). So, a service with access to the network stack
can exfiltrate data of another service over the Internet. 'e
goal of such an attacker could be data leakage due to conflict
of interest between manufacturing vendors (A2). Similarly,
other attackers, such as A1 and A3, can exploit the privilege
level of their code in TEE, which can access structures and
functions. We also assume that the proposed structures and
components (such as the access table, and log file introduced
later in Section 3) can be modified and system operations
(such as manifest file parsing and behaviour logging) can be
interrupted by secure software to change MPU configura-
tions and permissions of MMIO regions stored in access
table. We consider that our system runs on resource-con-
strained IoT devices that support ARM TrustZone-M. Our
security guarantees hold with the assumption that TrustZone
itself is implemented correctly and no intentional flaws and
bugs are introduced in it. We trust the privileged firmware
and secure bootloader. We assume that stack limit registers

Table 1: MPU_RBAR bits and description of individual register
bits.

Bits Bit name Description

[0] XN
1� allow code execution from this region
0� do not allow code execution from this

region

[2 :1] AP

Access permissions
00� read/write by privileged code only
01� read/write by any privilege code
10� read-only by privileged code only
11� read-only by any privilege code

[4 : 3] SH

Shareability of the region
00�non-shareable
01� outer-shareable
10� inner-shareable

[31 : 5] Base Base address of the MPU-protected region
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are used appropriately to prevent stackmanipulation and the
nonsecure interrupt service routines (ISRs) cannot interrupt
secure ISRs. Moreover, correct usage of stack limit registers
ensures that secure ISRs are handled by privileged software.
Moreover, we assume there are no validation bugs in the
secure software that can lead to privilege escalation to the
privileged firmware level.

Based on the above threat model and assumption, we
design TEE-Watchdog with the following security goals,
which will be analysed in detail in security analysis section
(Section 6): (i) secure applications cannot modify TEE-
Watchdog components and structures, i.e., the access table,
log file, and manifest file (G1); (ii) normal world applications
and their trusted code cannot interrupt critical system
processes that make TEE-Watchdog functional (G2); and
(iii) malicious applications are prevented from depleting
TEE-Watchdog resources such as the log file (G3). Table 3
summarizes these identified goals.

7. Tee-Watchdog Design and Architecture

We propose TEE-Watchdog, a sandboxing and behaviour
logging mechanism for secure software in TrustZone-en-
abled platforms. 'e high-level architecture of TEE-
Watchdog is illustrated in Figure 3 and depicts 3 entities: an
IoT device, an IoT device vendor, and an external audit
service. We introduce the Security Manager as a part of the
secure kernel, which is privileged secure software. It is the
supervising component that handles all sub-modules. 'e
application/service vendors provide software’s manifest file
enlisting functional details about the software, its sub-
modules, and required access to system peripherals. 'e
software can be any user-level application or firmware of a
peripheral. 'is manifest file is converted by the policy
converter to a memory-mapped access table at system boot
that contains the access permissions associated with each
software. 'e permitted peripherals are recorded in the
access table where each application is listed along with its set
of permitted peripherals. All system peripherals besides
those enlisted are not permitted by default.

In IoT devices with TrustZone-M enabled, the system
designer can partition the system memory into secure world
and normal world. 'is partitioning is enabled by config-
uring memory maps using an Implementation Defined
Attribution Unit (IDAU) and a Security Attribution Unit
(SAU) at boot time. An MPU is utilized to implement a
runtime access control on system memory and peripherals.
MPU enforces access control on all memory accesses, in-
cluding regular memory and device’s memory-mapped I/O
(MMIO). We leverage MPU to limit access of secure

software on secure resources. 'e sandboxing module en-
forces MPU-based protection on secure resources and pe-
ripherals leveraging the secure MPU. 'e audit module
intercepts MemManage faults triggered on illegal accesses by
software on a secure resource to record the app and the
violation that occurred, in the log file. We also propose a
template for an application manifest file based on CBOR file
format. 'e proposed framework requires every IoT ap-
plication to come equipped with a manifest file in order to
benefit from TEE-Watchdog protections. In the following
sections, we discuss the system structures of the TEE-
Watchdog framework and the main modules of our Security
Manager.

7.1. System Structures. In this section, we discuss the
specifications, structures, and placement of TEE-Watchdog
components, namely the manifest file, the access table, and
the log file.

7.1.1. ApplicationManifest File. As IoTdevices are diverse in
nature with regard to the computational capabilities (i.e.,
network capacity, processing power, energy consumption of
the IoT device, and memory capacity), the manifest file
should be concise enough to be used in most constrained
environments. We design the manifest file associated with
secure software to be lightweight and interoperable since the
proposed framework is targeting resource-constrained de-
vices. We propose these specifications based on CBOR.
Although it is less human-readable, since IoT devices are
usually deployed and expected to operate with minimal
human interaction, this does not constitute a problem. 'e
availability of CBOR in off-the-shelf IoT devices and its
efficiency to encode and run on low-powered devices are a
strong rationale for this selection [34]. We identify some
attributes that a manifest file should have to enable TEE-
Watchdog to monitor secure software and log malicious
behaviour: (a) a unique identifier (UniqueID) that is used to
globally identify the application across platforms and ven-
dors, (b) a list of peripherals that it requires for normal
functionality, and (c) the respective access permission for
each peripheral. Optional attributes including system
memory requirements and security keys can also be men-
tioned but are not required. Application identifiers that
identify service layer objects and logical entities are used
across devices, platforms, and vendors to monitor the be-
haviour of applications. Such identifiers usually follow
standard formats such as IEEE 64-bit Extended Unique
Identifier (EUI-64), Uniform Resource Identifier (URI), or
Uniform Resource Locator (URL) [35].'e unique identifier

Table 2: Register bits of MMFSR and their function.

Bits Bit name Bit function
[0] IACCVIOL 1� the processor attempted an instruction fetch from a location that does not permit execution
[1] DACCVIOL 1� the processor attempted a load or store at a location that does not permit the operation
[3] MUNSTKERR 1� unstack for an exception return has caused one or more access violations
[4] MSTKERR 1� stacking for an exception entry has caused one or more access violations
[7] MMARVALID 1�MMAR holds a valid fault address
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in the proposed manifest file serves the purpose of global
identification of secure software. 'e following listing is an
example of a manifest file as per the proposed guidelines.

'e CBOR encoding of the above JSON file is shown as
follows.

(a)

(b) (c)

Figure 2: Examples from various manifest files in operating systems, IoT, firmware, etc.(a) Manifest file associated with TF-M secure
services indicating identifiers, priorities, access to MMIO, etc. (b) JSON-based manifest file in Ubuntu containing information for third-
party applications. (c) Manifest file associated with android applications.
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TEE-Watchdog’s manifest file should comply with the
guidelines below:

(i) 'e manifest file should contain a globally unique
application identifier, UniqueID.

(ii) 'e UniqueID should be constructed by concate-
nating the organizational identification of the
vendor and local identification assigned to the
application by vendor (privately known to the
vendor).

(iii) Standards such as ISO/IEC 6523-1 [36] and IEEE-
administered organizational identifiers, organiza-
tionally unique identifier (OUI) and company ID
(CID) [37], are used to assign unique identifiers to
organizations and companies. 'e OUI can be
extended to add a local identifier assigned to identify
applications. We propose using EUI-64 [37] for
globally identifying the application software as they
are intended to be used by applications that require
globally unique identifiers for interfaces or
instances.

(iv) Following is a hexadecimal representation of a
UniqueID complying with EUI-64 comprising of
octets separated by hyphens.

(v) “UniqueID”: “AD-4E-22-C5-61-FF-AF.”

'is UniqueID is constructed by adding additional
bits to an IEEE-administered OUI or CID (e.g., OUI-36
and CID-24). In the above example, the first (most sig-
nificant) four and half octets are the OUI-36 and the
remaining hexadecimal values are the unique application
identification assigned by the vendor to construct an
EUI-64.

(i) 'e manifest file should contain a list of policies
specifying the type of access required by the
software for every secure system peripheral. 'e
platform peripherals not mentioned in the man-
ifest file are by default not accessible to the
software.

(ii) 'e content of the manifest file should be an array/
map containing name-value pairs complying with
the CBOR encoding format, for example.

(iii) “Temp-Sensor”: “RO.”
(iv) 'e names of peripherals specified in the manifest

file should be the same as enlisted by the IoTdevice
vendor (usually in the datasheet or specifications) to
maintain uniformity across devices.

(v) Access permissions for the system peripherals
should be either “RO” for read-only access or “RW”
for read-write access.

Table 3: A summary of TEE-Watchdog’s security goals.

Security
goal Description

G1 Secure world applications cannot modify TEE-Watchdog components and structures.

G2 Normal world applications and their trusted code cannot interrupt TEE-Watchdog operations or processes that make TEE-
Watchdog functional.

G3 Malicious applications are prevented from depleting TEE-Watchdog resources.

loT peripheral

Hardware
Firmware

Manifest File

Security Manager

MMF handler

Log File

Trusted Storage

Access
Table

Sandboxing
Module

Audit
Module

MPU

1

2

3

4

4

5

2

3

loT device External Entity

Figure 3: 'is figure shows TEE-Watchdog’s high-level architecture and processes in the secure world of a TrustZone-enabled IoTdevice.
(1) An IoTvendor supplies a signedmanifest file along with a peripheral/sensor containing access requirements for each secure peripheral in
the IoT device. (2) TEE-Watchdog’s Security Manager parses the manifest file and generates an access table based on the manifest file at
system boot. (3) When secure software becomes active, the Security Manager configures secure peripherals according to the permissions
specified in the access (Table 4). If and when secure software tries to access peripheral beyond its access permissions, TEE-Watchdog’s
SecurityManager fetches all information regarding the access violation and logs the event in the log file in trusted storage. (5)'e log file can
then be sent to an external auditor or used in training of intrusion detection systems or simply report the misbehaving software.
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'e attributes of the manifest file are proposed in a
minimal size considering the diversity in memory avail-
ability of IoT devices of different classes.

7.1.2. Access Table. An access table is part of the proposed
framework and is generated during system boot time. It
enlists the secure software installed on device and stores
their access permissions regarding the system peripherals
(shown in Table 4). Section 7.2.2 describes the process of
converting manifest file to platform-specific access table.

7.1.3. Log File. 'e log file is another major component in
the proposed mechanism. It is populated only by the Se-
curity Manager and stored encrypted as a secure system
resource. A log file containing information about behaviour
violations is shown in Table 5. Every violation is added with a
(i) Violation Code depicting the kind of illegal access per-
formed by the application, (ii) UniqueID of the application
that caused the violation, (iii) Violated_Peripheral, and (iv)
Address that is being accessed during the violation.

7.2. Sandboxing Module. 'e sandboxing module of our
Security Manager deals with the verification of manifest file,
its translation to the access table, and enforcement of the
access policies from the manifest file. It consists of sub-
modules: verifier, policy converter, and policy enforcement
module.

7.2.1. Manifest File Verification. 'e lifecycle of a manifest
file associated with the software, containing metadata about
the hardware, software, or firmware, begins with the vendor
specifying critical attributes in the file. In our proposed
system design, we assume the IoTcomponent vendor would
provide the manifest file along with the hardware to the
device manufacturer. It is possible for the IoT device
manufacturer to manufacture its own parts, in which case it
also becomes responsible for specifying the policies. 'e
policies of a sensor/peripheral stated in the manifest file
would be publicly available as a resource. 'e device
manufacturer is responsible for the integration of the in-
dividual components and assembling the IoT device. It also
loads the software and manifest file on the device.'e device
is then shipped to the user as a solution ready for deploy-
ment. 'e IoTdevice is a package of (i) the hardware, (ii) the
firmware and its certificate, (iii) the integrated peripherals
along with their software drivers, and (iv) the manifest file
with an encrypted unique identifier and hash/certificate of
the manifest file.'e device config file is a trusted component
present in current state-of-the-art IoT devices. It contains
device configuration details and can include the paths to the
secure firmware and the manifest file. During device de-
ployment, the device config file is configured and the
manifest file of each software is loaded. After secure boot has
transferred the control to the privileged secure kernel, the
verifier starts loading each manifest file for access table
generation. Each manifest file is hashed and verified against
the preinstalled list of legitimate manifest file hashes. Once it

is established that a manifest file was not modified or
replaced, the policy converter module is invoked.

7.2.2. Policy Converter. Our system design introduces a
policy converter as a part of the system boot process. During
device bootup and on system update, the Security Manager
checks whether there is a manifest file associated with a
secure application. Amemory-mapped access table is created
during this step, which contains a list of applications in-
stalled and their access permissions for all secure system
peripherals. Given a list of system peripherals and a list of
access policies extracted from the manifest file, the policy
converter generates an access table (represented in Table 4)
mapped to theMMIO. Algorithm 1 is a representation of the
interpretation steps that the policy converter performs. For
each application, the policy converter identifies the pe-
ripherals from the provided list of peripherals and enters
their addresses to the access table. 'ese peripherals are
marked in the access table as permitted, and all other pe-
ripherals are nonaccessible for the specific software.

7.3. Policy Enforcement. As previously discussed, Cortex-
M23 and Cortex-M33 have up to two MPUs. We leverage the
secure MPU to protect system resources in the secure world
including code, data, MMIO regions, and other system
structures. When a secure service is invoked by a normal
world application, it becomes the currently active application/
service in the secure world. Based on this active service in the
secure side, the policy enforcement module configures the
entire secure memory space as per the access table (Algorithm
13, 2). If a resource in the access table has permissions listed
against a specific service, the policy enforcement module
protects the resource using an MPU and assigns the given
permissions to the specific memory region. As a result, the
secure service can only access system resources and pe-
ripherals as per the access table. Figure 4 depicts the process of
policy enforcement in a step-by-step way. 'e integrity of the
secure MPU and the access table is critical for the proposed
system architecture. As they are system resources located in
the secure memory, their integrity is guaranteed using MPU
protections. 'e access permissions for each of these struc-
tures are configured to be editable only by privileged secure
software, which is our Security Manager.

7.4. AuditModule. We propose an audit module as a part of
our Security Manager, which is responsible for overseeing
the behaviour of secure software regarding peripherals and
resources being accessed.

7.4.1. Behaviour Logging of Applications. 'e audit module is
activated only when a service/application behaves outside its
specified permissions and attempts to access memory or
peripherals beyond a permitted list. Prior to this, the secure
memory is divided into MPU-protected regions by the
sandboxing module with permissions configured according to
the access table. During such a violation, the service making an
illegal access to a secure peripheral would trigger a
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MemManage fault. As soon as the processor triggers the fault,
it populates the MMFAR with the memory address of the
resource being accessed and sets the MMARVALID bit in the
MMFSR indicating that MMFAR holds a valid fault address
and sets the bit (0 to 7) in MMFSR corresponding to the type
of access that generated the fault. Wemodify theMemManage
fault handler to introduce the audit module.'e audit module
checks the LogFileExists flag before continuing to investigate
the fault. If the MMARVALID bit is set, the audit module
reads the address from MMFAR (as shown in Figure 5) and
enters it into the log file (Table 5) along with the details of the
violation and the application’s UniqueID. 'e log file suffers
the risk of being overpopulated since the device memory is
constrained. At any point, the log file can only maintain a
limited number of violation records. To ensure that all records
of violation are stored, the audit module checks the number of
existing log entries before making a new entry. If it is equal to
maxEntries, the existing entries of log file are moved for
further processing to an external audit service and new entries
can be stored on device. 'e Security Manager maintains a list
of secure services and sets or clears the isActive flag based on
the service that was invoked from the normal world or by
another secure service.'is ensures the link between the active
applications that caused the violation and the log file entry.
After the attempt is successfully logged, the control flow
returns to the MemManage fault handler and the fault is
handled as per system settings. Algorithm 3 depicts the
procedure, which handles log file entries.

7.5. Usability of Log File. 'e log file is stored in MPU-
protected regions in flash or trusted storage provided by the
hardware to ensure integrity.'eMPU regionwhere the file is
stored is configured to allow only our secure privileged Se-
curityManager to access or modify the contents of the log file.

'e log file is structured to contain sufficient information
about the access violations, which can be evaluated inmultiple
ways. It contains the UniqueID of the violating entity in the
current system, which is globally unique as described in
Section 4.1. 'e log file is intended to be shareable to external
entities for further processing, and the UniqueID can suffi-
ciently identify the misbehaving application and the vendor.
'ere are multiple ways the log file can be processed to
determine the course of action for policy-violating software.
'e misbehaviour of service/applications is diversion from
the initially agreed policies. One suitable option is disabling
the service on device until a software update fixes the
problem. It is likely that such an access pattern could arise
from a wrongly configured policy, but it is also equally
possible that this behaviour is intended by vendors for in-
dustrial espionage. If the violations show a pattern across
devices, these increasing numbers of violations from an ap-
plication on multiple IoT devices can be made public and
reported back to the vendor, and this forces the vendors to
patch the problem. Besides this, it also allows IoT devices
without TEE-Watchdog support to identify such applications
and vendors before making installations on their devices.

A more sophisticated use of such a log file would be as an
input to an intrusion detection system as part of a threat in-
telligence platform. 'e Cyber 'reat Intelligence Technical
Committee (CTI TC) of theOrganization for theAdvancement
of Structured Information Standards (OASIS) proposes stan-
dards that facilitate the exchange of threat information.
Structured 'reat Information eXpression (STIX) is one such
standard that allows automatic information exchange between
multiple tools [38]. STIX is based on JSON, and its objects
represent indicators, malware, and relations between the ob-
jects. 'e information from the log file such as UniqueID and
Violation Code could be converted to STIX-understandable
objects representing an indicator or a potential malware.

8. Implementation

TEE-Watchdog’s design was based on ARMv8-M [10],
which is a 32-bit ARM architecture for Cortex-M processors.

8.1. Runtime Environment. 'e implementation of TEE-
Watchdog prototype builds on Trusted Firmware-M (TF-M)
in the secure side with CMSIS RTOS2 (https://www.
trustedfirmware.org/) as normal world OS. Approximately

Table 4: Platform-specific access table generated from manifest file at system boot.

UniqueID (application identifier) Peripheral (peripheral address) AP (access permission)

9A-49-32-8A-32-BF-44
0× 40000000 ReadWrite
0× 50000000 ReadOnly
0× 60000000 ReadOnly

AD-4E-22-C5-61-FF-AF
0× 40000000 ReadOnly
0× 50000000 ReadOnly
0× 60000000 ReadOnly

DA-4E-22-C1-67-1F-DF
0× 40000000 ReadOnlyPriv
0× 50000000 ReadOnlyPriv
0× 60000000 ReadOnlyPriv

Table 5: Log file, populated with records of violation details.

Violation Details
Code UniqueID Violated_Peripheral Address

RW AD-4E-22-C5-
61-. . .

Fingerprint_Scanner 0× 50000000

XN CD-4E-82-35-
61-. . .

Gyro sensor 0× 70000000

. . . . . . . . . 0× 7. . .

. . . . . . . . . 0× 7. . .
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460 lines of code were written to include TEE-Watchdog
components in the firmware. TF-M provides a reference
implementation of secure world software for ARMv8-M
[10]. It creates the foundations of TEE by providing a set of
secure runtime services such as secure storage, cryptogra-
phy, and attestation. Additionally, secure boot in TF-M
ensures the integrity of runtime software and supports
firmware upgrade.

8.2. TEE-Watchdog Components. We discuss the imple-
mentation details of TEE-Watchdog modules in the runtime
environment discussed above.

8.2.1. Manifest File Translation. 'e policy converter
module converts the policies associated with the appli-
cation about the usage of MMIO into a memory-mapped
access table. 'e manifest file is encoded in CBOR when
received accompanying the application. We implement the
policy converter using the QCBOR decoder (https://
github.com/laurencelundblade/QCBOR) for RFC 7049.
'e decoded manifest file is then parsed to extract the
attributes, which are used to populate the access table. 'e
parsing algorithm is represented in Algorithm 1. We
implemented access table as a system structure stored in
the secure world. It consists of a list of applications that
need to access data from secure peripherals and the access

Input: Enco de d Manifest File, Peripherals ⊳ CBOR-encoded Manifest File and list of system peripherals
Output: Access Table
procedure Policy_Converter Enco de d Manifest File, Peripherals

Policy File �Decode Enco de d Manifest File

3 Initialize Access Table ⊳ Initialize the Access Table data structure
i⟵ 0
token�Tokenize Policy File ⊳ Begin converting text into tokens and get first token
while token do
if token� � “UniqueID” then
token�Tokenize Policy File ⊳ Get next token
Access Table [i].app_ID� token

else if token� � “Policies” then
while 1 do
token�Tokenize Policy File ⊳ Get next token
ti←0
while ti is less than sizeof (Peripherals) do

if token� �Peripherals[ti].name then
Access Table [i].peripheral� Peripheral[ti].addr
token�Tokenize Policy File ⊳ Get next token
if token� � “RW” then
Access Table [i].perm� � “RW”
i ++
break

else if token� � “RO” then
Access Table [i].perm� � “RO”
i ++
break

else
i ++
break ⊳ Invalid permission

end
else

ti ++
end

end
if token has terminator then

break
end

end
else
do nothing

end
end
end procedure

ALGORITHM 1: Translating the application’s manifest file to memory-mapped access table
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permission against each system peripheral as specified by
the manifest file. Before the translation of manifest file
begins, the policy converter module confirms the au-
thenticity of the manifest file. We used SHA-512 provided
by TF-M crypto-services to calculate the list of manifest file
hashes.

8.2.2. Access Table Enforcement. 'e policy enforcement
module in our proposed scheme uses the access table
generated during boot time by the policy converter. We
implemented the policy enforcement module to utilize the
secure MPU using the mpu_armv8m_drv API provided as a
part of Trusted Firmware-M and configure all MMIO in

Input: Access Table, ActiveApp
Output:
success code

Procedure Policy_EnforcementAccess Table, ActiveApp
success code ⟵ −1
index⟵ 0
while index≠ Size_of(Access Table) do

If Access Table[index]� �ActiveApp
region a dd r⟵Access Table
[index].
region add r

AP⟵ Access Table [index]. AP

Set_Protection
(region add r, AP)

⊳ Call Procedure
index ++
success code⟵ 0

⊳ 'e procedure is successful
end

end
Return success code;
End Procedure

ALGORITHM 2: Enforcing the policies specified in the access table

Input: region addr, AP ⊳ Address of the region and permissions
Output:
success code

Procedure Set_Protection
region addr, AP

success code ← − 1 Set bit 0 of MPU_CTRL to 0 ⊳ Disables MPU
Set bits [31 : 5] of MPU_RBAR to region addr ⊳ Sets region address to be protected
if AP��ReadWritePriv then

Set bits [2 :1] of MPU_RBAR to 00 ⊳ Sets Access Permission of region addr to be Read/Write by privileged code only
else if AP� �ReadWrite then

Set bits [2 :1] of MPU_RBAR to 01 ⊳ Sets Access Permission of region addr to be Read/Write by any code
else if AP� �ReadOnlyPriv then

Set bits [2 :1] of MPU_RBAR to 10 ⊳ Sets Access Permission of region addr to be Read Only by privileged code only
else if AP� �ReadOnly then

Set bits [2 :1] of MPU_RBAR to 11 ⊳ Sets Access Permission of region addr to be Read Only by any code
else

Set bit 0 of MPU_CTRL to 1 ⊳ Enables MPU protection for the region
success code ← − 1
return success code

end
Set bit 0 of MPU_CTRL to 1 ⊳ Enables MPU protection for the region
success code ←0 ⊳ 'e procedure is successful
return success code;
End Procedure

ALGORITHM 3: Enabling MPU protection using the Procedure Set_Protection

12 Security and Communication Networks



Application 1 RO

NA

RW

NA

MPU Physical Memory

Peripheral 1 0×2B...

0×2A...

0×2D...

0×2C...

Peripheral 2

Peripheral 3

Peripheral 4

Security Manager

Sandboxing
Module

Access
Table

Manifest
File

1

1

2

2
3 3

Figure 4: (1) 'e sandboxing module of the Security Manager translates the application’s manifest file into system-specific access table, (2)
when an application becomes active, the sandboxing module configures the secure peripherals according to the access table and enforces
MPU protections, and (3) the application can then only access peripherals according to the permissions.
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Figure 5: 'e audit module of the Security Manager performs behaviour logging of application deviating from their intended resource
access: (1) when a software attempts an illegal peripheral access, a MemManage fault is triggered, which invokes TEE-Watchdog’s audit
module, and (2) the audit module reads from theMemManage fault register to locate the violation and (3) populates the log file based on the
active application and the type of access violation.

Input: ActiveApp ⊳ Application ID causing the access violation
Output: success code

Procedure Log_Violation(ActiveApp)
ActiveAppsuccess code ← − 1
Initialize Log Entry ⊳ A datastructure representing Log File entry is initialized with null values
if bit 7 of MMFSR� � 1 then ⊳ 'e MMFAR holds a valid fault address

Log Entry.App I D←ActiveApp ⊳ Violating application
Log Entry.Violate d Peripheral← MMFAR ⊳ Violated peripheral address
if bit 0 of MMFSR� � 1 then

Log Entry.Violation Code ← XN ⊳ Code execution attempt
else if bit 1 of MMFSR� � 1 then

Log Entry.Violation Code ← RW ⊳ Read or write attempt
else if bit 3 of MMFSR� � 1 then

Log Entry.Violation Code ← ER ⊳ Access violation due to exception return
else if bit 4 of MMFSR� � 1 then

Log Entry.Violation Code ← EE ⊳ Access violation due to exception entry
else

Log Entry.Violation Code ← UE ⊳ Unknown fault
end
Write Log Entry to Secure Storage
success co de←0 ⊳ 'e procedure is successful

else
success code ← − 1;

⊳ MMFAR does not contain a valid address and Log Entry is not added to Log File
end
return success code

End Procedure

ALGORITHM 4: Creating a log entry of access violation into log file
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accordance with the access table.'empu_armv8m_drv API
uses the MPU_BASE address to access the MPU for
configurations.

8.2.3. Policy Violation Logging. We implemented the
MemManage fault handler to retrieve information from the
MMFAR and MMFSR registers about the memory access
violation. We use the tfm_sst_api to write the log file entries
to the log file. 'e log file is stored in the TFM-SST (TF-M
service for storing sensitive data). TF-M provides 20 kb of
secure storage where data are stored encrypted using AEAD
encryption (with a fresh nonce for each encryption) with a
hardware unique key (HUK).

9. Evaluation

In this section, we critically evaluate the performance of
TEE-Watchdog prototype. We perform a set of microbe-
nchmarks to an application accessing the temperature sensor
placed in the secure side as a secure peripheral. We select
CPU time, which is directly proportional to energy con-
sumption as our performance metrics. Memory and energy
consumption are the most constrained resources in low-
power IoT devices. 'e quantified CPU time is directly
proportional to the power consumed by the TEE-Watchdog
operations. We also calculate the end-to-end-latency of a
simple temperature monitoring IoTapplication andmeasure
the delay in latency due to TEE-Watchdog protection
mechanisms. We compare our CBOR-encoded policy to
JSON file format and highlight the reduction in file size. We
also discuss the minimal impact on RAM availability due to
TEE-Watchdog services establishing the lightweight nature
of the proposed scheme.

9.1. Experimental Setup. We evaluated the performance of
TEE-Watchdog on the Musca-A2 test chipboard by ARM
shown in Figure 6. 'e Musca-A2 board implements the
ARM CoreLink SSE-200 subsystem featuring dual-core
Cortex-M33 with CPU0 enabled at 50MHz. We use TF-M
and CMSIS RTOS v2 enabled with TEE-Watchdog com-
ponents for these experiments. 'e execution time is
measured using the CoreSight debug port found on Musca-
A2 test chipboard. 'e CoreSight debug port contains a 32-
bit free-running counter that counts CPU clock cycles. 'e
counter is part of the debug, watch, and trace (DWT)
module, which we use to measure the execution time of our
code.

9.2. Comparison of CBOR Vs. Other File Encoding Formats.
We implement manifest file in both CBOR and JSON. Our
comparison in Table 6 clearly shows that representing the
same number of policies in CBOR shows an average of
40.81% reduction in file size as compared to JSON.

9.3. Memory Overhead. 'e Musca-A2 IoT evaluation chip
has 256 kb of RAM available. 'e runtime impact of TEE-

Watchdog on system RAM was 1.79 kb, which reduced the
RAM availability merely by 0.7%

9.4. Performance Evaluation of TEE-Watchdog Components.
We evaluate the system from two dimensions. In the first
part of our evaluation, we analyse the individual modules
and mechanisms of our proposed solution. We measure the
execution time in terms of CPU time of TEE-Watchdog
mechanisms that enable us to provide secure peripheral
protection and behavioral logging.

9.4.1. Populating the Access Table Based on Manifest File.
During system bootup, the CBOR-encoded manifest file
associated with an application is decoded as explained in
Section 5 and the policies are then parsed to an access table.
Before the manifest file can be parsed, our Security Manager
verifies the authenticity of the manifest file against a pre-
viously computed set of hashes. 'is procedure is described
in detail in 4.2.1. We perform the evaluation on manifest file
containing up to 8 policies to estimate the maximum delay
incurred on system bootup time due to this step. Authen-
ticating a single manifest file depending on the number of
policies is shown in Table 7. Translating a decoded manifest
file adds a delay of approximately 298.34microseconds in
CPU time for a manifest file with 2 policies (as shown in
Table 7). We find the total overhead on the system bootup
due to (i) manifest file verification, (ii) decoding from
CBOR, and (iii) translation into platform-dependent access
table to be 1312.96microseconds for a manifest file with 2
policies. We find this overhead to be justified based on the
fact that system restart in embedded IoT devices is a rare
event and does not impact the real-time functionality of the
device.

9.4.2. CPU Time to Setup TEE-Watchdog Protections Based
on Access Table. When the application requests a secure
service to invoke a secure peripheral, the control is
switched to the secure side and TEE-Watchdog configures
all the secure peripherals according to the access table. At
this moment, only the peripherals that are allowed to be
used by the application are accessible to be read. When the
process is complete, the control flow is redirected to the
normal world, but before doing so, all the memory con-
figurations are reset to the default configurations. In our
evaluation, we find the time to enable and disable the
memory-mapped protections to be 47.6microseconds and
13.7microseconds, respectively, with one secure periph-
eral. Figure 7(a) shows the CPU time for execution of
enabling and disabling TEE-Watchdog protections based
on the number of secure peripherals in the system. Con-
sidering that resource-constrained IoTdevices usually have
fewer peripherals as these devices are built to be function-
specific, a delay of 156microseconds to enable protections
for 4 secure peripherals is minimal overhead. 'e impact of
this overhead on IoT applications is discussed in later
sections.
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9.4.3. CPU Time to Log an Access Violation of Policies by an
Application. When the memory-mapped protections of
secure peripherals are enabled, any illegal access will gen-
erate a MemManage fault. Our modified fault handlers then
collect the information about the memory access violation
and create a log entry with the following details: (i) Violation
Code indicating memory-read or memory-write violation,
(ii) UniqueID belonging to the secure application that tried
to access memory against its permissions, and (iii) Viola-
ted_Peripheral and Address, which is the violated peripheral
address (as discussed in Section 7.1.3). 'is log entry is then
written to the secure storage against the name of the ap-
plication that is violating the access policies. 'e CPU time
to make one entry to the log file is 50.16milliseconds. 'is is
the most time- and energy-consuming task of the TEE-
Watchdog protection mechanism and is dependent on the
size of the log file entry that needs to be written to secure
storage.

9.5. TEE-Watchdog’s Overhead on End-to-End Latency of
Applications. 'e second part of our evaluation is targeted
at deducing the impact of TEE-Watchdog protection
mechanism on the existing system applications. We per-
form this set of experiments to comprehend the delay in
execution or overhead caused by TEE-Watchdog on pe-
ripheral accesses. We measure the average CPU time of
execution of a peripheral access by an application without

the presence of TEE-Watchdog security mechanism, which
is our baseline case. After enabling TEE-Watchdog pro-
tections, we find that there is 1.41% overhead on each
peripheral access due to policy enforcement module
configuration of secure peripherals every time the control is
transferred to the secure world. 'e average delay in ex-
ecution/latency is a negligible 61 microseconds if one se-
cure peripheral exists in the system. Figure 7(b) shows that
there is an increase in the latency with the increase in the
number of securely protected peripherals. 'e latency
increases from 1.4% to 8.8% if the number of protected
peripherals increases from 1 to 8. Resource-constrained
IoT nodes are usually function-specific, designed with few
peripherals and applications. In application scenarios
where the application takes a reading after timed intervals
rather than in a real-time mode, the delay in execution does
not impact any critical system operation.

10. Water Meter—An ARM PSA-Compliant
Use case

Water meters are among the constrained class of IoTdevices
deployed on massive scale and operating on batteries for
years to reduce the cost of maintenance. Such water meters
are owned by water distribution companies targeting homes,
offices, industries, or farmlands. Industrial or farmland
meters differ from standard home/office-based meters in the

USB Programming, Debug, UART On/Off Button
Reset ButtonARM CoreSight Debug Port

3-Axis Accelerometer

ADC/DAC/Temperature
ARM Musca-A IoT Evaluation Chip

USB/Battery Power

Figure 6: ARM MUSCA-A test chipboard based on ARM Cortex-M33 processor.

Table 6: A comparison of size of manifest file defined in CBOR vs. JSON. 'e table shows the reduction in file size by an average of 40% if
CBOR encoding is used to encode the manifest file.

No. of policies Size of manifest file in JSON (bytes) Size of manifest file in CBOR (bytes) Reduction in size using CBOR (%)
1 119 74 37.8
2 144 87 39.5
3 172 103 40.1
4 199 118 40.7
5 224 131 41.5
6 246 141 42.6
7 278 159 42.8
8 306 177 42.15
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number of functionalities. In this section, we discuss the
deployment and lifecycle of a water meter as a use case of
TEE-Watchdog. Water meters are part of a huge network of
data-collecting infrastructure. Breach of such devices results
in incorrect water supply measurement, overcharging the
billing amount, and blockage of water supply in worst-case
scenario. We identify operational and security requirements
in the water meter use case and discuss the design and
meticulous mitigation provided by TEE-Watchdog com-
plementing the TrustZone security features and eliminating
the risk of the abovementioned threats.

Operational/Functional Requirements: the compo-
nents of a water meter’ s operational environment
include (i) O1: a flow sensor, which measures water
consumption, (ii) O2: LPWAN transceiver (TRX),
which provides low-power communication, (iii) O3:
additional water meter sensors such as the battery
sensor, and pH, temperature, conductivity, or any other
water quality sensors, and (iv) O4: water meter display,
which shows readings to the user. A networked water
meter’s operational environment includes (i) O5: back-

end servers, used for uploading measurements and
administrating the meters, (ii) and O6: gateways to
aggregate communications between devices and back-
end server.
Security Requirements: the security requirements
include (i) S1: the integrity of the water meter ID; (ii)
S2: the integrity and authenticity of the secure firm-
ware; (iii) S3: integrity and confidentiality of the flow
sensor measurements; and (iv) S4: confidentiality
sensor data (battery sensor, water quality sensors, etc.)
in the operational environment.
Designing a Water Meter: we present the water meter
system design (Figure 8) fulfilling the functional and
security requirements.'e water meter is designed on a
Cortex-M23/M33 microcontroller with TrustZone-M
security extensions enabled to support a TEE. 'e
device includes an embedded flash memory to store the
secure firmware, firmware certificate, manifest file for
each sensor, and manifest file certificates (S2). A one-
time-programmable (OTP) or tamper-resistant trusted
storage is included to store water meter ID, HUKs, log

Table 7: CPU time in microseconds for manifest file verification and manifest file translation into platform-dependent access table

TEE-Watchdog procedures during boot time
Manifest file details

49 bytes 87 bytes 118 bytes
No policies 2 policies 4 policies

Manifest file verification 667.52 μ S 668.28 μ S 1035.88 μ S
Manifest file translation 208.04 μ S 298.34 μ S 415.32 μ S
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Figure 7: 'is figure shows two trends. (a) 'e trend on the left is based on the increasing number of secure peripherals present in the
system that require configuration and show the CPU time to enable and disable TEE-Watchdog. (b)'e second trend shows the overhead of
TEE-Watchdog protection mechanisms on latency (measured as delay in CPU time in microseconds) of a peripheral access. 'e latency
increases from 1.4% to 8.8% based on the increasing number of total secure peripherals that are protected in the system.
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file, etc. (S1). An LPWAN controller is included and
mapped in the normal world to minimize the code base
of the secure domain and minimize attack surface (O2).
A flow sensor is integrated onto the microcontroller
and mapped to the secure domain (O1). 'e firmware
of the IoT device is composed of a secure bootloader,
which is the first piece of code called by the ROM; a
minimal secure kernel, which manages all the critical
operations, mode switches, and TCBs and loads the
normal domain’s OS. 'e normal OS supports the
application software running on top of this OS.
Measuring water flows is the role of water meter
software. Flow measurements are recorded and fed as
input to the water distributor’s billing system. 'e
water meter software is designed in two main modules:
the secure module processes the sensor data to convert
it into volume or other analytically useful forms, and
the normal world module receives the aggregated
sensor values in encrypted form (S3) from the secure
domain and transmits the measurements to a local
gateway or a central server (O5, O6). 'e normal world

module of the software is also responsible for displaying
the reading for the user on a connected display (O4).
'e device manufacturer integrates water quality and
battery sensors on the device as well (O3). TEE-
Watchdog protection mechanisms ensure that the
water meter’s software does not access data from other
sensors located in the secure domain with an intent to
transmit outside the device (S4).
Implementing a Water Meter with TEE-Watchdog
Protections: TEE-Watchdog components are intro-
duced in the firmware and as part of the secure kernel
that manages TEE. Approximately 460 lines of code
were added to implement TEE-Watchdog. 'e bootup
process of the water meter device is delayed by
1450microseconds due to manifest file verification and
translating the 4 policies (see the following listing). All
those components whose policies are not defined are by
default not accessible to the software.

'e CBOR encoding of the water meter’s manifest file is
listed below.

'e water meter application is divided into two modules,
the secure and the nonsecure. 'e normal/nonsecure part of
the application resides in the normal world and deals with

operations related to transferring the encrypted sensor
readings to a server for further processing.'e secure part of
the application residing in the secure world obtains the water
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flow sensor reading using the flow sensor drivers and re-
quests crypto-services to encrypt the reading so it can be
transferred over the network.

'e primary function of the water meter application is
reading from a secure water flow sensor, converting raw data
value into a useful reading, and transmitting the reading. In
this section, we discuss the overhead of TEE-Watchdog on the
execution of water meter application: (i) runtime overhead on
memory (RAM), (ii) runtime delay in CPU time due to
enabling protections, and (iii) end-to-end latency. End-to-end
latency here refers to one complete computational cycle
starting from a request to the secure water flow sensor by the
water meter application from the normal world and ending
when the control is returned back to the normal world. TEE-
Watchdog consumes 5.47% of the total available RAM. On
every context switch to the secure domain, TEE-Watchdog
protects the sensors according to the access table. 'ese
protections come at a cost of 208microseconds CPU time
delay in execution. 'is slight delay during context switch
affects the end-to-end latency of sensor access by
156microseconds, which is 5.6%. Figure 7(b) shows the
impact of TEE-Watchdog on the latency of applications in
detail. In this use case, a delay of 156microseconds does not
significantly affect any real-time operation such as billing or
water usage. 'e most time and energy-consuming operation
of the TEE-Watchdog protection lifecycle is registering an
illegal behaviour to the log file. 'e integrity and confiden-
tiality of the log file are critical to the security of the device,
and a trusted secure storage (TrustZone-M’s SST) is used to
store the log file. TrustZone-M’s SST is hardware-protected
storage where data are encrypted and stored. Writing to SST
takes 0.76milliseconds per one byte of data written, and
hence, one log file entry takes 50.16milliseconds.

11. Security Analysis

We have introduced TEE-Watchdog, our proposed frame-
work to restrict access to secure peripherals and efficiently
generate records of misbehaving software. We use a number
of mechanisms to design TEE-Watchdog such as MPU-
based protections, fault handling, and CBOR decoding and
parsing. In this section, we provide a security evaluation of
our proposed solution and its modules. We consider an
adversary A1, A2, and A3 as discussed in our threat model
(Section 3) whose main goal is to bypass TEE-Watchdog
protections and gain access to peripheral data beyond its
permissions. 'e ultimate threat here is data exfiltration
from an IoT device.

We revisit each of the security goals of TEE-Watchdog:
G1, G2, and G3 enlisted in our threat model and discuss the
potential attack surfaces of TEE-Watchdog modules and
how they are mitigated through our design choices of TEE-
Watchdog.G1: secure applications cannot modify TEE-
Watchdog components and structures.

(i) 'e IoT device manufacturer (acting as class A2 or
A3 attacker as defined in Section 3) can ship the
devices to the IoT solution provider with unwanted
changes done in the TEE-Watchdog itself. Our de-
sign approach follows that the IoT solution provider,
who is considered trusted, should be able to check the
integrity of the TEE-Watchdog before the deploy-
ment of IoT devices. 'e proposed TEE-Watchdog
implements a security manager, which is privileged
software within a standard OS running in the secure
world. It is therefore possible to verify the integrity of
the TEE-Watchdog by computing and comparing
the hash of the TEE-Watchdog binary with the
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Figure 8: Components of awater meter in Stockholmwater distribution network supporting TrustZone-M and TEE-Watchdog protections.
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published good hash of the TEE-Watchdog just like
OS integrity is normally verified. Hence, any mali-
cious attempt to change the TEE-Watchdog can be
easily detected by the IoT solution provider.

(ii) Access table can be modified by any secure software
in TEE to change access permissions of itself or
another process. TEE-Watchdog is designed such
that the access table is created by Security Manager,
which is privileged secure software. 'is makes the
access table a part of the privileged memory region
and becomes inaccessible to other access levels.

(iii) Log file entries can be accessed and read by secure
software since it is a secure resource. To guarantee
the confidentiality of the log file, it is placed
encrypted in secure storage (TFM-SST) against the
application ID of the Security Manager.

Log file entries can be falsified by secure software either
by duplicating the existing entries or creating new false
entries. TEE-Watchdog leverages the TF-M client ID
management system and task control block (TCB) in the
secure world to associate log file entries to the software
making the entry. 'is easily helps to identify whether the
log file entry was created by any other software packages
besides the Security Manager.

(i) 'e log file entries can be overwritten by malicious
software by repeatedly creating access faults and
depleting the capacity of the log file. As mitigation,
before making a new entry, the Security Manager
checks the number of existing entries in the log file
against the maxEntries; it sends the file for further
processing if the existing entries are equal to the
capacity of the log file.

(ii) Manifest file can be manipulated by adding falsified
policies before it is even translated to access table.
'e authenticity of the manifest file can be validated
beforehand by using conventional certificates or
signature management schemes decided between
vendors.

G2: normal world applications and their trusted code
cannot interrupt TEE-Watchdog operations and processes
that make TEE-Watchdog functional.

(i) 'e manifest file parsing process can be interrupted
by secure software. TEE-Watchdog is designed to
perform parsing of the encoded manifest file once
when the system boots up as part of the secure boot
process, it does not allow runtime parsing of new
policies, hence mitigating any chance of interruption
of this process.

G3: malicious applications are prevented from depleting
TEE-Watchdog resources.

(i) Log file entries can deplete the limited storage space
available on resource-constrained devices. After a
predefined number of limiting entries in the log file, it
is programmed to be uploaded to an external entity for

further processing or storage. 'is eliminates the risk
of accidental or malicious overwriting of the log file.

12. Conclusion

We have presented TEE-Watchdog, to bring trust within an
IoT device composed of heterogeneous components sup-
plied bymultiple vendors. TEE-Watchdog is a mechanism to
restrict software access to secure system peripherals based on
predefined security policies and permissions. TEE-Watch-
dog introduces a compact CBOR-encoded manifest file
template for device vendors/manufacturers to use for
specifying access policies. TEE-Watchdog also enables ef-
ficient behavioral logging of misbehaving software. TEE-
Watchdog leverages the ARM MPU to create memory re-
strictions, uses the fault handling mechanism to log mis-
behaviour, and utilizes standard CBOR encoding and
decoding mechanism to parse the compact CBOR-encoded
manifest file. We have implemented TEE-Watchdog in a
TrustZone-M-enabled IoTdevice and evaluated its execution
overhead and performance. Our microbenchmark evalua-
tion of the proof-of-concept implementation shows that
additional operations introduced with TEE-Watchdog are at
par with normal system operations. 'ere is a 1.4% delay in
latency of peripheral access due to TEE-Watchdog protec-
tions. We also highlight the advantage of using our proposed
CBOR-encoded template for the policies as compared to the
standard JSON file format. 'e 40% reduction in size of the
manifest file is a marginal gain considering the constrained
nature of the IoT devices. We also show the applicability of
TEE-Watchdog framework through a water meter use case
by ARM.
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“Keystone: a framework for architecting tees,” 2019, https://
arxiv.org/abs/1907.10119.

[8] X. Ge, H. Vijayakumar, and T. Jaeger, “Sprobes: enforcing
kernel code integrity on the trustzone architecture,” 2014,
https://arxiv.org/abs/1410.7747.

[9] Z. Ning, F. Zhang, W. Shi, and W. Shi, “Position paper:
challenges towards securing hardware-assisted execution
environments,” in Proceedings of the Hardware and Archi-
tectural Support for Security and Privacy, pp. 1–8, Toronto ON
Canada, June 2017.

[10] Arm Ltd, “TrustZone technology for the ARMv8-M archi-
tecture,” 2019, https://static.docs.arm.com/100690/0200/
armv8m_trustzone_technology_100690_0200.pdf.

[11] R. Strackx, P. Frank, and B. Preneel, “Efficient isolation of
trusted subsystems in embedded systems,” in Proceedings of
the International Conference on Security and Privacy in
Communication Systems, pp. 344–361, Springer, Singapore,
September 2010.

[12] F. Brasser, B. El Mahjoub, A.-R. Sadeghi, C. Wachsmann, and
P. Koeberl, “Tytan: tiny trust anchor for tiny devices,” in
Proceedings of the 52nd annual design automation conference,
pp. 1–6, San Francisco, CA, USA, June 2015.

[13] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan,
“Trustlite: a security architecture for tiny embedded devices,”
in Proceedings of the Ninth European Conference on Computer
Systems, April 2014.

[14] I. Anati, S. Gueron, S. Johnson, and S. Vincent, “Innovative
technology for cpu based attestation and sealing,” in Pro-
ceedings of the 2nd international workshop on hardware and
architectural support for security and privacy, vol. 13, p. 7,
Citeseer, Tel-Aviv Israel, June 2013.

[15] H. Chung, T. Kim, H. Choi et al., “Securing real-time
microcontroller systems through customized memory view
switching,” in Proceedings of the Network and Distributed
System Security Symposium NDSS, San Diego, California,
February 2018.

[16] A. A. Clements, Naif Saleh Almakhdhub, S. Bagchi, and
M. Payer, “Automatic compartments for embedded systems,”
in Proceedings of the 27th USENIX Security Symposium
USENIX, pp. 65–82, BALTIMORE, MD, USA, August 2018.

[17] A. Machiry, E. Gustafson, C. Spensky et al., “Boomerang:
Exploiting the semantic gap in trusted execution

environments,” in Proceedings of the Network and Distributed
System Security Symposium NDSS, San Diego, California,
March 2017.

[18] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard,
“Armageddon: cache attacks on mobile devices,” in Pro-
ceedings of the 25th USENIX Security Symposium USENIX,
pp. 549–564, Austin TX USA, August 2016.

[19] D. Rosenberg, Reflections on Trusting Trustzone, BlackHat,
2014.

[20] I. Skochinsky, Intel Me Secrets. Code Blue, 2014.
[21] S. Embleton, S. Sparks, and C. C Zou, “Smm rootkit: a new

breed of os independent malware,” Security and Communi-
cation Networks, vol. 6, no. 12, pp. 1590–1605, 2013.

[22] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti,
and A. Prakash, “Flowfence: practical data protection for
emerging iot application frameworks,” in Proceedings of the
25th USENIX Security Symposium USENIX, pp. 531–548,
Austin, TX, USA, August 2016.

[23] S. Holavanalli, D. Manuel, V. Nanjundaswamy et al., “Flow
permissions for android,” in Proceedings of the 2013 28th
IEEE/ACM International Conference on Automated Software
Engineering (ASE), pp. 652–657, IEEE, Silicon Valley, CA,
USA, November 2013.

[24] T. Denning, T. Kohno, and H. M. Levy, “Computer security
and the modern home,” Communications of the ACM, vol. 56,
no. 1, pp. 94–103, 2013.

[25] E. Fernandes, J. Jung, and A. Prakash, “Security analysis of
emerging smart home applications,” in Proceedings of the 2016
IEEE symposium on security and privacy (SP), pp. 636–654,
IEEE, San Jose, CA, USA, May 2016.

[26] Lu. Zhao, G. Li, B. De Sutter, and J. Regehr, “Armor: fully
verified software fault isolation,” in Proceedings of the ninth
ACM international conference on Embedded software,
pp. 289–298, Taipei, Taiwan, October 2011.

[27] Y. Zhou, X. Wang, Y. Chen, and Z. Wang, “Armlock:
hardware-based fault isolation for arm,” in Proceedings of the
2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 558–569, Scottsdale Arizona USA,
November 2014.

[28] Zelalem Birhanu Aweke and A. Todd, “Usfi: ultra-lightweight
software fault isolation for iot-class devices,” in Proceedings of
the 2018 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 1015–1020, IEEE, Dresden, Germany,
March 2018.

[29] L. Batina, P. Jauernig, N. Mentens, A.-R Sadeghi, and E. Stapf,
“Hardware we trust: gains and pains of hardware-assisted
security,” in Proceedings of the 56th Annual Design Auto-
mation Conference 2019, Las Vegas NV USA, June 2019.

[30] Arm Ltd, “ARMv8-Mmemory protection unit,” 2017, https://
static.docs.arm.com/100699/0200/armv8m_memory_
protection_unit_100699_0200_en.pdf.

[31] Android, “App manifest overview,” 2021, https://developer.
android.com/guide/topics/manifest/manifest-intro.

[32] “Manifest,”Ubuntu, https://wiki.ubuntu.com/SecurityTeam/
Specifications/ApplicationConfinement/Manifest#Use_in_
Ubuntu, 2021.

[33] P. H. C. Bormann, Concise binary object representation (cbor),
p. 10, RFC Editor, 2013.

[34] Bo. Petersen, H. Bindner, Y. Shi, and B. Poulsen, “Smart grid
serialization comparison: comparision of serialization for
distributed control in the context of the internet of things,” in
Proceedings of the 2017 Computing Conference, pp. 1339–1346,
IEEE, London, UK, July 2017.

20 Security and Communication Networks

https://developer.apple.com/homekit/
https://developer.apple.com/homekit/
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.prd29-genc-009492c/index.html
https://arxiv.org/abs/1907.10119
https://arxiv.org/abs/1907.10119
https://arxiv.org/abs/1410.7747
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://static.docs.arm.com/100690/0200/armv8m_trustzone_technology_100690_0200.pdf
https://static.docs.arm.com/100699/0200/armv8m_memory_protection_unit_100699_0200_en.pdf
https://static.docs.arm.com/100699/0200/armv8m_memory_protection_unit_100699_0200_en.pdf
https://static.docs.arm.com/100699/0200/armv8m_memory_protection_unit_100699_0200_en.pdf
https://developer.android.com/guide/topics/manifest/manifest-intro
https://developer.android.com/guide/topics/manifest/manifest-intro
https://wiki.ubuntu.com/SecurityTeam/Specifications/ApplicationConfinement/Manifest#Use_in_Ubuntu
https://wiki.ubuntu.com/SecurityTeam/Specifications/ApplicationConfinement/Manifest#Use_in_Ubuntu
https://wiki.ubuntu.com/SecurityTeam/Specifications/ApplicationConfinement/Manifest#Use_in_Ubuntu


[35] Aioti Wg03-loT Standardisation, High Level Architecture
(Hla), Technical specification, 2017.

[36] Information technology — structure for the identification of
organizations and organization, “Parts— part 1: identification
of organization identification schemes. Standard,” Interna-
tional Organization for Standardization, Geneva, CH, 1998.

[37] Ieee Standards Association, “Guidelines for use of extended
unique identifier (eui), organizationally unique identifier
(oui), and company id (cid),” 2017, https://standards.ieee.org/
content/dam/ieee-standards/standards/web/documents/
tutorials/eui.pdf.

[38] F. Sadique, C. Sui, I. Vakilinia, S. Badsha, and S. Sengupta,
“Automated structured threat information expression (stix)
document generation with privacy preservation,” in Pro-
ceedings of the 2018 9th IEEE Annual Ubiquitous Computing,
Electronics &Mobile Communication Conference (UEMCON),
pp. 847–853, IEEE, New York, NY, USA, November 2018,
https://doi.org/10.1109/UEMCON.2018.8796822.

Security and Communication Networks 21

https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/tutorials/eui.pdf
https://doi.org/10.1109/UEMCON.2018.8796822

