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Integrating nonorthogonal multiple access (NOMA) and edge computing into the Internet ofThings (IoT) for resource allocation
and computing offloading can effectively reduce delay and energy consumption and improve spectrum efficiency. Computation
tasks can be split into several independent subtasks and can be locally processed by IoTdevices or offloaded to the MEC servers to
process. The limited computing resources deteriorate the system performance. Thus, it is crucial to design the reasonable al-
location strategies of computation resource and transmission power resource. In this paper, we jointly determine the CPU-cycle
frequency allocation and transmission power allocation and formulate a stochastic optimization to minimize the energy con-
sumption of IoT devices. Based on the Lyapunov optimization theory, we decompose the optimization problem into two de-
terministic subproblems to solve separately. One of them is obtained by seeking the first derivative, and the other is solved by using
the best response idea after establishing the game model. Meanwhile, we propose a dynamic resource allocation and task
offloading (DRATO) algorithm. Moreover, the simulation experiments show that the proposed algorithm effectively improves
system performance and reduces energy consumption compared to three other benchmark methods.

1. Introduction

With the rapid development of Internet of Things (IoT) and
mobile communication technology, there are more and
more types of IoT devices and IoT applications, which
provide abundant and convenient services for end users
[1–3]. However, the computing load and energy load for IoT
devices are also aggravated [4–6]. The computing resource
and energy resource of IoTdevices are limited, which cannot
effectively support these applications [7, 8].Themobile cloud
computing (MCC) allows IoT devices to offload computing
tasks to the cloud servers for processing and make use of the
powerful computing power to make up for the shortage of
computing resources [9–11]. However, the long-distance
transmission of tasks will lead to high transmission delay and
communication energy consumption.

The mobile edge computing (MEC) technology is pro-
posed as a new computing paradigm to tackle this challenge
[12–14]. It can provide computing resources and service to

edge devices and users. Specifically, the IoT devices can
offload local tasks to the MEC server deployed in the BS for
processing, which can effectively reduce system delay and
energy consumption [15–17]. With the connection demand
of massive devices and increasingly scarce spectrum re-
sources, the traditional orthogonal multiple access (OMA)
technology cannot meet the communication demand. Thus,
the nonorthogonal multiple access (NOMA) has attracted
extensive attention as a new generation of mobile com-
munication access technology. The NOMA technology en-
ables multiple devices to be multiplexed on the same time-
frequency resource block, which increases the number of
user access [18]. In the uplink, BS can use successive in-
terference cancellation (SIC) technology to effectively
eliminate the interference among IoT devices, which can
improve the spectrum resource utilization.

In particular, the current research works focus on the
application of NOMA in the single BS and multiuser sce-
nario, which only studies the intracell interference among
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devices and ignores the intercell interference [19]. Based on
the above analysis, our paper considers the resource allo-
cation and computing offloading scenario based NOMA
among multiple BSs and multiple devices. We aim to
minimize the energy consumption of IoTdevices. According
to the Lyapunov optimization technology, the optimization
problem is divided into two parts and solved separately. This
includes CPU-cycle frequency allocation and transmission
power allocation. In addition, a dynamic resource allocation
and task offloading (DRATO) algorithm is proposed [20],
and we evaluate the performance of the DRATO algorithm
through simulation experiments. Our main contributions
are as follows:

(i) We consider a joint resource allocation and com-
putation offloading for the multi-BS and multi-
device-based NOMA system. The BSs are allocated
to the MEC servers to provide computing resources
for the IoTdevices. When IoTdevices transmit tasks
to the MEC servers, we regard not only the inter-
ference of devices in the same BS using the same
channel but also the interference of other BSs using
the same channel.

(ii) We formulate the problem to minimize the energy
consumption of all devices by jointly optimizing the
computation resource allocation and transmission
power allocation. We use the Lyapunov technology to
transform problem and build model game to solve it.
Firstly, based on Lyapunov theory, we divide our op-
timization problem into two subproblems.Then, one is
solved by derivation, and the other is modeled as a
noncooperative game model to solve.

(iii) We propose a DRATO algorithm to obtain the desired
strategy sets of CPU-cycle frequency allocation and
transmission power allocation. In addition, the effec-
tiveness of our algorithm is verified by the parameter
analysis and comparison experiments.

The rest of this paper is organized as follows. We build
the system model and formulate the research problem in
Section 2. The optimization problem is divided into two
parts and we design DRATO algorithm in Section 3. In
Section 4, the performance of DRATO algorithm is verified.
The related work is presented in Section 5. Furthermore, we
summarize this paper in Section 6.

2. System Model and Problem Formulation

In this section, we present the system model of resource
allocation and computation offloading among the multi-BS
and multidevice-based NOMA, while we also formulate the
problem to minimize the energy consumption of all devices
by jointly optimizing the computation resource allocation
and transmission power allocation.

2.1. SystemFramework. As depicted in Figure 1, we consider
a joint resource allocation and computation offloading
system among multi-BS and multi-IoT-device-based
NOMA. The BSs are equipped with MEC servers and

denoted by a set M � 1, 2, . . . , M{ }. The IoT devices are
defined by a set I � 1, 2, . . . , I{ }, which can process their
tasks locally or offload them to MEC servers to process via
several wireless channels. There is interference among de-
vices sharing the same wireless channel. Based on [21], a
discrete time-slotted model is considered; we define each
time slot length as τ and t ∈ 0, 1, . . . , T − 1{ }. In addition, the
main notations are listed in Table 1.

2.2. Local Processing Model. The tasks of IoT devices can be
processed locally or offloaded to MEC servers to process. In
the t-th time slot, the number of data bits computed locally
for device i of BS m is given as follows:

B
l
i,m(t) � τ

fi,m(t)

ci

, ∀i ∈ I, m ∈M, (1)

where fi,m(t) represents the CPU-cycle frequency for device
i of BS m. ci denotes the required CPU-cycles for computing
1 bit of device i and τ is the time slot length.

In the t-th time slot, the computation energy con-
sumption for local processing of device i of BS m is obtained
as follows:

E
l
i,m(t) � ki fi,m(t)􏼐 􏼑

2
ciB

l
i,m, (2)

where ki is the effective switched capacitance, which depends
on the chip structure of the IoT device i [22].

2.3. Task Offloading Model. We denote the transmission
power and the transmission power constraint for IoTdevice i

of BS m on channel n in t-th time slot as pi,m,n(t) and pmax,
respectively [23]. Thus, we have

0≤pi,m,n(t)≤pmax. (3)

In NOMA, a subchannel can be allocated to multiple
devices in the same time slot t. Based on [19], the BS adopts
SIC technique to eliminate the interference from the re-
ceived signal. The devices with higher channel gains are
decoded in turn and the other devices are seen as the in-
terference. In time slot t, gi,m,n(t) represents the uplink
channel gain from device i to BS m on channel n. We assume
that the channel gain of each device is in an increasing order;
that is, g1,m,n(t)≤g2,m,n ≤ . . . ≤gi,m,n(t)≤ . . . ≤gI,m,n. The
signal-to-interference-plus-noise ratio (SINR) of the signal
received by device i is given as follows:

ri,m,n(t) � 􏽘

iϵ Sm,n|gu,m,n <gi,m,n{ }

pu,m,n(t)gu,m,n(t),
(4)

where Sm,n is the set of devices transmitting tasks to BS m

on channel n. iϵ Sm,n|gu,m,n <gi,m,n􏽮 􏽯 means that device i is
in Sm,n and its channel gain is greater than device u.
pu,m,n(t) represents the transmission power of the
IoT device i from BS m on channel n in t-th time slot
[24, 25].
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Table 1: Notations.

Symbol Description
I The set of IoT devices
M The set of BSs
N The set of channels
τ Time slot length
fi,m(t) The CPU-cycle frequency for device i of BS m

fmax The CPU-cycle frequency constraint for devices
ci The required CPU cycles to compute 1-bit data of device i

ki The effective switched capacitance of the CPU chip structure of device i

Bl
i,m(t) The number of data bits computed locally for device i of BS m

El
i,m(t) The energy consumed of local computation for device i of BS m

pi,m,n(t) The amount of transmit power of device i of BS m on channel n

pmax The transmission power constraint of devices
Ri,m(t) The data transmission rate from device i to BS m

Br
i,m(t) The number of data bits transmitted from i-th device to BS m

Er
i,m(t) The energy consumption of data transmission from device i to BS m

ri,m,n(t) The interference for device i caused by other devices of same BS m on channel n

􏽥ri,m,n(t) The interference for device i caused by other devices of other BSs on channel n

gi,m,n(t) The channel gain for device i of BS m on channel n

Qi Queue length of i-th device
V The trade-off parameter of queue length and energy consumption
B The bandwidth of the devices
E(t) Total energy consumption of devices
Sm,n The set of devices transmitting tasks to BS m on channel n

Base Station
Device
Intra–cell interference

Inter–cell interference
Transmission link

Figure 1: Multidevice system-based NOMA in MEC.
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On channel n, device i is not only interfered by devices in
the same BS but also interfered by devices in other BSs on
channel n. Thus, the received SINR of device i from BS v on
channel n in time slot t is given as follows:

􏽥ri,m,n(t) � 􏽘
M

v�1,v≠m

􏽘

I

i�1
pi,v,n(t)gi,v,n(t). (5)

Referring to Shannonformula, the data transmission rate
for device i of BS m on the n-th channel at time slot t is
shown as follows:

Ri,m,n(t) � Blog2 1 +
pi,m,n(t)gi,m,n(t)

σ2 + ri,m,n(t) + 􏽥ri,m,n(t)
⎛⎝ ⎞⎠, (6)

where B is bandwidth of BSs. For each IoTdevice i, we define
σ2 as the noise power.

The energy consumed by offloading tasks from device i

to BS m during time period τ is obtained as follows:

E
r
i,m(t) � τpi,m,n(t). (7)

If we denote Ai(t) as the number of new generated
tasks by the i-th device in time slot t and the tasks can be
processed in the next time slot t + 1, the queue length of
the i-th IoTdevice’s task buffer in time slot t is denoted by
Qi(t). Thus, the queue length in time slot t + 1 is as follows:

Qi(t + 1) � max Qi(t) − B
l
i,m(t) − B

r
i,m(t), 0􏽨 􏽩 + Ai(t), (8)

where Bl
i,m(t) represents the number of data bits computed

locally for device i of BS m in t-th time slot. Br
i,m(t) is the

number of data bits transmitted from device i to BS m in t-th
time slot.

2.4. Problem Formulation. According to above local pro-
cessing model and task offloading model, the total energy
consumption is represented as

E(t) � 􏽘
I

i�1
E

l
i,m(t)􏽨 􏽩 + E

r
i,m(t). (9)

In this paper, the objective is to minimize the average
total energy consumption of all devices by jointly opti-
mizing computation resource allocation and transmission
power allocation under CPU-cycle frequency constraint,
transmission power constraint, and task buffers con-
straint. Then, the optimization problem can be formulated
as follows:

P1 min
fi,m(t),pi,m,n(t)

E(t) � lim
T⟶∞

1
T

􏽘

T

t�1
E 􏽐

I

i�1
E

l
i,m(t) + E

r
i,m(t)􏽨 􏽩􏼢 􏼣s.t.,

C1.0≤fi,m(t)≤fmax,

C2.0≤pi,m,n(t)≤pmax,

C3. lim
t⟶∞

E Qi(t)􏼂 􏼃

t
� 0.

(10)

It is obvious that problem P1 is a stochastic optimization
problem. It is because the new arrival tasks and the trans-
mission power of IoT devices are difficult to predict, which
are dynamic and stochastic. Thus, we take advantage of
Lyapunov optimization technology, which can decompose
the stochastic optimization problem into several deter-
ministic optimization subproblems [26, 27].

3. Dynamic Resource Allocation and Task
Offloading for IoT in MEC

3.1. Problem Transformation. According to Lyapunov op-
timization technology, the optimization problem (10) is
transformed into two deterministic optimization subprob-
lems [28]. We define Z(t) as the queue backlog matrix, and
Z(t) � [Q1(t), Q2(t), . . . , Qn(t)]. When t � 0, L(Z(t)) � 0.
The Lyapunov function is defined as

L(Z(t)) �
1
2

􏽘

I

i�1
Q

2
i (t). (11)

Specifically, L(Z(t)) represents the queue backlog state of
the IoT devices. If and only if the task queues’ congestion is
large, L(Z(t)) will be large. When the queue backlogs of IoT
devices become small, L(Z(t)) will be small. Thus, we can
reduce the value of L(Z(t)) to obtain the low congestion state
of queue.

The one-slot conditional Lyapunov driftΔ(Z(t)) is rep-
resented as follows:
Δ(Z(t)) � E L(Z(t + 1)) − L(Z(t))|Z(t){ }. (12)

Combining our optimization problem to minimize the
transmission energy consumption and the IoT devices’
queue length, we define the drift-plus-energy equation in
each time slot as follows:

Δv(Z(t)) � Δ(Z(t)) + VE[E|Z(t)], (13)

where V is the trade-off parameter between the queue length
and energy consumption. Without loss of generality, V≥ 0.
The greater the value of V and the greater the weight of
energy consumption, we give the upper bound of the
drift-plus-energy.

Theorem 1. For 0≤fi,m(t)≤fmax and 0≤pi,m,n(t)≤pmax,
the function Δv(Z(t)) satisfies the following inequality:

Δ(Z(t)) + VE[E(t)|Q(t)]≤ η + VE[E(t)|Q(t)]

+E 􏽘
I

i�1
Qi(t) Ai(t) − B 􏽘

i,m

(t)⎡⎢⎣ ⎤⎥⎦Z(t)|⎡⎢⎣ ⎤⎥⎦,
(14)

where η is a fixed value.

Proof. According to equation (8) and max[a − b, 0]2 ≤
(a − b)2 for a, b> 0, we let max[Qi(t) − Bl

i,m(t) − Br
i,m(t),

0] � Qi(t) − B􏽐i,m(t), where B􏽐i,m(t) � Bl
i,m(t) + Br

i,m(t) or
B􏽐i,m(t) � Qi(t). Thus, we have
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Qi(t + 1)
2

� max Qi(t) − B
l
i,m(t) − B

r
i,m(t), 0􏽨 􏽩􏼐 􏼑

2

+Ai(t)
2

+ 2Ai(t)max Qi(t) − B
l
i,m(t) − B

r
i,m(t), 0􏽨 􏽩

≤ Qi(t) − B 􏽘
i,m

(t)⎛⎝ ⎞⎠

2

+ Ai(t)
2

+ 2Ai(t)Qi(t).

(15)

Subtracting Qi(t)2 from both sides of the inequality in
(15) and dividing by 2, we have

1
2

Qi(t + 1)
2

− Qi(t)
2

􏽨 􏽩≤
1
2

B􏽘
i,m

(t)
2

+ Ai(t)
2⎡⎢⎣ ⎤⎥⎦+

Qi(t) Ai(t) − B 􏽘
i,m

(t)⎡⎢⎣ ⎤⎥⎦.

(16)

Summarizing the above equations (11) and (12) and the
inequality in (16), we obtain

Δ(Z(t)) ≤
1
2

􏽘

I

i�1
B 􏽐

i,m

(t)
2

+ Ai(t)
2

􏼢 􏼣

+ 􏽘
I

i�1
Qi(t)E Ai(t) − B 􏽘

i,m

(t)|Z(t)
⎧⎨

⎩

⎫⎬

⎭. (17)

Finally, we add VE(t) to both sides of equation (17) and
get conditional expectation value, which is as follows:

Δ(Z(t)) + VE E(t)|Z(t){ }

≤
1
2

E 􏽘
I

i�1
Ai(t)

2
+ B 􏽘

i,m

(t)
2
|Z(t)⎡⎢⎣ ⎤⎥⎦

⎧⎨

⎩

⎫⎬

⎭

+VE E(t)|Z(t){ }

+E 􏽘

I

i�1
Qi(t) Ai(t) − B 􏽘

i,m

(t)⎡⎢⎣ ⎤⎥⎦|Z(t)
⎧⎨

⎩

⎫⎬

⎭.

(18)

Note that Ai(t) + B􏽐i,m(t)2 with condition Z(t) is de-
terministic; hence,

E 􏽘
I

i�1
Ai(t)

2
+ B 􏽘

i,m

(t)
2
|Z(t)⎡⎢⎣ ⎤⎥⎦

⎧⎨

⎩

⎫⎬

⎭

� 􏽘
I

i�1
Ai(t)

2
+ B 􏽘

i,m

(t)
2⎡⎢⎣ ⎤⎥⎦.

(19)

Defining η � 􏽐
I
i�1[Ai(t)2 + B􏽐i,m(t)2], the proof of

Theorem 1 is completed. □

3.2. Dynamic Resource Allocation and Task Offloading
Algorithm Design. Because η and Ai(t) are the constants in
each slot, the optimization problem is rewritten as follows:

P2 min
fi,m(t),pi,m,n(t)

VE(t) − 􏽘
I

i�1
Qi(t)B 􏽐

i,m

(t).

s.t.
(20)

C1 · 0≤fi,m(t)≤fmax, (21)

C2 · 0≤pi,m,n(t)≤pmax. (22)

Obviously, problem P2 can be divided into two parts to
optimize. The optimization of the first part is related to local
computing, and the main parameter of optimization is the
device’s CPU-cycle frequency strategy. The optimization of
the second part is related to the task offloading. The opti-
mization parameter is the transmission power strategy of the
device offloading tasks to the MEC servers. Thus, problem
(20) can be converted into two independent subproblems
P2.1 and P2.2, and we will solve them separately.

3.2.1. Computation Resource Allocation. This part mainly
studies the CPU-cycle frequency strategy optimization in
local calculation.

P2.1 min
fi,m(t)

􏽘

I

i�1
τ Vkifi,m(t)

3
− Qi(t)

fi,m(t)

ci

􏼢 􏼣, (23)

s.t.

0≤fi,m(t)≤fmax. (24)

Problem P2.1 is convex and the optimal solution is
straightforward. The formula took the derivative with re-
spect to fi,m(t), which is expressed as
3Vki(fi,m(t))2τ − τQi(t)/ci. Firstly, we make the derivative
be zero and get fi,m(t) �

�����������
Qi(t)/3Vkici

􏽰
. Then, we get its

second derivative function as 6Vkifi,m(t)τ ≥ 0. Thus, we
obtain the optimal solution of fi,m(t), which is as follows:

fi,m(t) � min

������
Qi(t)

3Vkici

􏽳

, fmax
⎧⎨

⎩

⎫⎬

⎭. (25)

3.2.2. Transmission Power Allocation. This part mainly
studies the optimization of transmission power strategy in
task offloading process.

P2.2 min
pi,m,n(t)

􏽘

I

i�1
VE

r
i,m(t) − Qi(t)B

r
i,m(t)􏽨 􏽩, (26)

s.t.

0≤pi,m,n(t)≤pmax. (27)

In the transmission power decision-making problem
among multiple devices, the power decision of each device
depends not only on its own power strategy but also on the
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power strategies of other devices. All devices want to choose
the optimal power strategies to reduce owner energy con-
sumption, so there is a competitive relationship of trans-
mission power resources among devices. Game theory is a
good tool to solve the problem of competition decision-
making among players, which uses a mathematical model to
solve the interest conflict among multiple players and obtain
the best strategy set [29]. Thus, we can use game theory to
address the problem of transmission power decision-making.

In this part, the transmission power decision-making
problem among devices is modeled as a transmission power
game. In this game, the players are all devices competing for
power resources to minimize their owner energy consump-
tion. The transmission power strategy game can be defined as
Γ � (I, p􏼈 􏼉i∈I, F{ }i∈I), whereI is the set of devices and p is
the feasible strategy set of devices. The energy consumption
function is F. Each device seeks a profitable power strategy to
minimize its own energy consumption.

Formula (26) is simplified and expressed as

F pi,m,n(t), p−i,m,n(t)􏼐 􏼑 � τ 􏽘
I

i�1
Vpi,m,n(t) − BQi(t)log2􏼐

· 1 +
pi,m,n(t)gi,m,n(t)

σ2 + ri,m,n(t) + 􏽥ri,m,n(t)
⎛⎝ ⎞⎠⎞⎠.

(28)

Definition 1 (Nash Equilibrium). For a noncooperative
game Γ, if there is a strategy set p∗ � (p∗1 , p∗2 , . . . , p∗I ) and no
device wants to reduce its own energy consumption by
changing owner strategy, then we call p∗ an NE strategy
profile.

Fi pi,m,n(t)
∗
, p−i,m,n(t)

∗
􏼐 􏼑≤Fi pi,m,n(t), p−i,m,n(t)

∗
􏼐 􏼑, (29)

where Fi is device i’s energy consumption and p∗−i,m,n

presents the strategies chosen by devices excluding device i.

The NE is a stable state, in which no device has any
intention to change its strategy for reducing energy con-
sumption. Thus, we can obtain the optimal strategy set by
proving the existence of NE. The definition of the exact
potential game is given as follows.

Definition 2. (Potential Game) For Γ, if and only if there is a
potential function Φ(pi,m,n(t), p−i,m,n(t)), the relationship
between Φ(pi,m,n(t), p−i,m,n(t)) and Fi(pi,m,n(t), p−i,m,n(t))

is as follows:

Fi pi,m,n(t), p−i,m,n(t)􏼐 􏼑 − Fi p
’
i,m,n(t), p−i,m,n(t)􏼐 􏼑 �

Φ pi,m,n(t), p−i,m,n(t)􏼐 􏼑 −Φ p
’
i,m,n(t), p−i,m,n(t)􏼐 􏼑.

(30)

Γ is an exact potential game, and there is at least a pure
strategy NE, which should be proved by us. The specific
certification process is as follows.

Theorem 2. Γ is an exact potential game, and the potential
function is as follows:

Φ pi,m,n(t), p−i,m,n(t)􏼐 􏼑 � τ Vpi,m,n(t)􏼐 􏼑

−BQi(t)log2 pi,m,n(t)gi,m,n(t) + σ2 + ri,m,n(t) + 􏽥ri,m,n(t)􏼐 􏼑.

(31)

Proof. Based on formula (31), when devices’ power strate-
gies change, we get the following equation:

F pi,m,n
′(t), p−i,m,n(t)􏼐 􏼑 − F pi,m,n(t), p−i,m,n(t)􏼐 􏼑 �

Vτ 􏽘
j∈I/j≠ i

pj,m,n(t) + Vτpi,m,n
′(t) − τ

􏽘
j∈I/j≠ i

Qj(t)Blog2 pj,m,n(t)gj,m,n(t) + δj􏼐 􏼑

−τQi(t)Blog2 pi,m,n
′(t)gi,m,n(t) + δi􏼐 􏼑+

τ 􏽘
j∈I/j≠ i

Qj(t)Blog2 δj􏼐 􏼑 + τQi(t)Blog2 δi( 􏼁−

Vτ 􏽘
j∈I/j≠ i

pj,m,n(t) − Vτpi,m,n(t)

+ τ 􏽘
j∈I/j≠ i

Qj(t)Blog2 pj,m,n(t)gj,m,n(t) + δj􏼐 􏼑

+ τQi(t)Blog2 pi,m,n(t)gi,m,n(t) + δi􏼐 􏼑

− τ 􏽘
j∈I/j≠ i

Qj(t)Blog2 δj􏼐 􏼑 − τQi(t)Blog2 δi( 􏼁

� Vτpi,m,n
′ (t) − Vτpi,m,n(t)

− τQi(t)Blog2 pi,m,n
′ (t)gi,m,n(t) + δi􏼐 􏼑

+ τQi(t)Blog2 pi,m,n(t)gi,m,n(t) + δi􏼐 􏼑, (32)

where δi � σ2 + ri,m,n(t) + 􏽥ri,m,n(t).
With the devices’ power strategies changing, we get the

change of the potential function as follows:

Φ pi,m,n
′ (t), p−i,m,n(t)􏼐 􏼑 −Φ pi,m,n(t), p−i,m,n(t)􏼐 􏼑

� Vτpi,m,n
′ (t) − Vτpi,m,n(t)

−τQi(t)Blog2 pi,m,n
′(t)gi,m,n(t) + δi􏼐 􏼑

+τQi(t)Blog2 pi,m,n(t)gi,m,n(t) + δi􏼐 􏼑

� F pi,m,n
′ (t), p−i,m,n(t)􏼐 􏼑 − F pi,m,n(t), p−i,m,n(t)􏼐 􏼑.

(33)

Thus,

Fi pi,m,n(t), p−i,m,n(t)􏼐 􏼑 − Fi pi,m,n
′(t), p−i,m,n(t)􏼐 􏼑 �

Φ pi,m,n(t), p−i,m,n(t)􏼐 􏼑 −Φ pi,m,n
′(t), p−i,m,n(t)􏼐 􏼑.

(34)

Theorem 2 is proved. □

Summarizing the above two parts, we can determine the
optimal computing resource allocation decisions and
transmission power allocation decisions. The specific steps
are described in Algorithm 1.

To effectively solve the optimization problem, we pro-
pose the dynamic resource allocation and task offloading
(DRATO) algorithm. In the DRATO algorithm, we adopt
the idea of best response to attain the optimal strategy set. In
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steps 5–7, we obtain the values of fi,m(t), Bl
i,m(t), and Fi(t)

based on initialized parameters. In step 8, we always select
the transmission power strategy of device i with the minimal
energy consumption in each iteration w. According to the

power strategy obtained, we calculate Br
i,m(t) and update the

queue length. After each iteration for all devices, we will
update the policy set of the device and take it as the initial
policy set for the next iteration. Because of the existence of
NE, we can obtain the optimal strategy set through finite
iterations. When the number of iteration is W, the iteration
ends. Meanwhile, IoT devices get the lowest energy con-
sumption and the optimal strategy set.

4. Simulation Results

This section consists of parameter analysis and comparison
experiments. We have analyzed the influence of four pa-
rameters on the energy consumption and queue length. The
performance of DRATO algorithm is evaluated by com-
parison experiments.

We consider a NOMA-MEC-enabled network with 3
BSs and 9 IoT devices. The IoT devices are randomly dis-
tributed to the BSs’ coverage area. There are overlapping
areas among BSs. The system bandwidth is available to all
BSs, which is 1e6Hz [26]. The time slot of simulation results
is 3000 s. Moreover, the simulation parameters used
throughout the simulations are set in Table 2.

4.1. Parameter Analysis

(1) Impact of trade-off parameter V: Figures 2 and 3
describe the impact of trade-off parameter V on
energy consumption and queue length. As shown in
Figure 2, as V increases, the energy consumption will
decrease. It is because the larger V is, the higher the
weight of energy consumption is compared to the
queue length. The DRATO algorithm reduces the
energy consumption of the system by adjusting the
allocation strategies of CPU-cycle frequency and
transmission power. According to Figure 3, the
queue length also increases with the rise of V. With
the increase of V, the system always waits for the best
time to process tasks. For example, devices backlog a

Require:
(1) Input: I,M, N, Sm,n, ci, ki, gi,m,n(t), B, σ, Ai(t);
(2) Output: The CPU-cycle frequency decision f∗(t) and transmission power decision p∗(t);
(3) forw←1 to Wdo
(4) fori←1 to Ido
(5) Compute fi,m(t) according to the formula (25);
(6) Compute Bl

i,m(t) according to (1);
(7) Fi(t) are calculated according to the formula (28);
(8) Obtain the power strategy pi,m,n(t) of device i with the minimal energy consumption

pi(t) � argminpi,m,n∈pF(pi,m,n(t), p−i,m,n(t));
(9) Compute Br

i,m(t) � τRi,m,n(t) based on the known variable values;
(10) Update queue length Qi(t) according to (8);
(11) end for
(12) Each device i attains the best power strategies pi,m,n(t) in the w-th iterations;
(13) Generate the updated strategy profile, p(w + 1) � p1(w + 1), p2(w + 1), . . . , pI(w + 1)􏼈 􏼉;
(14) end for

ALGORITHM 1: The dynamic resource allocation and task offloading (DRATO) algorithm.
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Figure 2: Effect of V on energy consumption.
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number of tasks locally and then offload the backlog
of tasks to the edge servers to process in a specific
time slot. It will lead to the queue backlog. Combined
with Figures 2 and 3, it means that DRATO algo-
rithm can achieve a trade-off between energy

consumption and queue length by adjusting pa-
rameter V, which also can keep the stability of the
queue.

(2) Impact of task arrival rate: Figures 4 and 5 describe
the effect of task arrival rate on energy consumption
and queue length. We consider that the task arrival
rate is α · Ai(t), and α is 0.2, 0.4, and 0.6, respectively.
As shown in Figure 4, with the growth of task arrival
rates, energy consumption has an upward trend. It is
because, with more tasks, more tasks need to be
computed locally or offloaded to MEC servers to
process. Meanwhile, total energy consumption be-
comes large. According to Figure 5, when the task
arrival rate increases, queue length will tend to rise.
The reason is that the number of tasks increases and
tasks are not handled in time, which will lead to a
backlog of tasks and result in the increase of queue
length.

(3) Impact of computing resource constraint fmax:
Figure 6 depicts the effect of computing resource
constraint fmax on total energy consumption in-
cluding energy consumption of local computation
and energy consumption of task offloading process.
As shown in Figure 6, when the CPU-cycle frequency
rises, the energy consumption will increase ac-
cordingly. It is because local computing energy
consumption increases with the increase of CPU-
cycle frequency allocated for devices, which leads to
higher total energy consumption for devices.

(4) Impact of transmission power constraint pmax:
Figure 7 shows the effect of transmission power
constraint pmax on total energy consumption. With
the increase of the transmission power constraint,
the total energy consumption also shows an upward
trend. The reason is that the larger the transmission
power allocated, the larger transmission energy
consumption during task offloading process.
Meanwhile, the total energy consumption will
increase.

4.2. Comparison Experiment. To further verify the effec-
tiveness of the proposed DRATO algorithm, we compare the
energy consumption and queue length with three bench-
mark algorithms which are stated as follows:

(i) AllLocal: In each time slot, all devices choose to
compute all tasks locally.

(ii) AllOffload: In each time slot, all computation tasks
of each device are offloaded to MEC servers to
process.

(iii) Random: In each time slot, all devices randomly
assign tasks to compute locally or offload to MEC
servers for execution.

Figure 8 describes the energy consumption of four
different algorithms in the fixed time slot. With the change
of time, the energy consumption of AllOffload algorithm
increases sharply, and energy consumptions of the other
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Figure 4: Effect of the task arrival rate on energy consumption.
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Table 2: Parameters used in the evaluation.

Parameters Value
The number of devices 9
The number of BSs 3
The number of channels 9
The required CPU-cycles to compute
1-Bit data of devices 737.5 cycles/bit [23]
The max CPU-cycle frequency for devices 1e9Hz [23]
The bandwidth of the BS 1e6Hz
The transmission power for each device [0.02, 0.1] W [22]
The background noise 3.98e− 21W [30]
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three algorithms remain stabilized at a low value all the time.
It can be observed that the energy consumption of the
DRATO algorithm is lowest among four algorithms, which
is 47% lower than that of AllOffload algorithm. It can be seen
that the DRATO algorithm can effectively reduce the total
energy consumption.

Figure 9 depicts the queue length of four different al-
gorithms in the fixed time slot. Obviously, the queue length
of the DRATO algorithm is lowest among four algorithms
and it remains stable all the time. It is because the proposed
DRATO algorithm can dynamically schedule the CPU-cycle
frequency strategy and transmission power strategy to adapt
to the changes of tasks arriving. As shown in Figure 9,
AllOffload algorithm and AllLocal algorithm increase lin-
early with time.The reason is that the computation resources
and transmission power resources of devices are limited.
When the number of tasks is too large, there will be a backlog
of tasks and the queue length will continue to increase. In the
meantime, we can see that the queue lengths of the DRATO
algorithm and the random algorithm remain at a low level.

Together with Figures 8 and 9, the proposed DRATO
algorithm can effectively reduce the energy consumption
and queue length, which has better performance.

5. Related Work

A number of research works focused on resource allocation
and computing offloading in MEC in recent years
[22, 31–35]. In [31], the authors jointly optimized the offline
mode, channel allocation, and device-to-device (D2D)
pairing to minimize the computational pressure of large-
scale computing in MEC. They modeled the problem as the
computing offloading task game among multiple users. Yu
et al. considered the edge computing system-based NOMA
in the power Internet of Things (PIoT). They exploited the
Lyapunov technology to decompose the optimization
problem into three subproblems: task splitting, resource
block allocation, and computation resource allocation [32].
Zhao et al. studied a dynamic optimization problem of
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minimizing energy consumption and computing resources
in MEC and decomposed the problem into four subprob-
lems to solve based on the Lyapunov technology [22]. In
[33], the authors considered joint edge computing and the
cloud computing to achieve secure task offloading based
blockchain scenario. They aimed to minimize energy con-
sumption and the response time of task.

The NOMA technology can effectively improve spectral
efficiency, which has been widely studied. Liu et al. con-
sidered uplink resource allocation NOMA-based scenario in
6G. They focused on maximizing the average total trans-
mission rate of 6G-enabled cognitive IoT (CIoT) under the
minimum transmission rates constraint [36]. In [37], the
authors studied the intelligent uplink resource allocation
based-NOMA system. They adapted the deep reinforcement
learning (DRL) and SARSA-learning to design an effective
algorithm. Liu et al. focused on the radio resource allocation
and computation allocation-based NOMA for IoT devices
scenario. They maximized energy efficiency by adjusting the
strategy of the subchannel allocation and power allocation
[38].

For the stochastic optimization problem, a number of
works use Lyapunov method and reinforcement learning
method [39–41]. In [39], the authors formulated a nonlinear
integral dynamic optimization problem to reduce the cost
and number of fresh sensors needed. They firstly trans-
formed the optimization problem to the static problem.
Then, they conducted a game model to solve problems,
which can effectively reduce the complexity of the algorithm.
Based on deep learning, Gu et al. proposed a job resource
demand estimation method based on regression model to
avoid overallocation of computing resources.

Different from existing research work, we study the
computation resource allocation and transmission power
allocation in combining resource allocation and computing
offloading scenario. We formulate the stochastic problem to
minimize the total energy consumption of IoT devices and
apply the Lyapunov technology to transform it into two
subproblems. In addition, we introduce the NOMA tech-
nology to eliminate the interinterference and intra-
interference of IoT devices.

 . Conclusion

In this paper, we investigate the computing resource allo-
cation and transmission power allocation to minimize total
energy consumption for multidevice-based NOMA in MEC.
Based on Lyapunov theory, we transform optimization
problem into two deterministic subproblems and build the
noncooperative game model to solve. A dynamic resource
allocation and task offloading (DRATO) algorithm has been
proposed to obtain the desired strategy sets of CPU-cycle
frequency and transmission power. In addition, the effec-
tiveness of our algorithm is verified by the simulation results.
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