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Although a large number of works have been done to explore efficient face detection in various scenes, practical face detection in
unconstrained condition of varying lighting, pose, scale, and occlusion remains a challenging task. -e primary limitation of
existing solutions is that they are vulnerable to influence from the wild environment. Practical features extraction plays a crucial
part in the face detection of low-quality images. Based on the EfficientNet, this paper builds a novel pyramid attention network to
integrate multilevel features with rich context messages. Firstly, a context model is exploited to increase the receptive fields at the
beginning of the network. Secondly, stacked pyramid feature attention modules and feature fusion simultaneously selectively
integrate the contextual information and enable spatial details, thus enhancing the capacity to detect faces on hard images. In
addition, hard samples augmentation of the training sets is conducted, which is beneficial for improving the accuracy. A thorough
study on ablation verifies the effect of the proposed strategies. Moreover, extensive experiments on Wider Face and FDDB
datasets, remarkably pushing the accuracy both of 96.3% (2%↑), demonstrate the performance of the proposed deep face detector
which is superior and outperforms most of the preexisting methods. -e method presented in this paper can perform the task of
face detection in surveillance images well.

1. Introduction

During recent decades, the deployment of video surveillance
systems has been increasingly intensive. Enormous video
data are far beyond the ability of humans to process it
manually. Continuing to rely on manual judgment and
processing of video content are hard to meet the actual
demands. However, the response of public security organs to
control the social security situation needs to be further
improved. Based on deep learning, surveillance video face
recognition provides a piece of more powerful information
means for the judiciary, public security, video patrol, and
investigation. Although face detection technology has made
adequate progress, the performance of face detection largely
degrades in the environment of low image quality, which
means the realistic face detection system still faces many
challenges. -ese challenges mainly stem from the unpre-
dictable changes that exist in face images, such as

expressions, postures, lighting, resolution, and masking.
-ese changes can cause severe data inconsistency between
the training dataset and the test dataset [1]. Effectively
dealing with these problems and improving recognition
efficiency are still tricky problems in face detection systems.

Face detection is an essential task in many face-related
visual works, such as face recognition and face editing. Face
detection task can be considered as an advanced semantic
feature detection problem. Due to the large distance between
the surveillance camera and the objects, the captured faces
are usually of low resolution. Uncontrolled attitudes and
lighting conditions impact the performance of the face
detection algorithm adversely. -e off-the-shelf face rec-
ognition performances cannot meet the practical
requirements.

-e primary purpose of surveillance video is to deal with
more and more complex security works. Especially after
some large-scale terrorist attacks, it strongly stimulated the
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world’s demand on video surveillance. Recently, intelligent
video surveillance technology has been dramatically devel-
oped and emerged as a more mature technology smart
security system. Intelligent video surveillance technology has
gradually entered the scale application stage. In video sur-
veillance, the face feature, as a very critical biological feature,
is always the object favoured by researchers Before the
development of deep learning, Viola and Jones (V-J) [2]
proposed cascading face classifiers trained by Haar features
and AdaBoost methods as a landmark algorithm in the field
of face detection. After that, many works focused on
studying more sophisticated hand-crafted features to im-
prove classifier performance. In addition to cascading
structures, other works also developed formable part models
to handle face detection tasks. However, the traditional face
detection algorithms highly depend on the characteristics of
the hand-crafted design.-ese characteristics are inadequate
to meet the challenges of unconstraint conditions.

With the promotion of deep learning, face detection
performances have been greatly improved. Cascade-CNN
[3] continued V-J [2] framework, replacing hand-crafted
features with CNN features. It developed CNN-based cas-
cading network structures for face detection and achieved
good detection accuracy. Qin et al. [4] proposed an overall
training cascade-CNN for end-to-end optimization. Face-
ness [5] used a multitask CNN to train a series of face at-
tribute classifications for detecting partially obscured faces.
MTCNN [6] further expanded the idea of cascading CNN,
which solved both face detection and feature point posi-
tioning in the form of multitask and optimized the network
structure through reasonable decomposition tasks. Its small
CNN network cascading method not only had high preci-
sion but also had a fast detection speed due to its simple
network structure. In addition, many face detectionmethods
drew on the ideas of target detection. Jiang et al. [7] applied
faster R-CNN, a representative of the object detection field to
face detection tasks, resulting in satisfactory results. CMS-
RCNN [8] applied human body information to faster
R-CNN with contextual information fusion processing,
further improving the performance of detection. -e pic-
tures collected by the surveillance video in the natural en-
vironment are greatly affected by the interference of the
collection environment. -ere are many faces with low
resolution, uneven light, changing shapes, and expressions.
Especially in dark light, many facial textures are greatly
disturbed. -is has dramatically hindered the deployment of
face detection in practical applications.

Unfortunately, there are many problems that need to be
solved when applying to real-world scenarios: (1) surveil-
lance cameras are used for security and anomaly detection in
public places, companies, campuses, and other venues.
Because the installation position of the surveillance camera
is fixed, diverse sizes of faces are produced by changing
distances. -e multiscale problem is very prominent. Es-
pecially, the performance of face detection will be signifi-
cantly reduced as the scale shrinks. -erefore, the
application of face detection in video surveillance needs to
concentrate on small-size faces. (2) Balance between accu-
racy and computation. In the video surveillance scene, a

critical requirement is that the algorithm runs in real-time,
which means its speed requirements are more stringent. -e
prior face detection algorithms with superior precision have
the characteristics of slow detection speed because the
improvement of precision is to calculate more information
as a price.

Information from small objects can probably be weak-
ened since the spatial resolution of the feature map in a large
context reduces the information integration [9, 10]. Usually,
the shallow layer has only lower semantics that may not be
sufficient to identify the information instance of the object
category. Actually, face detection has more reference to
general object detection. Because the quality of face detec-
tion directly affects the technical trend and the application
landing of face analysis, it has attracted wider attention in
academia and industry. As a second classification task,
owing to the nature of face shape and intricate background,
we modify the method of object detection according to facial
characteristics. For example, all of the faster R-CNN [7],
R-CNN [8], and YOLO [11] have been extended and applied
to face detection tasks. However, as described in the above
paragraph, these object detection methods are often time-
consuming. Moreover, these object detection methods are
dependent on the proposal window generation method to
locate the targets and cannot effectively locate small targets.
Making mention of designing a convolutional neural net-
work for the low-quality video scenario, two key points need
to be considered. Firstly, the architecture is somewhat
limited in its number of layers due to the low resolution of
face images. Second, a robust extracting is required because
the face descriptor for each image should be as compact as
possible. -erefore, we choose EfficientNet [12, 13] as the
backbone, and it has shown satisfactory performance in
many works.

For this paper, the main contributions are as follows:

(i) Based upon EfficientNet, we augment the archi-
tecture using a context model and anchor strategy,
which is more suitable for finding tiny faces

(ii) Stimulated by the success of visual tasks, we com-
bine feature pyramid structure and attention
mechanisms to design an efficient one-stage face
detector, which enhances low-level semantics
information

(iii) Based on Wider Face [14] and FDDB [15] datasets,
we conducted a considerable amount of experi-
ments to verify the efficiency and improvements of
our model, confirming the applicability of our
strategies

2. Related Work

2.1. Face Detection. -anks to the significant accomplish-
ments of general object detection, face detectors have an
outstanding improvement in performance. -e deep
learning models trained on wide-ranging image data sets
supply more discriminating features for face detectors than
traditional hand-crafted features. In addition, end-to-end
training methods promote better optimization. Depending
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on whether following the proposal regions, the deep face
detection approach can be segmented into two
subcategories.

2.1.1. Sliding Windows-Based Methods. -is kind of method
outputs face detections at every location in a feature map at a
given scale. -ese detections contain two parts: face de-
tection score and bounding box. -e SSH [16], based on an
RPN, detects faces with various layers in a single forward
network contemporaneously. In ref. [6], the author employs
a deep cascaded multitask structure that integrates face
detection with alignment tasks through unified CNNs.
MTCNN [6] brings in candidate regions from the first CNN
rapidly. Besides, another two large-scale CNNs screen out
high-confidence results. Tian et al. [17] employed feature
fusion and segmentation branch to expand the relationship
between high-level and low-level. -ey notably improve the
detecting accuracy. For real-time speed, Liu et al. [18] used a
multibranch fully convolution network, which treats faces of
diverse sizes through a single pass.

2.1.2. Region-Based Methods. After an expeditionary survey
of finding small faces, Hu and Ramanan [19] utilized the
characterizations of scale resolution to detect tiny objects.
PyramidBox [20] designs a context-assisted single-shot face
detector that makes full use of context information to
overcome the difficulties of face detection. A low-level FPN
and a context-sensitive module are added to the backbone.
-e context-sensitive prediction module acts as a branch
network from each pyramid detection layer to get the final
output. With an aim to get a trade-off between efficiency and
accuracy, DCFPN [21] first shrinks the resolution of the
input image, and they use a dense anchor strategy to
maintain high accuracy. Object detection based on anchor
has developed rapidly, and face detection has also gotten
great ahead. However, the detection effect for small faces
continues to be not very good. S3FD [22] mainly analyzes
and improves the problem of the low detection rate of tiny
faces. It enhances the recall rate of small-scale faces through
the anchor matching strategy.

2.2. Attention Mechanism. Because of limited visual infor-
mation, when reading a photo, the human optical system
selectively concentrates on a special component of the photo
while neglecting the remainder. As depicted in Figure 1,
while the primary content of the figure is sky, people can first
easily catch the airplane in the image. To simulate this
procedure in artificial neural networks, an attention
mechanism is presented. It has achieved excellent accom-
plishments in many fields such as image reconstruction [23],
visual question answering [24], and face recognition.

Compared with convolution, the advantage of the at-
tention mechanism is that it has a large number of elastic
mappings. -is is an effective method used to strongly
connect any part of the input field. -ere are many works
employing the attention mechanism to elevate the accuracy
of the CNN classification model [25, 26]. In ref. [25], the

author adopts a cascaded attention mechanism to guide the
various layers of CNN and connect them in series to obtain
discriminative representation as the input of the final linear
classifier. A more recent work [26] performed universal
object detection with domain-attention. However, it per-
formed only moderately well without prior knowledge.
Unlike the above methods, we attempt to put the pyramid
structure and attention mechanism. -e attention mecha-
nism is applied to a multilevel pyramid network, and dis-
tinguished regions are used to classify and suppress noise
information.

2.3. Low-Quality Surveillance Images. Due to the increasing
demand for security, face recognition is more attractive than
ever before. Different from gallery images, surveillance
images are characterized by out-of-focus blur, low contrast,
and low resolution. At present, most image-set technologies
of face recognition are image-based face recognition.
However, this result cannot be extended to real-life moni-
toring scenarios. One of the main challenges of surveillance
images is the low image resolution, which may be because
the monitored object is too far away from the camera to
capture high-resolution images. Unfortunately, the methods
developed for high-resolution images cannot be well ex-
tended to low-resolution images. It is very expensive and
infeasible to build large-scale native face monitoring data as
a benchmark for broader research. -is is due to the re-
strictions on data access and very cumbersome data labels to
a large extent and the high cost.

3. Proposed Method

Inspired by numerous works, we develop our detector for
surveillance face detection. Firstly, we present the base
network.-en, wemodify the practical pyramid architecture
and add four key modules to resolve the low-quality sur-
veillance face. -e overview architecture of our method is
demonstrated in Figure 2.

3.1. BaseNetwork: EfficientNet. We select EfficientNet as our
base network for extracting features from face images and as
a baseline for our subsequent ablation experiments. Effi-
cientNet obtains compelling accuracy and efficiency per-
formance by leveraging neural architecture search in object
detection tasks. It expands width, depth, or input resolution
of the backbone in a principled way instead of the traditional
ways. Abundant experiments [12] prove that the precision of
the model does increase with the scaling of a certain di-
mension of themodel.When the scale of themodel increases
to a certain extent, the precision of the model will not
continue to grow with the increase of the scale. Based on
that, by tuning the width and height of the network
structure, the generalization capability and representation
power of the network have made a marked improvement. In
previous works, expanding the width or height of the net-
work structures tended to achieve better accuracy. However,
the result rapidly saturates after gaining 80% accuracy.
While it is feasible to transform width and height
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discretionarily, arbitrary scaling still requires dreary manual
adjusting. E
cientNet adopts a novel network scaling way in
which dynamic adapts the sizes of depth, width, and reso-
lution of networks. �e neural network is represented by the
following formula:

N � ⊙
i�1...s

F
Li
i XHi,Wi,Ci
( ), (1)

where FLi
i means the layer Fi is repeated Li times in stage i

and Hi,Wi, Ci mean the matrix of tensor X of layer i.
Formula (1) interprets every execution unit of the neural
network as a functional expression, which sets appropriate
optimization goals for the subsequent.

In order to obtain the more accurate model by limited
resources, we formulate (1) as an optimization problem:

max
d,w,r

Accuracy(N(d, w, r)),

s.t.N(d, w, r) � % ⊙
i�1...s

F̂
d·̂Li
i X

r·Ĥi,r·Ŵi,w·Ĉi
( ),

Memory(N)≤ targetmemory,

FLOPS(N)≤ targetflops,




(2)

where d, w, r are the coe
cients for scaling network width,
depth, and resolution and F̂i, L̂i, Ĥi, Ŵi, Ĉi denote pre-
de�ned parameters in the baseline network. Apparently, the

ultimate optimization goal of the model is to maximize the
prediction accuracy by adjusting the scaling ratio of the
depth, width, and resolution of the model.

�en, we de�ne a simple yet e�ective compound coef-
�cient ϕ to uniformly scale the dimensions of network:

depth: d � αϕ,

width: w � βϕ,

resolution: r � cϕ,

s.t. α · β2 · c2 ≈ 2,
α≥ 1, β≥ 1, c≥ 1,




(3)

where α, β, c are the values representing the proportion of
resource distribution. Intuitively, ϕ is a user-speci�ed
constant that manages how many computing resources and
storage memory are valid for model expansion. We set ϕ as 3
for an excellent performance. Table 1 illustrates the archi-
tecture of E
cientNet.

�e E
cientNet acts as feature extractor for the face
images. �e initial layers of the E
cientNet abstract plain
low-level features as edges and corners. �e deeper layers
extract more sophisticated high-level features as the se-
mantics of the target. However, the receptive �elds of the
high-level features are much larger, making them unprecise

Class Subnets

Box Subnets

EfficientNet

Context Module

Feature
Fusion

Pyramid Attention Module

Pyramid Attention Module

Pyramid Attention Module

Pyramid Attention Module

Pyramid Attention Module

Figure 2: Pipeline for our method. We employ E
cientNet (the left panel) as the base network (the colorful boxes mean various CNN
layers; we elaborate on this in Section 3.1), and we insert three dilated convolutions in the context module. �e remaining section is built
using a pyramid attention module, feature fusion, and two subnets.

Figure 1: �e illustrations of attention mechanism. It cleverly highlights the areas of interest. �e bright color parts mean more attention-
focused. Large areas of blue indicate areas that paid less attention.
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in localizing faces. �us, we combine the high-level and low-
level features together to deliver them as input to the at-
tention pyramid networks for adaptively weighting
allocating.

3.2. Single-Stage Detector. Furthermore, depending on the
characteristics of tiny faces, we make two modi�cations to the
E
cientNet architecture so that it can detect faces more
e
ciently. First, we abandon all the fully-connected layers and
the last pooling layer of the E
cientNet to retain more details.
�e revised E
cientNet provided feature maps at �ve stages.
Second, the sizes of anchors are particularly allocated
according to the available receptive �elds, accurately detecting
faces with various resolutions in di�erent scenes.

According to the articles [22, 23] on object detection
based on anchor, the size of anchors has a huge in�uence on
object detection. If the scale and ratio settings are not ap-
propriate, the recall may not be high enough, or anchor may
largely a�ect classi�cation performance and speed. On the
one hand, the vast majority of anchors is distributed in the
background area if anchor is too dense.�e loss of target box
regression of the loss plays a minor role; on the other hand,
preset anchor shapes cannot address the targets with ex-
treme size and extreme aspect ratio. �erefore, when we
handle the anchor design in the actual object detection, we
are supposed to consider the distribution of scale, ratio, and
anchor in the feature map. When the recall rate of a certain
scale target is low, we should consider adding a small-scale
anchor; Also, in the target of leakage, when the aspect ratio is
more uniform, a ratio should be increased; when the false
alarm is high in the object detection results, we should
consider whether the number of the anchors is too high. We
count the face resolution information in the Wider Face
dataset [14], as demonstrated in Figure 3. �e anchors
setting of the network can be seen in Table 2. Considering
the ratio of faces, we set the aspect ratio of anchors as 1 :1
and 1:

�
2

√
, because major faces are square-like shapes, and

pro�le faces can be regarded as a rectangle. Small-size and
large-size anchor boxes focus on shallow and deeper feature
maps, receptively.

3.3. ContextModule. Face detection in surveillance scenes is
comparatively tricky due to the pedestrians being detected in

a long-distance from the surveillance cameras. It is instituted
that low-quality frames impair the performance of face
detection. It turns out that contextual information is ben-
e�cial for detecting small faces [19]. �e properties of
covn3_3 have adequate spatial resolutions mapping from the
original image, even though they have neither steady se-
mantics nor context information. For receiving more re-
ceptive �eld, three dilated convolution layers are embedded
at the beginning of the E
cientNet network.�e structure of
dilated convolution is shown in Figure 3. A standard 3× 3
convolution kernel can only see the size of the corre-
sponding region 3× 3 (Figure 4), but dilated convolution
makes it possible to see a more extensive range for the
convolution kernel. Figures 4(b) and 4(c) can be understood
as the convolution kernel size is still 3× 3, but there is an
interval between each convolution point. �ese three dilated
convolutions can receive 3× 3, 7× 7, and 11× 11 �elds to
extract multiscale context information, respectively. �e
weight of the rest points is 0. �e receptive �eld expands
exponentially while the number of parameters increases
linearly. For the model, its running speed will not be
in�uenced by this extra computation.

Unlike other multibranch networks sharing the standard
input, we slice the input channels fairly enrolling into three
dilated convolutions, making a smaller number of channels
for each branch as shown in Figure 5. According to this
method, we can have fully explored the faces which are not
wholly detected.

3.4. PyramidFeatureAttentionModule. Attention technique
can be fairly understood as a method used for enhancing the
response of the parts that have most information and
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t

Figure 3: �e resolution distribution of faces in the Wider Face
dataset.

Table 1: �e architecture of backbone.

Stage i Operator Resolution Channels Layers
1 Conv3× 3 512× 512 45 1
2 MBConv1 256× 256 22 1
3 MBConv6 256× 256 24 4
4 MBConv6 128×128 40 4
5 MBConv6 128×128 80 5
6 MBConv6 64× 64 112 5
7 MBConv6 64× 64 192 7
8 MBConv6 32× 32 320 2

9 Conv1× 1 and pooling
and FC 32× 32 1280 1

MBConv denotes mobile inverted convolutional bottleneck.

Table 2: Parameters of the �ve anchors for various sizes of sur-
veillance face detection.

Layer Stride Anchor size (pixels) Boxes
Conv3_3 4 16/

�
2

√
, 16 32768

Conv4_3 8 32/
�
2

√
, 32 8192

Conv5_3 16 64/
�
2

√
, 64 2048

Conv6_2 32 128/
�
2

√
, 128 512

Conv7_2 64 256/
�
2

√
, 256 128
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suppressing the activation of others. It shows that back-
ground has a large in�uence, because the background has a
high fraction in the images. But we should prevent them
from being activated because this information commonly is
useless to the classi�cation. For the purpose of emphasizing
the essential face features from the whole image, we propose
a multiscale attention pyramid module, which calculates the
corresponding attention map, to emphasize the scores that
can be detected in small faces. �e dimension of the output
of the attention module operation is consistent with the
inputs in order to facilitate access to the neural network as a
common component. �e structure of pyramid feature at-
tention module is shown in Figure 6.

Speci�cally, the output feature of the attention module is
calculated by

yi �
1

C(x)
∑
∀j
f xi, xj( )g xj( ), (4)

where x means the input feature. y denotes the output
feature with the same size as x. f(xi, xj) is the function of
mapping the relationship between xi and xj. g(xj) com-
putes a feature vector of the input signal at position j. For
easier implementation, we set a 1× 1 convolution �lter as
g(xj). C(x) is a normalization function.

For better visual reasoning, we select concatenation
function as f(xi, xj):

f xi, xj( ) � Leaky ReLU wTf θ xi( ),φ xj( )[ ]( ). (5)

wf means a weighting coe
cient that maps the con-
catenated vector to a scalar. �e scalar is activated with
Leaky ReLU for reducing information loss.

3.5. FeatureFusion. Feature fusionmechanism is utilized for
enabling features to hold some low-level and high-level
information. High-level features abstracted by deeper con-
volution layers include semantic information; however, they
generally waste details such as positions and colors that are
available in the detection. In contrast, low-level features
contain more detailed information but introduce nonspe-
ci�c noise. Feature fusion has been adopted by many object
detection tasks to enhance performance by combining high-
level and low-level features. �erefore, we choose the feature
fusion technique to improve detection accuracy.

Referring to multiscale fusion, in the fusion of di�erent
input characteristics, most of the previous studies just
merged the various feature eigenvectors into a sequence. A
survey reveals that the contribution of varying input features
is often unequal. To address this issue, we cascade a learnable
weight to evaluate the worth of di�erent input layers.
Mathematically, the feature fusion function is formulated as

ff � % ⊙
1≤i≤5

fai · ω fai+1; ρ( ) + fai , (6)

(a) (b) (c)

Figure 4: �e receptive �elds illustration of context module with three dilated rates. (a) Dilated rate� 1, (b) dilated rate� 2, and (c) dilated
rate� 3.

dilation rate = 2

dilation rate = 3

dilation rate = 1

Slice Concat

Figure 5: �e slice-branch-concat operation of our context
module.

X

θ: 1 × 1, C/2 φ: 1 × 1, C/2 λ: 1 × 1, C/2

1 × 1, C

Z

N×H×W×C

Reshape
N×HW×C/2

Reshape
N×C/2×HW

N×HW×HW

Reshape
N×HW×C/2

N×H×W×C

Reshape
N×H×W×C/2

Figure 6: �e structure of the pyramid feature attention module.
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where fa
i represents the out feature of the attention module.

ω is the transposed convolution. ρ is the transposed pa-
rameter of ω. We combine high-level features with low-level
features through element-wisemultiplication.-e combined
vector involves both spatial and channel-wise information.

3.6. Hard Face Mining. In the training process, large
amounts of training sets only contain high-quality faces,
which does not help learn the robust detector for hard faces.
Despite their success in most images, a significant perfor-
mance gap persists, especially for hard training samples with
low resolution, blur, and occlusion parts. More specifically,
we utilize dynamically setting a difficulty rate to train im-
ages, which can judge whether an image is already well-
detected or still useful for further training. -is allows us to
take full advantage of images that are not entirely detected to
better facilitate the subsequent training process. We argue
that this strategy can make our detector more robust for
faces with challenging influence, meanwhile, without adding
any computing costs. -e hard face mining evolves the
following four steps:

Step 1: for each dataset, we consider the whole samples
in the training set as hard samples.
Step 2: when starting training, we use formula (7) to
calculate the corresponding difficulty scores with all
samples.
Step 3: if the score is below a threshold, the image
sample will be marked as a hard face.
Step 4: after each epoch training, we collect all hard
faces into a new subset. It will be trained in the next
epoch.

Score(I; θ) � min
a∈A(I)+

exp l(I; ε)a,1 

exp l(I; ε)a,1  + exp l(I; ϵ)a,0 
, (7)

whereA(I)+ is the set of positive anchors for image I. l is the
classification logit. l(I; ε)a,1 and l(I; ε)a,0 are the logits of
anchor a for the image I to be foreground face and
background.

4. Experiments

Firstly, some testing datasets and protocols will be intro-
duced, which are aimed at verifying the performance of our
methods. Next, the realization process is clearly described.
We display the comparisons with the most advanced ap-
proaches and the capability of boosted EfficientNet. After,
according to ablation studies, we research each method to
get their performance, therefore, in order to explore the
effectiveness of the boosted EfficientNet, a lot of experiments
are achieved.

4.1. Benchmark Datasets and Metrics. Wider Face dataset
[14] is a large-scale public face database containing 393,703
faces from 32,203 images. It is comprised of three parts:

training (40%), validation (10%), and test (50%). In this
dataset, the faces have occlusions, poses, race, and face
bounding box annotations. According to the complexity of
detection tasks, the provider of the database divides it into
three parts: easy, medium, and hard subsets. -e evaluation
metric chosen by us used to evaluate the performance of the
model is the average precision (AP) metric.

-e FDDB dataset [15] aims to evaluate the strength of
unconstrained face detection. FDDB provides 2,845 images
involving a number of 5,171 faces collected in realistic
conditions. -e researchers manually marked the bounding
box for the images. We use the receiver operating charac-
teristic (ROC) curves for evaluating the performance.

4.2. Implementation Data Augmentation. During this test-
ing, we resize the input images to 512× 512 pixels. -e
threshold of nonmaximum suppression (NMS) for filtering
out the redundant boxes is configured as 0.6. We train our
model starting from a stochastic gradient descent optimizer
with a momentum of 0.9, weight decay of 1e− 4. For anchor
settings, we set 12 anchor scales from the set {16, 32, 64, 128,
256} and anchor ratio as 1 :1 and 1:

�
2

√
. -e experiment

comes true by publicly available Pytorch framework on a
machine for neural network training, which has 24GB
memory and four Tesla K80 GPUs.

Our primary task is to solve the problem of face de-
tection in surveillance images, there is a lack of occluded and
low-resolution faces in Wider Face [14] (around 20%). Data
augmentation, as a common method in deep learning, is
helpful to enhance the model in generalization ability and

Table 3: -e ablation experiments of our strategies on the Wider
Face validation test.

Method Baseline +DA
+ CM √ √ √ √ √
+ FAP √ √ √ √
+ FF √ √ √
+ HFM √ √
Accuracy (mAP[easy]) 92.4 93.0 93.4 93.6 94.8 96.3
Accuracy (mAP
[medium]) 91.0 91.3 91.5 91.8 93.6 95.1

Accuracy (mAP[hard]) 78.6 82.3 85.1 85.4 87.9 89.2

Table 4: Results comparison on Wider Face validation set.

Algorithms Backbone Easy Medium Hard
LDCF+ [27] — 79.0 76.9 52.2
Multitask cascade-CNN
[6] — 84.8 82.5 59.8

ScaleFace [28] ResNet50 86.8 86.7 77.2
CMS-RCNN [8] VGG16 89.9 87.4 62.4
MSCNN [29] VGG16 91.6 90.3 80.2
HR [19] ResNet101 92.5 91.0 80.6
Zhu [30] ResNet101 94.9 93.3 86.1
FAN [29] ResNet50 94.3 94.2 88.8
Gao [31] TinyYOLOv3 95.26 89.2 77.9
DBCFace [32] ResNet50 95.84 94.96 90.34
Ours Efficient-B7 96.3 95.1 89.2
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accuracy. Before the training, we disturbed and increased the
data samples by image processing methods: (1) random
rotation from −20° to +20°. (2) Random erasing 10% of the
images. (3) Adding random value matrix sampled from the
Gaussian distribution to the RGB pixels of the image. After
these operations, we expanded the original training set by 2
times. In addition to being suitable for the serious occluded
face, our augmentation is bene�cial for small face detection,
as more small faces are extended. Our data augmentation
strategy is designed to scale up training data.

4.3. Ablation Studies. We do detailed ablation investigations
to study each strategy respective roles on the face detector,
including context module (CM), feature attention pyramid
(FAP), feature fusion (FF), and hard face mining (HFM).

Table 3 shows the ablation analysis. It is easy to �nd that
the baseline model also achieves good performance (92.4
mAP) due to the e�ectiveness of deep learning. �e bottom
three rows demonstrate that our four strategies practically
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Figure 7: �e evaluation results on Wider Face: easy subset (a), medium subset, (b) and hard subset (c).

Figure 8: Selected detected faces on Wider Face.
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Figure 9: Performance evaluation on the FDDB dataset.
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enhance the capability, particularly tiny faces. By context
module, the AP is improved by 0.3% and 3.7% on medium
and hard subsets, respectively, without increasing FLOPS.
After we took in the feature attention pyramid module, the
mAP was further expanded up to 85.1, and the mAP (hard)
prominent raised by 2.3%. When inserting feature fusion
and hard face mining into our model, the mAP increases by
85.4 and 87.9 on the hard set. We can find out that the mAP
of the hard set has a steady increase from 78.6% to 89.2%.

With the help of data augmentation, our performance is
improved over 1.4% on three subsets obviously. It shows that
data augmentation is crucial for uneven data distribution.

-e considerable improvement on hard subset validates
our strategies indeed enhance the robustness of face de-
tector, which means it can utilize more discriminative
features from low-quality faces.

4.4. Results onWider Face. Table 4 and Figure 7 illustrate the
results of recently reported face detection models with our
designed method. We compare our method against 8 recent
deep learning approaches: LDCF+ [27], multitask cascade-
CNN [6], ScaleFace [28], CMS-RCNN [8], MSCNN [29], HR
[19], Zhu [30], and FAN [29].We discover that our proposed
method performs compelling performance with the SOTA
methods on easy set (96.3%) and medium difficulty set
(95.1%), respectively. After adopting our four strategies, our
model outperforms all methods on the hard subset, reaching
0.892 mAP, and also has a better performance compared to
most face detectors when applied to the Wider Face dataset.

In such case, the apparent enhancements on hard
subclass verified that our feature attention pyramid module
virtually reserves semantics from lower-level feature maps to
high-level feature maps.

Figure 8 shows some detecting results on Wider Face
dataset. It exhibits the robustness of our model in chal-
lenging cases.

4.5. Results on FDDB. From Figure 9, it can be seen that the
score achieved by our proposed model is higher than any
other methods on the continuous ROC curve. -e proposed
face detector has an accuracy of 96.31% when the number of
false positives is equal to 2,000. It shows the better

performance of our model in various scales, serious block,
and greater blur regression in unconstrained scenarios.

Figure 10 reveals some qualitative detection on the
FDDB dataset. According to the results, we can get the
conclusion that the proposed method based on deep
learning techniques is effective for face detection.

4.6. Runtime Analysis. For a better comprehension of the
advantage about our method, we conduct a runtime com-
parison with the other three methods. As discussed in
Section 3, different from early ways that arbitrarily scale
these factors, our backbone can be scaled by an effective
coefficient to balance the dimensions of depth, width, and
resolution. As described in (3), we use the small grid search
method to seek three constants. We set ϕ as 3 in (3) for
controlling the available resources. With proper optimiza-
tion of the new scaling strategy, our method becomes more
outstanding in the advantage of runtime efficiency. As Ta-
ble 5 shows, our method considerably outperforms all
previous detectors on the Wider Face dataset. Compared
with complicated CNN frameworks, our model is much
smaller. -e efficient model runs eight times faster than HR,
while having a strong detection ability under practical
runtime speed conditions.

5. Conclusions

In this work, we have designed a practical method to detect
the face in low-quality surveillance images. Specifically, we

Figure 10: Selected detected faces on the FDDB dataset.

Table 5: -e runtime and parameters compare our model with
different approaches on Wider Face dataset.

Method Backbone mAP Speed Parameters Runtime
FasterRCNN
[33] VGG19 71.2 <6FPS 24M 180ms

ScaleFace
[28] ResNet50 77.2 <8FPS 37M 130ms

HR [19] ResNet101 80.6 3.1
FPS 58.16M 360ms

Gao [31] TinyYOLOv3 91.5 <6FPS 33M 182ms

Ours Efficient-B3 89.2 24
FPS 15M 80ms
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first develop a context model with multiple scales of view,
which is beneficial for long-distance tiny faces detection.
-en, we combine the pyramid attention module and feature
fusion, which improves the accuracy both in the content and
spatial locations. During training, hard face mining is used
to handle the class imbalance problem in hard face images
detection. Experimental results denote that the method we
came up with promisingly promotes the performance of
hard face detection. Moreover, the proposed model also
enjoys efficient inference speed.

Data Availability

-e Wider Face dataset and FDDB dataset used to support
the findings of this study can be downloaded from http://
shuoyang1213.me/WIDERFACE/ and http://vis-www.cs.
umass.edu/fddb/index.html, respectively.
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