
Research Article
A Homomorphic Signcryption-Based Privacy Preserving
Federated Learning Framework for IoTs

Weidong Du ,1,2 Min Li ,1 Yiliang Han ,2 Xu An Wang ,2 and Zhaoying Wei 3

1Xi’an Hi-Tech Research Institute, Xi’an 710025, China
2College of Cryptography, Engineering University of PAP, Xi’an 710086, China
3College of Science, Xi’an Shiyou University, Xi’an 710065, China

Correspondence should be addressed to Min Li; proflimin@163.com

Received 23 May 2022; Accepted 17 August 2022; Published 22 September 2022

Academic Editor: Chen Chen

Copyright © 2022Weidong Du et al. (is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Federated learning (FL) enables clients to train a machine learning model collaboratively by just aggregating their model pa-
rameters, which makes it very useful in empowering the IoTs with intelligence. To prevent privacy information leakage from
parameters during aggregation, many FL frameworks use homomorphic encryption to protect client’s parameters. However, a
secure federated learning framework should not only protect privacy of the parameters but also guarantee integrity of the
aggregated results. In this paper, we propose an efficient homomorphic signcryption framework that can encrypt and sign the
parameters in one go. According to the additive homomorphic property of our framework, it allows aggregating the signcryptions
of parameters securely. (us, our framework can both verify the integrity of the aggregated results and protect the privacy of the
parameters. Moreover, we employ the blinding technique to resist collusion attacks between internal curious clients and the server
and leverage the Chinese Remainder (eorem to improve efficiency. Finally, we simulate our framework in FedML. Extensive
experimental results on four benchmark datasets demonstrate that our framework can protect privacy without compromising
model performance, and our framework is more efficient than similar frameworks.

1. Introduction

Traditional machine learning (ML) uses huge amounts of
data collected from various sources to train models. How-
ever, data sharing from different devices or organizations
may disclose privacy information about the owners. To solve
the dilemma between protecting data privacy and leveraging
the AI benefits to these data sensitive domains, federated
learning (FL) [1, 2] is proposed to train ML models without
sharing data directly. Because FL can protect the privacy
while utilizing data, it has great application prospect in many
scenarios [3–6], especially in IoTs [7, 8].

FL enables devices to collaboratively build a global ML
model by only aggregating their model parameters with their
data kept at their local storage. However, it still has the
problem of privacy leakage. Existing researches [9–11]
revealed that the exposed gradients still retain sensitive in-
formation about the training data. To avoid exposing

gradients of a client during the training process, many privacy
preserving frameworks based on cryptographic techniques
have been proposed. Because homomorphic encryption (HE)
allows aggregating the gradients through encryption enve-
lope, privacy preserving FL frameworks based on HE have
aroused many researchers’ interests [9, 12–14].

However, because HE consists of complex cryptographic
operations, these frameworks always bring heavy overhead.
On the other hand, all clients in these frameworks share the
same key pairs. If the server colludes with any client to get
the secret key, the privacy protections will be invalid. Apart
from efficiency and collusion attack issues, most privacy
preserving FL frameworks ignore verifying the integrity of
the aggregated results. However, a malicious or compro-
mised server may forge the aggregated results to seduce
clients to expose more sensitive information. (erefore, a
privacy preserving FL framework should consider efficiency,
privacy, and integrity.

Hindawi
Security and Communication Networks
Volume 2022, Article ID 8380239, 10 pages
https://doi.org/10.1155/2022/8380239

mailto:proflimin@163.com
https://orcid.org/0000-0002-2665-2520
https://orcid.org/0000-0002-3009-279X
https://orcid.org/0000-0002-2116-5408
https://orcid.org/0000-0003-2070-4913
https://orcid.org/0000-0002-6373-2618
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8380239

(is paper aims to address these problems by designing
an efficient homomorphic signcryption based privacy pre-
serving framework for FL in IoTs. We compare our
framework with others in Table 1. Our contributions are
summarized as follows:

(i) We design a homomorphic signcryption mecha-
nism to encrypt and sign the clients’ gradients at the
same time. According to its additive homomorphic
property, our mechanism allows the server to ag-
gregate the gradients and signatures securely and
allows the clients to verify the integrity (correctness)
of the aggregated results.

(ii) We employ the blinding technique to resist collu-
sion attacks. Even if n − 2 clients try to collude with
the server, they cannot steal privacy information of
other clients’ parameters.

(iii) We combine the clipping and quantizing tech-
nique in Batchcrypt [13] and the Chinese Re-
mainder (eorem to reduce the number of
complex cryptographic operations and cipher-
texts. (us, our framework is more efficient in
computation and communication than similar
frameworks.

(iv) We present a comprehensive analysis for the
security of our framework, which proves the
privacy security of the gradients and the model
as well as the integrity of the aggregated
results. Finally, we simulate our framework
in FedML on four benchmark datasets (and
corresponding models): Federated MNIST,
CINIC-10, CIFAR-10, and CIFAR-100. (e ex-
perimental results demonstrate that our frame-
work has high computation and communication
efficiency.

(e rest of the paper is organized as follows:
the preliminaries and related works are briefly introduced
in Section 2. (e detailed procedures of our framework
are presented in Section 3. (e security analysis
and experimental evaluation are provided in Sections 4
and 5, respectively. Finally, we conclude our paper in
Section 6.

2. Preliminaries and Related Work

In this section, we introduce the preliminaries and related
works of privacy preserving FL.

2.1. Paillier One-Way Trapdoor Permutation. In this paper,
we employ the Paillier one-way trapdoor permutation [15]
to realize the homomorphic signcryption mechanism. (e
details of the Paillier one-way trapdoor permutation are
described as follows:

(i) Key generation: select two large prime numbers p

and q randomly with gcd(pq, (p − 1)(q − 1)) � 1
and compute the modulus N � pq and the least
common multiple λ � lcm(p − 1, q − 1). Select a
random group generator g ∈ Z∗N2 , where the order
of g divides n. (e key pairs is ((N, g), λ).

(ii) Encryption: for any message m<N2, split m into
m1, m2 with m � m1 + Nm2. (e ciphertext of m is
c � gm1mN

2 modN2.
(iii) Decryption: the decryption process is as follows:

m1 �
L c

λ modN
2

􏼐 􏼑

L g
λ modN

2
􏼐 􏼑

modN,

c′ � cg
− m1 modN,

m2 � c′ N
− 1 mod λ modN,

m � m1 + Nm2.

(1)

(e L function is defined as L(u) � (u − 1)/N.

2.2. Batchcrypt. In Batchcrypt [13], the authors proposed a
method to clip and quantize the gradients; it consists of two
functions:

(i) α � dACIQ(s, V, v): C�compute the clipping
threshold α according to the number s of gradients
W, the maximum gradient V, and the minimum
gradient v of each layer.

Table 1: Comparison of PPFLS.

PPFL Updates privacy Model privacy Collusion resistant Verifiability Model supported
Shokri & Shmatikov No No No No Linear & deep model
Geyer et al. No No No No Linear & deep model
Bonawitz et al. Yes No Yes No Linear & deep model
Phong et al. Yes Yes No No Linear & deep model
Batchcrypt Yes Yes Yes No Linear & deep model
Ma et al. Yes Yes No Yes Linear & deep model
Zheng et al. Yes No Yes Yes Linear model
Xu et al. Yes No Yes Yes Linear & deep model
CRT-Paillier Yes Yes No Yes Linear & deep model
VFL Yes Yes Yes Yes Linear & deep model
Our framework Yes Yes Yes Yes Linear & deep model
We note that, though our framework has the same property as VFL, our framework is more efficient both in computation and in communication, which will
be proved in Section 5.

2 Security and Communication Networks

(ii) 􏽥wi􏼈 􏼉 � Quantize(wi􏼈 􏼉, αi􏼈 􏼉, n): quantize the gradient
wi into r bits according to the scaled quantization
range [− nα, nα] in case the sum of gradients from all
clients overflows. Here, n denote the number of
clients.

Batchcrypt [13] allows clipping and quantizing the
gradients into fixed bit width integers, which can reduce the
number of parameters in encryption and decryption.

2.3. Chinese Remainder 0eorem. Suppose m0, m2, . . . , mK

are K positive pairwise coprime integers. Let M � m1·

m2 · · · mK.(en there exists one unique integer satisfying the
following group of congruences: y ≡ a1 modm1, y ≡
a2 modm2, . . . , y ≡ aK modmK. Similarly, we can unpack y

to get ai ≡ ymodmi(i � 1, 2, . . . , K). To ease description, we
denote the packing function as y � CRT(a1, a2, . . . , aK􏼈 􏼉,

m1, m2, . . . , mK􏼈 􏼉) and the unpacking function as
a1, a2, . . . , aK􏼈 􏼉 � CRT inverse(y, m1, m2, . . . , mK􏼈 􏼉). For
any two packed data yi and yj, the equation yi + yj ≡ ai

l +

a
j

l modml(l � 1, 2, . . . , K) holds. (us, we know that the
CRT satisfies additive homomorphism.

2.4. Privacy Preserving Federated Learning. Many researches
have been devoted to privacy preserving FL (PPFL), and they
are mainly based on cryptographic methods. Shokri and
Shmatikov [16] employed selective parameter update atop
differential privacy to protect training record privacy. Geyer
et al. [17] applied differential privacy directly to guarantee
client level differential privacy. But these differential privacy
based approaches reduced model accuracy significantly.
Bonawitz et al. [18] leveraged secure aggregation to protect
privacy in FL. Nevertheless, it exposes the trained model in
the plaintext form. To address this problem, Phong et al. [9]
proposed an additively homomorphic encryption based FL
framework. However, it brought heavy computation and
communication overhead because the encryption scheme
involves complex cryptographic operations and large ci-
phertexts. To improve efficiency, Batchcrypt [13] tried to
encode groups of quantized gradients large integers, but
their method cannot defeat collusion attacks among internal
curious clients and the server.

2.5. Verifiable Federated Learning. In FL, a malicious or
compromised server may falsify aggregated results returned
to the clients. Several methods have been proposed to solve
this problem.

Ma et al. [19] used bilinear aggregate signature [20] for
integrity verification. But the verification process involves all
clients. For a large number of clients, this process is time-
consuming. Xu et al. [21] employed a homomorphic hash
function to verify integrity, but it cannot protect the privacy
of the jointly trained model. Zheng et al. [22] designed
Helen, a framework utilized to secure multiparty computing
protocol [23], to verify the correctness of the aggregated
results. Nevertheless, the framework does not support
training complex models such as neural networks. Zhang
et al. (referred to as CRT-Paillier in Section 5) [24] combined

bilinear aggregate signature and Paillier encryption [15] to
protect privacy and integrity of the aggregated results. But
they cannot resist collusion attacks between the server and
internal curious clients. Fu et al. proposed VFL [25] by
employing Lagrange interpolation to realize secure aggre-
gation and check the integrity of the aggregated results, but
the parameter splitting process is costly, making it unsuit-
able for large deep learning models.

To summarize, among PPFL frameworks, many of them
ignored verifying the correctness of the aggregated results.
For verifiable frameworks, they either cannot apply to large
nonlinear models, or cannot protect the privacy of the
model, or cannot resist collusion attacks between the server
and the clients. Our work is to address these problems.

3. Homomorphic Signcryption-Based Privacy
Preserving Federated Learning
Framework for IoT

3.1. 0reat Model and Design Goals. In our framework, we
assume security threats from three different perspectives:

(i) Internal curious clients may try to steal privacy in-
formation about other clients by inspecting the ci-
phertexts transmitted during the training process.
Here we should note that, because the ultimate goal of
the clients in is to train a good ML model, the curious
clients may collude with the server to steal private
information about other clients, but they will not
colludewith the sever to tamper the aggregated results.

(ii) (e server may try to steal the jointly trained model
because of its great economic value. But the model
should be the common property of the clients.

(iii) (e server may return falsified aggregated results to
clients driven by some unexpected motivations.

Consequently, to enable a privacy preserving FL
framework under the aforementioned threat model, the
design goals are summarized as follows:

(i) Correctness: when the server and clients operate
strictly according to the protocol, the aggregated
results should be correct. (is ensures that the
clients achieve their goal and the final model has
good performance.

(ii) Data privacy: data privacy means the privacy of a
client’s training data and gradients. (e server and
curious clients cannot gather any private infor-
mation about the data and gradients from messages
they receive.

(iii) Model privacy: model privacy refers to the privacy
of the jointly trained model. (e server or any other
party not in the framework cannot steal the model
by inspecting the immediate data transmitted
during the learning process.

(iv) Verifiability: all clients can verify the integrity of the
aggregation of parameters so that clients can detect
the malicious behavior if the server returns tam-
pered aggregated results.

Security and Communication Networks 3

3.2. Overview. As illustrated in Figure 1, our framework
consists of 4 phases: initialization, model training, aggre-
gation, and update. We summarize the 4 phases as follows:

(i) Initialization phase: the Public Key Generator
(PKG) determines the model parameters and gen-
erates Paillier keypairs, Pseudo-Random Generator
(PRG), random seed S0, and K pairwise coprime
large numbers ml􏼈 􏼉l�1,2,...,K for all clients.

(ii) Model training phase: all clients train the MLmodel
locally clip and quantize the gradients into r bits
long integers, pack them using CRT, mask them
with blinding factors, and then signcrypt them.

(iii) Aggregation phase: the server aggregates the ci-
phertexts from all clients and distributes the result
to them.

(iv) Update phase: each client firstly decrypts the ag-
gregated ciphertexts and then verifies the integrity
of the aggregated gradients. If the result is correct, it
unpacks them into plain aggregated gradients and
updates their local model accordingly. Otherwise, it
would terminate the learning process.

3.3. Detailed Construction

3.3.1. Initialization. For simplicity, we assume there are n

clients, and each client is uniquely indexed by a number i.
(e set of client index is represented by index � 1, 2, . . . , n{ }.
In our framework, the PKG needs to initialize the model
parameters and generate keys and PRG as follows:

(1) Initializing model parameters: the PKG specifies the
architecture of the model, randomly initializes the

model parameters as M0 � Mi􏼈 􏼉i�1,2,...,T (T denotes
the number of layers of the learning model), and
specifies an appropriate learning rate η.

(2) Specifying packing parameters: the PKG generates K

positive integers mi􏼈 􏼉i�1,2,...,K that are pairwise coprime
gcd(mi, mj) � 1(∀i≠ j). We define M � 􏽑

k
i�1 mi.

(ese integers are used to pack gradients.
(3) Specifying blinding parameters: the PKG

randomly chooses n integer sets s
j
1􏽮 􏽯

j�1,2,...,|M0|
,

s
j
2􏽮 􏽯

j�1,2,...,|M0|
, . . . , s

j
n􏽮 􏽯

j�1,2,...,|M0|
∈ (Z∗N)|M0| such

that 􏽐
n
i�1 s

j

i � 0 for j � 1, 2, . . . , |M0| (|M0| stands for
the number of parameters of the model) and then
sends s

j
i􏽮 􏽯

j�1,2,...,|M0|
to client i.

(4) Specifying PRG: the PKG sends each client the same
pseudorandom generator PRG(·) and seed S0. (e
pseudorandom generator is used to synchronize
random numbers among clients for signcrypting the
gradients in each training round.

(5) Generating signcryption keys: the PKG sends each
client a Paillier key pair ((N, g1), λ) for encryption
and decryption and a secret value gx

2 to sign the
gradients, where N � pq, g1 ∈ Z∗N2 , g2 ∈ Z∗N, and
x ∈ N.

3.3.2. Model Training Phase. (e model training phase of
client i(i ∈ index) consists of the following four steps:

(1) Local training: in R − th round of training, client i

trains its local model on dataset Di and computes the
gradients Gi.

A.1: Initializing Parameters

C. Aggregation Phase

D. Update Phase

B. Model Training Phase

A.Initialization Phase

A.2: Specifying PRG

A.3: Generating keysPublic Key
Generator

B.1: Local training

B.2: Packing

B.3: Blinding

B.4: Signcrypting

B.1: Local training

B.2: Packing

B.3: Blinding

B.4: Signcrypting

A

BB

C

DD

Client 1 Client nModel 1 Model n

Model ParameterModel Parameter

Local Dataset Local Dataset

D.4: Updating

D.3: Unpacking

D.2: Verifying

D.1: Decrypting

D.4: Updating

D.3: Unpacking

D.2: Verifying

D.1: Decrypting

Aggregation Server Aggregated Gradient Ciphertexts

Download
Aggregated results

Download
Aggregated results

Upload Ciphertexts Upload CiphertextsDistribute
Parameters

Figure 1: Overview of our framework.

4 Security and Communication Networks

(2) Packing: client i sends the layer-wise maximum value
V

j
i , minimum value v

j
i , and the size sj of layer j(j �

1, 2, . . . , T) to the server. After receiving those layer-
wise clipping parameters from all clients, the
aggregator server calculates the clipping threshold
αj � dACIQ(sj,Max(V

j
i)i�1,2,...,n, in(v

j
i)i�1,2,...,n),

where Max and Min compute the maximum and
minimum of a set, respectively. After receiving the
clipping thresholds, client i quantizes its gradients
with 􏽥Gi � Quantize(Gi, αj􏽮 􏽯

j�1,2,...,T
, n), client i par-

titions the quantized gradients into L � 􏼦

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌
􏽥Gi|/K􏼧

groups Pi � p1
i � p1l

i􏼈 􏼉l�1,2,...,K, p2
i �􏽮

p2l
i􏼈 􏼉l�1,2,...,K, . . . , pL

i � pLl
i􏼈 􏼉l�1,2, . . . , K}. If | 􏽥Gi| is not

divisible by K, 􏽥Gi should be padded with 0 s. (en
client i packs them into Wi � w1

i , w2
i , . . . , wL

i􏼈 􏼉 with
w

j
i � CRT(p

j
i , ml􏼈 􏼉l�1,2,...,K) and w

j
i ∈ FM. After

packing, the number of cryptographic operations
and ciphertexts is greatly reduced; thus the com-
putation and communication efficiency is improved.

(3) Blinding: to resist collusion attacks between curious
clients and the aggregation server, client i blinds w

j
i

by adding its blinding factors to get 􏽥Wi � 􏽥w1
i ,􏼈

􏽥w2
i , . . . , 􏽥wl

i} � w1
i + s1i , w2

i + s2i , . . . , wL
i + sL

i􏼈 􏼉.
(4) Signcrypting: for each blinded gradient 􏽥w

j
i ∈ 􏽥Wi,

client i computes its signature σj
i � g

x􏽥wj

i

2 modN and
uses the PRG to synchronize with other clients a
random number rR � SR � PRG(SR− 1) , where SR

will be used as seed for the PRG in the next round of
training. Finally, clients i compute a signcryption of
􏽥w

j

i as cipherj

i � g
􏽥w

j

i

i (σj

i rR)N modN2.

We summarize the steps of model training phase in
Algorithm 1.

3.3.3. Aggregation Phase.

(1) Aggregation: after receiving the ciphertexts from all
clients, the server aggregates them according to the
layer index j(j � 1, 2, . . . , L). Because Paillier trap-
door permutation is additively homomorphic, the
sever computes

cipherj
� 􏽙

n

i�1
cipherj

i ,

� 􏽙
n

i�1
g

w
j

i
+s

j

i

1 g
x w

j

i
+s

j

i
rR(􏼁

N

2􏼠 􏼡,

� g

􏽘
n

i�1

w
j

i
+􏽘

n

i�1

s
j

i

1 g

x 􏽘
n

i�1

w
j

i
+x 􏽘

n

i�1

s
j

i

2 r
n
R

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

N

modN
2
.

(2)

Because 􏽐
n
i�1 s

j
i � 0 for i � 1, 2, . . . , n and

j � 1, 2, . . . , |M0|, we have

cipherj
� g

􏽐
n

i�1
w

j

i

1 g

x 􏽐
n

i�1
w

j

i

2 r
n
R

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

N

modN
2
. (3)

3.3.4. Update Phase. After receiving the aggregated ci-
phertexts cipherj

􏽮 􏽯
j�1,2,...,L

, each client completes the update
phase as follows.

(1) Decrypting: client i firstly decrypts the j − th

ciphertext:

W
j

�
L cipherj

􏼐 􏼑modN
2

􏼐 􏼑

L g1λmodN
2

􏼐 􏼑
modN

2
� 􏽘

n

i�1
w

j
+ 􏽘

n

i�1
s

j

� 􏽘
n

i�1
w

j
.

(4)

(en it computes the aggregated signature as follows:

􏽧cipher
j

� cipherj
g

− Wi

i modN,

σj
� 􏽧cipher

j
􏼒 􏼓

N− 1mod λ
r

− nN
R modN

� g

x 􏽘
n

i�1

w
j

i
mod λ

2 modN.

(5)

(2) Verifying: for each client i, if the equation
gxWj mod λ
2 modN ≡ σj holds, the aggregation results

are correct. Otherwise, it is supposed to be falsified,
and the learning process terminates.

(3) Unpacking: if the termination condition is not sat-
isfied, client i unpacks the plain aggregated gradients
GR � 􏽐

n
i�1 Gi � CRT inverse(W, m1, m2, · · · , mK􏼈 􏼉),

where W � W1, W2, . . . , WL􏼈 􏼉 � 􏽐
n
i�1 w1

i , 􏽐
n
i�1􏼈

w2
i , . . . , 􏽐

n
i�1 wL

i }.
(4) Updating: client i updates the model parameters

MR � MR− 1 − (η/n)GR and prepares for the next
round of aggregation.

We summarize the steps of update phase in Algorithm 2.

4. Security Analysis

Theorem 1. 0e privacy of the clients’ gradients is protected
against internal curious clients.

Proof. Suppose an internal curious client i intercepts a ci-
phertext from client l by intercepting the messages between
client l and the server. (en client i has
cipherj

l � g
􏽥w

j

l

1 (σj

l rR)NmodN2(j � 1, 2, . . . , L).(ough it can
decrypt them to get 􏽥w

j

l � w
j

l + s
j

l and g
x(w

j

l
+s

j

l
)

2 , it cannot infer
any information about the gradients w

j

l because the blinding
factor s

j

l is hidden from it. (erefore, our framework can
protect the privacy of the clients’ gradients against internal
curious clients. □

Security and Communication Networks 5

Theorem 2. 0e privacy of the clients’ gradients is protected
against collusion attack between n − 2 clients.

Proof. Assume the set of collusion clients is |Adv | with
|Adv | � 2. For clients i, l ∉ Adv, their ciphertexts cipherj

i �

g
􏽥w

j

i

1 (σj

i rR)NmodN2 and cipherj

l �

g
􏽥w

j

l

1 (σj

l rR)NmodN2(j � 1, 2, . . . , L) contain blinding factors
s

j
i and s

j

l that are unknown to clients in Adv and the server.
For any aggregated ciphertexts include cipher

j
i and cipher

j

l ,
the situation is similar. (us, even when the server colludes
with n − 2 clients, they cannot infer any information about
other clients’ gradients. □

Theorem 3. In our framework, each client can indepen-
dently verify the correctness of the aggregated results, and the
server cannot deceive the clients with tampered aggregated
results.

Proof. If the clients receive the correct aggregated results,
obviously the equation gxWj

2 � σj(j � 1, 2, . . . , L) holds.
Assume a client receives forged aggregated results, and
without loss of generality, we assume the sever falsified the
aggregated results to

􏽤cipher � g
Δ1
1 g
Δ2
2 􏽙

n

i�1
cipherj

i

� g
􏽐

n

i�1
􏽥wj

i +Δ1(􏼁

1 g

x 􏽐
n

i�1
􏽥wj

i +Δ2(􏼁

2 r
n
R

⎛⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎠

N

modN
2
.

(6)

If the malicious server tries to successfully fool the ver-
ification mechanism of our framework, it must make sure the

following equation holds: g
􏽐

n

i�1(x􏽥wj

i +xΔ1)

2 � g
x 􏽐

n

i�1(􏽥wj

i +Δ2)

2 ;
namely, the server should select Δ1 and Δ2 that satisfy
xΔ1 � Δ2. However, it is impossible because gx

2 is confidential
to the server. (erefore, we prove that the server cannot
deceive the clients with tampered aggregated results. □

5. Performance Evaluation

We evaluate the performance of our framework in this
section. Specifically, we first compare its accuracy against
that of the original FL framework in four benchmark
datasets: Federated MNIST, CINIC-10, CIFAR-10, and
CIFAR-100. (e models corresponding to the datasets are
listed in Table 2. (en we compare its computation and
communication cost with that of the other two verifiable
PPFL frameworks: VFL [25] and CRT-Paillier [24].

Input: Training round R, model parameters MR− 1, dataset Di,quantization bit width r, blinding factors s
j

i􏽮 􏽯
j�1,2,...,|M0 |

, PRG, random
seed SR− 1, Paillier key pairs ((N, g1), λ), secret value gx

2
Output: Signcryption of the masked gradients Cipher

j

i

functionMODELTRAINING

Compute gradients Gi based on MR− 1 and Di

Send layer-wise gradients Max-Min values and sizes V
j
i , v

j
i , sj􏽮 􏽯

j�1,2,...,T
to the aggregation server

Clip Gi with corresponding threshold nαj􏽮 􏽯
j�1,2,...,T

(Advance Scaling) and quantize them into r bits
Batch the quantized gradients 􏽥Gi layer by layer into Wi � w1

i , w2
i , . . . , wL

i􏼈 􏼉 � Encode(􏽥Gi)

Blind Wi with s
j

i􏽮 􏽯
j�1,2,...,|M0 |

to compute 􏽥Wi � 􏽥w1
i , 􏽥w2

i , . . . , 􏽥wl
i􏽮 􏽯 � w1

i + s1i , w2
i + s2i , . . . , wL

i + sL
i􏼈 􏼉

Sign each blinded gradient 􏽥w
j
i ∈ 􏽥Wi with gx

2 , use the PRG to generate the synchronizing random number rR � SR � PRG(sR− 1),
compute the signcryption cipherj

i � g
􏽥w

j

i

i (σj

i rR)N modN2.
Send cipher

j
i􏽮 􏽯

j�1,2,...,T
to the aggregation server

end function

ALGORITHM 1: Model training phase of client i.

Input: Aggregated ciphertexts cipherj􏼈 􏼉j�1,2,...,L

Output: Updated Model MR

functionUPDATE
Decrypt cipherj

􏽮 􏽯
j�1,2,...,L

to get W � Wj􏼈 􏼉j�1,2,...,L � 􏽐 i � 1nw
j

i + s
j

i􏽮 􏽯
j�1,2,...,L

, compute 􏽧cipher
j

� cipherjg− Wi

i modN and
σj � (􏽧cipher

j
)N− 1 mod λr− nN

R modN � g
x 􏽐 i�1nw

j

i
mod λ

2 modN

Verify the integrity of the aggregated gradients by checking if the equation gxWj mod λ
2 modN ≡ σj holds. If not, terminate the

learning process.
Decode the aggregated gradients to get GR � 􏽐

n
i�1 Gi � Decode(W).

Update model with MR � MR− 1 − (η/n)GR.

end function

ALGORITHM 2: Update phase of client i.

6 Security and Communication Networks

5.1. Experimental Setup. Our evaluation experiments are
conducted on a Dell T7920 workstation with 1 Intel Xeon
Silver 4210R CPU and 32GB RAM.(e OS is Ubuntu 18.04.
We employ the FedML [26] in its standalone simulation
computing paradigms to build the baseline framework. In
both our and CRT-Paillier frameworks, the open-sourced
python-Paillier [27] is adopted as the Paillier HE imple-
mentation. In our experiments, according to VFL [25] and
CRT-Paillier [24], the gradients in their frameworks are of
32-bit length, while the gradients in our framework are
clipped and quantized into 16-bit length with the dACIQ

and Quantize function. (e Paillier key size in both our
framework and CRT-Paillier is set to 2048 bits, just as
recommended in NIST [28].

5.2. Discussion of Results. Accuracy: we compared the per-
formance of our framework with that of the original FL
framework (Figure 2). For FMNIST, CINIC-10, CIFAR-10,
and CIFAR-100, our framework can achieve an accuracy of
81.01%, 70.39%, 85.36%, and 65.60%, respectively, which is
very close to that of the original FL, which has an accuracy of

Table 2: Datasets and corresponding models.

Datasets Model structure Model parameters (#) Model size (MB)
CINIC-10 ResNet-56 591322 18.05
CIFAR-100 ResNet-56 591322 18.05
Federated EMNIST CNN 1206590 36.82
CIFAR-10 ResNet-18+ group normalization 11232612 342.79
We should note that though ResNet-18 has less layers than ResNet-56; because of the group normalization operation, it has more parameters than ResNet-56.

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

Aggregation Round

Original FL
Ours

0 20 40 60 80 100 120 140 160 180

(a)

Original FL
Ours

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 (%
)

Aggregation Round
0 20 40 60 80 100 120 140 160 180 200

(b)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ac
cu

ra
cy

 (%
)

Aggregation Round
0 20 40 60 80 100 120 140 160 180

Original FL
Ours

(c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 (%
)

Aggregation Round
0 20 40 60 80 100 120 140 160 180

Original FL
Ours

(d)

Figure 2: Comparison of performance of original FL and our framework. (a) Accuracy on FMNIST, (b) accuracy on CINIC-10, (c) accuracy
on CIFAR-10, and (d) accuracy on CIFAR-100.

Security and Communication Networks 7

80.99%, 70.49%, 85.81%, and 65.23%, respectively. (e re-
sults demonstrate that our framework can guarantee the
privacy of the learned model without compromising its
performance. In fact, our quantized training sometimes has
better results. Prior quantization work has observed a similar
phenomenon [29], where the stochasticity introduced by
quantization can reduce overfitting, similar to the function
of dropout layer [30].

Time cost, in Figure 3, we compared the time cost of our
framework with that of VFL and CRT-Paillier. In VFL, the
degree of the interpolation polynomials is set to m � 4 (VFL-
4) and m � 8 (VFL-8), respectively. It is known that the
security level and cost of VFL are higher with larger m. In
CRT-Paillier, because the plaintext in Paillier encryption
should be less than the modulus N, the maximum group size
is 60 to avoid overflow error. While the gradient in our
framework quantized into 16 bits, the maximum batch size is
120.

Figure 3(a) shows that the encryption cost per client of
all frameworks increases linearly with the amount of pa-
rameters. (e encryption costs of our framework are 9.06 s

for 2 × 105 parameters and 24.17 s for 11 × 105 parameters,
respectively. In addition, the encryption costs of CRT-
Paillier are 11.73 s and 35.55 s, VFL-8 are 33.83 s and
184.15 s, and VFL-4 are 12.19 s and 66.99 s. (ough both our
framework and CRT-Paillier employ Paillier encryption to
protect privacy, our framework needs fewer encryption
operations and takes less time because its batch size is larger.
For VFL, though the interpolation is very fast, the parameter
splitting costs are expensive. (us, our framework is more
efficient than VFL-8 and VFL-4.

Figure 3(b) presents the decryption cost of all frame-
works. (e decryption costs of our framework are 8.35 s for
2 × 105 parameters and 21.10 s for 11 × 105 parameters. (e
encryption costs of CRT-Paillier are 9.91 s and 43.21 s, VFL-8
are 2.22 s and 11.87 s, and VFL-4 are 0.91 s and 4.68 s. Be-
cause our framework and CRT-Paillier utilize the Paillier
scheme to protect privacy, which involves exponentiations
and modular multiplications with large integers, the de-
cryption costs of both our framework and CRT-Paillier are a
little higher than VFL. But our framework takes less time
than CRT-Paillier because of its larger batch size.

0
20
40
60
80

100
120
140
160
180
200

Ti
m

e (
s)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(a)

0
5

10
15
20
25
30
35
40
45

Ti
m

e (
s)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(b)

0
20
40
60
80

100
120
140
160
180
200

Ti
m

e (
s)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(c)

0

5

10

15

20

25

30

Ti
m

e (
s)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(d)

Figure 3: Comparison of time cost for VFL, CRT-Paillier, and our framework. (a) Encryption cost of a client, (b) decryption of a client, (c)
total cost of a client, and (d) Aggregation cost of the server.

8 Security and Communication Networks

Figure 3(c) displays the total time cost of a client. From
the figure we know that the total cost of a client of our
framework is less than both VFL and CRT-Paillier, and the
gap grows linearly with the number of parameters. We
should note that, as giant companies or organizations prefer
large deep learning models to boost their performance, our
framework is more suitable for large AI models.

For the server, the overhead is caused by secure ag-
gregation. Figure 3(d) shows the aggregation cost of the
server. Because of larger batching size, our framework needs
fewer sum operations on the ciphertexts. (us, our
framework is more efficient than CRT-Paillier and VFL for
the server.

Communication cost: we compared the communication
cost of our framework with that of VFL and CRT-Paillier in
Figure 4. Since we simulate different FL frameworks in the
standalone computing paradigms of FedML, we use the
ciphertext size exchanged between the server and clients as
the metric for communication cost. In VFL-4, each gradient
is randomly split into 4 parameters.(ough the authors keep
the number of parameters the same as the original model by
employing CRT to batch parameters, the size of the batched
results grows accordingly. (us, the ciphertext expansion
rate for VFL-4 is 4. Similarly, the ciphertext expansion factor
of VFL-8 is 8. In CRT-Paillier framework, every 60 gradients
are grouped together and then are encrypted to get a 2048 ×

2 bit-length ciphertext, the ciphertext expansion factor is
approximately 2048 × 260 × 32 ≈ 2.13. Similarly, the ci-
phertext expansion factor of our framework is approxi-
mately 2048 × 2120 × 32 ≈ 1.07. (erefore, our framework
is more communication efficient than VFL and CRT-Paillier.

6. Conclusion

In this paper, we have designed a preserving FL framework
for IoT based on the homomorphic signcryptionmechanism
we designed. In our framework, each client can aggregate the
gradients securely and verify the integrity of the aggregated
results. Besides, our framework can also resist the collusion

attacks between the server and at most n − 2 clients. Finally,
experiments on four benchmark datasets show that our
framework can protect the privacy and integrity of the
learned model while guaranteeing its performance, and our
framework is more efficient in computation and commu-
nication than existing similar frameworks. In future work,
we will try to design more flexible privacy preserving
framework that allows dynamic joining in and dropping out
of clients.

Data Availability

MNIST dataset is available at https://yann.lecun.com/exdb/
mnist/.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by Innovative Research Team in
Engineering University of PAP (KYTD201805) and Natural
Science Foundation of Shaanxi Province (2020JM-537).

References

[1] H. B. McMahan, E. Moore, D. Ramage, S. Hampson, and
B. A. y Arcas, “Communication-Efficient Learning of Deep
Networks from Decentralized Data,” 2017, https://arxiv.org/
abs/1602.05629.

[2] J. Konečný, H. B. McMahan, F. X. Yu, P. Richtárik,
A. T. Suresh, and D. Bacon, “Federated Learning: Strategies
for Improving Communication Efficiency,” 2017, https://
arxiv.org/abs/1610.05492.

[3] V. Perifanis, G. Drosatos, G. Stamatelatos, and
P. S. Efraimidis, “FedPOIRec: Privacy Preserving Federated
POI Recommendation with Social Influence,” 2021, https://
arxiv.org/abs/2112.11134.

0

5

10

15

20

25

30

35

Tr
af

fic
 (M

B)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(a)

0

50

100

150

200

250

300

350

Tr
af

fic
 (M

B)

Number of Parameters

VFL-4
VFL-8

CRT-Paillier
VCFL

×105

2 3 4 5 6 7 8 9 10 11

(b)

Figure 4: Comparison of communication cost of VFL, CRT-Paillier, and our framework. (a) Traffic of a client; (b) traffic of the server.

Security and Communication Networks 9

https://yann.lecun.com/exdb/mnist/
https://yann.lecun.com/exdb/mnist/
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1602.05629
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/1610.05492
https://arxiv.org/abs/2112.11134
https://arxiv.org/abs/2112.11134

[4] T. Yang, G. Andrew, H. Eichner et al., “Applied Federated
Learning: Improving Google Keyboard Query Suggestions,”
p. 02903, 2018, https://arxiv.org/abs/1812.02903.

[5] X. Wang, Y. Han, C. Wang, Q. Zhao, X. Chen, and M. Chen,
“In-edge AI: intelligentizing mobile edge computing, caching
and communication by federated learning,” IEEE Network,
vol. 33, no. 5, pp. 156–165, 2019.

[6] G. Szegedi, P. Kiss, and T. Horváth, Evolutionary Federated
Learning on EEG-Data 8, ITAT, 2019.

[7] C. Wang, C. Chen, Q. Pei, Z. Jiang, and S. Xu, “An infor-
mation centric in-network caching scheme for 5g-enabled
internet of connected vehicles,” IEEE Transactions on Mobile
Computing, vol. 1, p. 1, 2021.

[8] C. Chen, L. Liu, S. Wan, X. Hui, and Q. Pei, “Data dissem-
ination for industry 4.0 applications in internet of vehicles
based on short-term traffic prediction,” ACM Transactions on
Internet Technology, vol. 22, no. 1, pp. 1–18, 2022.

[9] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homomor-
phic encryption,” Technical Reports Series, vol. 715, 2017.

[10] R. Shokri, M. Stronati, C. Song, and V. Shmatikov, “Mem-
bership Inference Attacks against Machine Learning Models,”
2017, https://arxiv.org/abs/1610.05820.

[11] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang, and H. Qi,
“Beyond Inferring Class Representatives: User-Level Privacy
Leakage from Federated Learning,” 2018, https://arxiv.org/
abs/1812.00535.

[12] C. Liu, S. Chakraborty, and D. Verma, “Secure model fusion
for distributed learning using partial homomorphic encryp-
tion,” Policy-Based Autonomic Data Governance, vol. 11550,
pp. 154–179, 2019.

[13] C. Zhang, S. Li, J. Xia, W. Wang, F. Yan, and Y. Liu,
“BatchCrypt: Efficient Homomorphic Encryption for Cross-
Silo Federated Learning 15,” in Proceedings of the 2020
USENIX Conference on Usenix Annual Technical Conference,
pp. 493–506, U S A, July 2020.

[14] J. Ma, S.-A. Naas, S. Sigg, and X. Lyu, “Privacy-preserving
Federated Learning Based on Multi-Key Homomorphic En-
cryption,” 2021, https://arxiv.org/abs/2104.06824.

[15] P. Paillier, “Public-key cryptosystems based on composite
degree residuosity classes,” in Advances in Cryptology -
EUROCRYPT ’99, J. Stern, Ed., vol. 1592, pp. 223–238,
Springer Berlin Heidelberg, Berlin, Heidelberg, 1999.

[16] R. Shokri and V. Shmatikov, “Privacy-preserving deep
learning,” in Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pp. 1310–1321,
ACM, Denver Colorado USA, October 2015.

[17] R. C. Geyer, T. Klein, and M. Nabi, “Differentially Private
Federated Learning: A Client Level Perspective,” 2018, https://
arxiv.org/abs/1712.07557.

[18] K. Bonawitz, V. Ivanov, B. Kreuter et al., “Practical secure
aggregation for privacy-preserving machine learning,” in
Proceedings of the 2017 ACM SIGSAC Conference on Com-
puter and Communications Security, pp. 1175–1191, ACM,
Dallas Texas USA, October 2017.

[19] X. Ma, F. Zhang, X. Chen, and J. Shen, “Privacy preserving
multi-party computation delegation for deep learning in
cloud computing,” Information Sciences, vol. 459, pp. 103–
116, 2018.

[20] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate
and verifiably encrypted signatures from bilinear maps,” in
Lecture Notes in Computer Science, G. Goos, J. Hartmanis,
J. van Leeuwen, and E. Biham, Eds., vol. 2656, pp. 416–432,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2003.

[21] G. Xu, H. Li, S. Liu, K. Yang, and X. Lin, “VerifyNet: secure
and verifiable federated learning,” IEEE Transactions on In-
formation Forensics and Security, vol. 15, pp. 911–926, 2020.

[22] W. Zheng, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Helen:
maliciously secure coopetitive learning for linear models,”
2019 IEEE Symposium on Security and Privacy (SP), vol. 1,
pp. 724–738, 2019.

[23] I. Damgård, V. Pastro, N. Smart, and S. Zakarias, “Multiparty
computation from somewhat homomorphic encryption,” in
Lecture Notes in Computer Science, R. Safavi-Naini and
R. Canetti, Eds., vol. 7417, pp. 643–662, Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[24] X. Zhang, A. Fu, H. Wang, C. Zhou, and Z. Chen, “A privacy-
preserving and verifiable federated learning scheme,” in
Proceedings of the ICC 2020 - 2020 IEEE International Con-
ference on Communications (ICC), pp. 1–6, IEEE, Dublin,
Ireland, June 2020.

[25] A. Fu, X. Zhang, N. Xiong, Y. Gao, and H. Wang, “VFL: A
Verifiable Federated Learning with Privacy-Preserving for Big
Data in Industrial IoT,” IEEE Transactions on Industrial In-
formatics, vol. 18, no. 5, 2022.

[26] C. He, S. Li, J. So et al., FedML: A Research Library and
Benchmark for Federated Machine Learning, https://arxiv.org/
abs/2007.13518, 2020.

[27] DATA61, C. Python Paillier Library, https://github.com/
data61/python-paillier, 2013.

[28] E. Barker, L. Chen, A. Roginsky, A. Vassilev, R. Davis, and
S. Simon, Recommendation for pair-wise key establishment
using integer factorization cryptography, National Institute of
Standards and Technology, Gaithersburg, MD, 2019.

[29] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou,
“DoReFa-Net: Training Low Bitwidth Convolutional Neural
Networks with Low Bitwidth Gradients,” 2016, https://arxiv.
org/abs/1606.06160.

[30] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting 30,” 0e Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1929–1958, 2014.

10 Security and Communication Networks

https://arxiv.org/abs/1812.02903
https://arxiv.org/abs/1610.05820
https://arxiv.org/abs/1812.00535
https://arxiv.org/abs/1812.00535
https://arxiv.org/abs/2104.06824
https://arxiv.org/abs/1712.07557
https://arxiv.org/abs/1712.07557
https://arxiv.org/abs/2007.13518
https://arxiv.org/abs/2007.13518
https://github.com/data61/python-paillier
https://github.com/data61/python-paillier
https://arxiv.org/abs/1606.06160
https://arxiv.org/abs/1606.06160

