
Research Article
FGL_Droid: An Efficient Android Malware Detection Method
Based on Hybrid Analysis

Weiping Wang ,1 Congmin Ren ,1 Hong Song ,1 Shigeng Zhang ,1,2

and Pengfei Liu 1

1School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
2State Key Laboratory of Information Security, Institute of Information Engineering, Chinese Academy of Sciences,
Beijing 100093, China

Correspondence should be addressed to Hong Song; songhong@csu.edu.cn

Received 22 December 2021; Revised 3 March 2022; Accepted 14 March 2022; Published 28 April 2022

Academic Editor: Weizhi Meng

Copyright © 2022 Weiping Wang et al. (is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

With the popularity of Android intelligent terminals, malicious applications targeting Android platform are growing rapidly.
(erefore, efficient and accurate detection of Android malicious software becomes particularly important. Dynamic API call
sequences are widely used in Android malware detection because they can reflect the behaviours of applications accurately.
However, the raw dynamic API call sequences are very usually too long to be directly used, and most existing works just use a
truncated segment of the sequence or statistical features of the sequence to perform malware detection, which loses the execution
order information of applications and consequently results in high false alarm rate. In this work, we propose a method that
transforms the dynamic API call sequence into a function call graph, which retains most of the application execution order
information with significantly reduced sequence size. To compensate for the missed behaviour information during the trans-
formation, the advanced features of permission requests extracted from the application are utilized. We then propose FGL_Droid,
which fusions the transformed function call graph feature and the extracted permission request feature to perform accurate
malware detection. Experiments on benchmark dataset show that FGL_Droid achieves a high detection accuracy of 0.975 and a
high F-score of 0.978, which are better than the existing methods.

1. Introduction

To prevent the threats caused by Android malware in-
cluding financial loss to users, information leakage, and
system damage, an efficient and accurate detection
scheme is urgently needed. In recent years, Android
operating system has been growing at an alarming rate.
As of 2020, approximately 3 billion Android-based de-
vices were shipped, accounting for 80% of all mobile
operating systems [1]. (erefore, Android devices have
become a popular target for malware developers. In 2020,
Kaspersky mobile products and technologies detected
5,683,694 malicious installation packages, increasing 2.1
million from last year, 156,710 new mobile banking
Trojans, and 20,708 new mobile ransomware Trojans [2].
In order to protect the property and information security

of Android device users, it is urgent to provide an efficient
and accurate malware detection method.

A large number of companies and researchers have
conducted research on malware detection. (e mainstream
detection scheme mainly includes two categories: static
analysis [3–6] and dynamic analysis [7–13]. Static analysis
does not need to execute the application. It extracts features
from the APK file through reverse engineering, such as
Permissions [3], API calls [14], bytecodes, and other static
features [4], and then performs malicious detection based on
these features. However, with the advancement of tech-
nology, many malwares begin to use code obfuscation or
dynamic loading techniques to hide static features, which
leads static analysis schemes to be completely ineffective. On
the contrary, dynamic analysis needs to actually run the
program and collect information about its behaviour at

Hindawi
Security and Communication Networks
Volume 2022, Article ID 8398591, 11 pages
https://doi.org/10.1155/2022/8398591

mailto:songhong@csu.edu.cn
https://orcid.org/0000-0001-5255-5639
https://orcid.org/0000-0002-6201-223X
https://orcid.org/0000-0002-1677-425X
https://orcid.org/0000-0001-5351-7239
https://orcid.org/0000-0002-5154-3123
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8398591


running time [15]. By analysing the application’s behaviour,
dynamic analysis can achieve higher accuracy and robust-
ness than static analysis. In this paper, we focus on dynamic
analysis.

Dynamic API call sequence can describe the behaviour
information of the application, which contains all the op-
erations during application execution (e.g., accessing net-
work, sending SMS, etc.). It is an important data for
application behaviour analysis and has been applied by
many researchers in Android malicious judgment. However,
in order to trigger malicious behaviour completely, a huge
number of detective operations are required, which will
produce distinctly long API call sequences, reachingmillions
of levels. It is a great challenge to process the huge amount of
dynamic API call sequence. According to our statistics on
dynamic API call sequences, the average length of collected
dynamic API sequences is 1.698 million, and the number of
different API types is 25834.(ere are two problems in using
dynamic API call sequence as the feature for malicious
determination: (1)(e large amount of data makes it difficult
to find the behaviour information of the application. (2)
(ere are many kinds of features, which makes the model
easy to overfit.

Several related works have used dynamic API call
sequence to detect Android malware; the main challenge
is how to process dynamic API call sequence to reduce the
amount of data size. (e current solutions are broadly
categorized into two types: using statistical features of
dynamic API call sequence and truncating a fixed-length
subsequence of dynamic API call sequence. (e methods
of using statistical features of dynamic API call sequence
have an advantage that the computational overheads are
relatively low, but these methods cannot save the order
information of the APIs. (e methods of truncating a
fixed-length subsequence of dynamic API call sequence
can save the order information; however, these methods
will lose most of the sequence information, while the
computational overheads are extremely high.

In this paper, we propose a scheme to transform the
API call sequence into a function call graph. It can
convert a million levels of dynamic API call sequence into
a directed and edge-weighted graph structure with only a
few nodes, which can both preserve information about
the order of the API calls and greatly reduce the scale of
data. We first replace each API with its corresponding
function class to get the function call sequence and then
convert the function call sequence to function call graph.
Coarse-grained substitution loses part of semantic in-
formation. (erefore, we use advance feature Permission
to make up for this part of semantic information. We use
GCN (graph convolutional network) model to extract
application’s behaviour features and concatenate these
features with permission feature to construct the final
feature vector. (en we send the concatenated feature
into LR (logistic regression) model to obtain classification
result.

Our method can effectively solve the problem of ex-
cessive data volume of dynamic behaviour information. At
the same time, the detection accuracy is better compared to

the existing methods. (e main contributions of this paper
include the three following points:

(a) We developed a dynamic behaviour capture tool that
integrates APE [16], which can capture API calls
during application running

(b) We propose a method to convert a dynamic API call
sequence into a function call graph, which can save
the behaviour information of the application while
reducing the amount of data

(c) We design a fusion model FGL_Droid, which can
achieve higher detection accuracy

(e rest of the paper is organized as fallows: Section 2
discusses related work for Android malware detection using
dynamic detection scheme. Section 3 introduces the overall
structure of our framework. (e method of processing
dynamic API call sequence and the fusionmodel is explained
in Section 4. Section 5 shows the experimental results to
illustrate the performance of our framework. Section 6
concludes our research.

2. Related Work

Faced with such a huge amount of dynamic API call se-
quence, the existing research solutions can be classified into
the two following types: using statistical features of dynamic
API call sequence and truncating a fixed-length subsequence
of a dynamic API call sequence:

(a) Using statistical features of dynamic API call se-
quence: use statistical algorithms to select the APIs
that have a greater impact on malware detection
from the dynamic API call sequence, such as the
information gain algorithm [17] and the TF-IDF
(term frequency-inverse document frequency) al-
gorithm [18], and then use the selected API as feature
for malware detection

(b) Truncating a fixed-length subsequence of dynamic
API call sequence: intercept the first part of the entire
dynamic API call sequence, and then use deep
learning algorithms for malware detection [19]

2.1. Malware Detection Based on Statistical Features of API
Call Sequence. Uppal. et al. [20] extracted 3-gram vectors
from dynamic API call sequence and then used the odds
ratio to select the most important vectors. Finally, they
applied SVM model to complete malicious judgment.
Mohammed K. Alzaylaee et al. [17] used the tool DynaLog to
extract 178 behaviour features of applications execution
process and then used the information gain algorithm to
select the most important 120 from them. In order to in-
crease the accuracy of the model, the authors extracted
permission requested by the application and formed a 420-
dimensional feature vector. Finally, the authors used DNN
(deep neural network) to determine maliciousness. Fang
et al. [21] constructed a TFIT (trace frequency information
table) to save the number of API calls. After that, they
calculated the weight of each API call according to TFITand

2 Security and Communication Networks



selected the most important API calls. Finally, they fed the
selected API calls into XGBoost. Yong Qiao et al. [8] used a
frequent itemset mining algorithm to find frequent API calls
from the API call sequence and then used frequent item sets
as features for malware clustering. Singh et al. [22] utilized
Cuckoo Sandbox to capture the application’s dynamic API
call sequence and then checked whether a certain API
appeared as feature. Kim J. et al. [23] counted the frequency
of each API in dynamic API call sequence as feature. Af-
terward, the maliciousness of applications was judged by
comparing the difference in API call counts.

Merely using statistical features will lose the order in-
formation of API call sequence. However, the order of API
calls is very important; different orders can indicate different
behaviours. For example, getContentResolver().query() ⟶
socket.getOutputStrean().write() can complete the behaviour
of stealing user information, but, if conversely, there is no
such behaviour. Such statistical methods damage the ac-
curacy of malicious detection. At the same time, due to the
excessive number of APIs, there are too many feature di-
mensions, which can easily cause overfitting problem and
reduce the generalization ability of malicious detection.

2.2. Malware Detection Based on a Fixed-Length Subsequence
of Dynamic API Call Sequence. Xi Xiao et al. [9] extracted the
system call sequence during application execution and then
applied the LSTM model to extract the information in the
sequence. In order to adapt the length of the sequence to the
LSTM (Long Short-Term Memory) model, the authors trun-
cateed the sequence, limiting the length of the sequence to 500.
Wenqi Xie et al. [10] proposed an algorithm to segment the
system call sequence.(ey first cut the system call sequence into
fixed-length subsequences and then labeled each subsequence.
Finally, the LSTMmodel is used to determine themaliciousness
of each subsequence. Zhaoqi Zhang et al. [11] proposed a
method to map an API and its parameters to a fixed-length
vector. (e LSTMmodel is used to determine its maliciousness
based on the vector. Kolosnjaji et al. [12] proposed a scheme to
integrate CNN and LSTMmodels. (e method first uses CNN
(convolutional neural network) to learn a set of features and
then uses LSTM to determine the maliciousness. Pascanu et al.
[13] proposed a phased detection model, including feature
extraction stage and malicious detection stage. In the feature
extraction phase, they used the RNN (recurrent neural network)
to predict the next API call based on the previous sequence of
API calls. In the classification stage, RNN is frozen, and all API
outputs are converted into feature vectors bymaximumpooling
for classification.

(e LSTMmodel can learn the sequential relationship of
API calls. However, the best effect length of the LSTMmodel
is 200, so, in order to make API sequences suitable for the
LSTM model, many researchers intercept a part of API call
sequences. (e intercepted API call sequence cannot fully
represent the behaviour of the application at runtime, and
the malicious behaviour may be cut off, which greatly re-
duces the detection accuracy.

(erefore, we propose a method to convert API call
sequence into a function call graph, which not only retains

most of the application execution order information but also
significantly reduces sequence size. We will introduce our
schema in the next part.

Table 1 compares the existing state-of-the-art schemas
with the proposed work. (e schemas which use statistical
features of API call sequence will lose the order information
of API call sequence. (e schemas which truncate a fixed-
length subsequence of dynamic API call sequence will cause
huge computational overheads. (erefore, we propose a
method to convert API call sequence into a function call
graph, which not only preserves the complete sequence but
also preserves the order information of the sequence. We
will introduce our schema in the next part.

3. System Framework

(e overview of the FGL_Droid system is shown in Figure 1,
which is divided into four parts: AndroidGuard [24],
DyAPICapture, Graph Construct, and FGL_Droid model.

3.1. Static Feature Extraction. In the static feature extraction
stage, we use AndroGuard [24] to extract the static features
of each application and select the permission request list as
our static features. (e reasons mainly include the two
following aspects:

(a) (e distribution of Permissions in normal applica-
tions and malicious applications is significantly
different, which can reflect the malicious behaviour
of applications to a certain extent.

(b) For benchmark dataset, we collect a total of 135
kinds of Permissions. Using Permissions as static
features will not suffer from high-level dimensions.

3.2. Dynamic Feature Extraction. We have designed a dy-
namic behaviour capture system DyAPICapture to capture
the API calls during the running of the application. As
shown in Figure 2, DyAPICapture mainly includes two
modules: dynamic test module and API capture module. In
the dynamic test module, we adapt the model-based stateful
dynamic triggering scheme APE [16], which can achieve
higher function coverage with less detection actions. In the
API capture module, we use the functions provided by
JDWP (Java Debug Wire Protocol) [25] to obtain the API
calls during the execution of applications. At the same time,
in order to achieve higher functional coverage, the entire test
process will last for 5minutes, and the captured dynamic
API sequence length has reached millions level, with an
average length of 1.698 million. Moreover, some malicious
applications can detect the operating environment; if they
are found to be running in a virtual machine, they will hide
their malicious behaviour and avoid detection. (erefore,
our dynamic capture system can be deployed on real devices.

3.3. FunctionCallGraphConstruction. (e collected API call
sequence is too long. We propose algorithm 1, which
converts API call sequence into a directed and edge-
weighted function call graph. Function call graph contains

Security and Communication Networks 3



Table 1: Comparison of the proposed work with state-of-the-art android malware detection schemas.

Schema Features Classification
algorithm

Computational
overheads Capacity of saving information

[1]
Statistical features of API call sequence

SVM
Medium Low[2] DNN

[3] XGBoost
[7] A fixed-length subsequence of API call

sequence

LSTM
High Medium[10] CNN+LSTM

[11] RNN
Ours Function call graph +permission GCN+LR Low High

Graph Construct

Dynamic API Sequences

Permission
Benign/Malware

AndroidGuard

DyA
PIC

apture

getDeviceld()
Writev()

setPasskey()

sendBurstDtmf()
getItem()

handleMessage()

READ_CONTACTS
INSTALL_PACKAGES

READ_SMS

WRITE_CONTACTS
WRITE_SETTINGS

WAKE_LOCK

FGL_Droid

G
CN

Figure 1: Framework of FGL_Droid. It includes four parts: DyAPICapture: extract the dynamic API call sequence; AndroidGuard: extract
the Permission; Graph Construct: function call graph construction; and FGL_Droid: detection model.

DyAPICapture

JDWPAPE

Behaviour trigger API capture

APK

getDeviceld()
Writev()

setPasskey()

getItem()
handleMessage()

Figure 2: DyAPICapture consisting of two parts: behaviour trigger and API capturer.

4 Security and Communication Networks



26 vertices, each representing a function class in SUSI [26].
Each directed edge in function call graph represents a call
relationship, and the corresponding weight means the
number of call relationship. (erefore, the function call
graph can keep order information of the API call sequence.

3.4. Model Training. We design a fusion model FGL_Droid,
which can effectively mine applications behaviour pattern
from the function call graph and merge it with the Per-
mission feature. Once the function call graph is constructed,
we train our FGL_Droid model on this graph for malware
detection.(e details of the entire model are explained in the
Methodology chapter.

4. Methodology

4.1. Construction of the Function Graph. We propose a
method to transform the sequence of API calls into a
function call graph, which can save the order information of
API calls while reducing data size of dynamic API call se-
quence. (e method applies Algorithm 1 to construct a
graph G(V, E, W) by representing a unique function class at
vertex V and a call relationship by a weighted edge E. As
shown in Figure 3, Algorithm 1 mainly contains four steps:
API substitution, deredundancy, graph construct, and
normalization.

(1) API substitution: the algorithm first transfers the
original dynamic API call sequence into function class
sequence. Each API is replaced with the corre-
sponding function class in SUSI [21]. As shown in
Figure 3, the API call sequence [‘getDeviceId()’, ‘get-
PhoneNumber()’, ‘getCellLocation()’, ‘getSer-
ialNumber()’, ‘query()’, ‘sendMessage()’, ‘sendSms()’,
. . ., ‘getRawContactId()’, ‘getContactUri()’, ‘getAll-
ContractName()’, ‘getViewAt()’, ‘getUserPassword()’,
‘getDriverName’] will be converted into function call
sequence [‘UNIQUE_IDENTIFIER′, ‘UNIQUE_-
IDENTIFIER′, ‘LOCATION_INFORMATION′,
‘NETWORK_INFORMATION′, ‘FILE_
INFORMATION′, ‘ACCOUNT_INFORMATION′, ‘e-
mail’, ‘SMS_MMS′, . . ., ‘CONTACT_
INFORMATION′, ‘CONTACT_INFORMATION′,
‘CONTACT_INFORMATION′, ‘BROWSER_
INFORMATION′, ‘SYSTEM_SETTINGS′, ‘NFC’,
‘NFC’].

(2) Deredundancy: in order to reduce the length of
function call sequence, we only retain one of the
same function classes that appears continuously. (e
function classes call sequence will become
[‘UNIQUE_IDENTIFIER′,
‘LOCATION_INFORMATION′, ‘NETWORK_IN-
FORM-ATION′, ‘FILE_INFORMATION′,
‘ACCOUNT_INFORMATION′, ‘e-mail’,
‘SMS_MMS′, . . ., ‘CONTACT_INFORMATION′,
‘BROWSER_INFORMATION′, ‘SYSTEM_-
SETTINGS′, ‘NFC’].

(3) Graph construction: Algorithm 1 converts the exe-
cution sequence of function classes to function call
graph. For the two consecutive function classes
[‘UNIQUE_IDENTIFIER′, ‘LOCATION_INF-
ORMATION’] in the sequence, we create a directed
edge pointing from UNIQUE_IDEN-TIFIER to
LOCATION_INFORMATION. If this edge does not
exist in the graph, add this edge to the function call
graph; if this edge exists in the graph, increase the
weight of the edge by 1. We get the function call
graph as shown in Figure 2 through this step.

(4) Edge normalization: in order to reduce the impact
caused by different orders of magnitude of each edge,
the min_max normalization method was adopted to
map all the weights into a range between (0, 1). As
shown in Equation 1, W(i,j) represents normalized
weight of the edge, w(i,j) represents the number of
calls, MAXweight represents the maximum weight of
the edge in the figure, and MINweight represents the
minimumweight of the edge in the figure. Finally, we
obtain the directed weighted function call graph
F_GRAPH (V, E,W) originating from API sequence.
Each node of F_GRAPH represents a function class.
Each directed edge in F_GRAPH represents a call
relationship, and the corresponding weight means
the frequency of call relationship. (erefore, the
function call graph can keep sequence information of
the API call sequence.

W(i,j) �
w(i,j) − MINweight

MAXweight − MINweight
. (1)

4.2. Fusion Model of GCN and LR. Our model consists of
three steps: extracting dynamic behaviour feature, merging
dynamic behaviour feature and Permission, and malicious
judgment.

4.2.1. Extracting Dynamic Behaviour Feature. For function
call graph F_GRAPH (V, E, W) obtained by Algorithm 1, we
utilize graph neural network to extract application’s be-
haviour feature from function call graph. For each vertex in
the graph, the graph neural network can fuse the infor-
mation in adjacent nodes and edges and keep the call in-
formation between nodes. (e information fusion mode is

H
(l+1)

� σ D
− 1/2 A D

−1/2
H

l
W

l
 , (2)

where A represents the sum of the adjacency matrix of the
graph and the identity matrix, so that the information of its
own nodes can be kept in the process of information fusion.
D is the degree matrix of A, H is the characteristic of each
layer, and σ is the activation function.

(rough our observation, a malicious behaviour can be
accomplished only by calling 2-3 function classes. For ex-
ample, information leakage malware usually only needs to

Security and Communication Networks 5



obtain account information (ACCOUNT_INFORMATION)
and then send it to the server through network (NET-
WORK); malicious download malware first needs to obtain
the memory status of the phone (UNIQUE_IDENTIFIER)

and then attach the information to the designated server
(NETWORK) and finally download the malicious applica-
tion to the designated memory through the network and
decompress and install it (FILE). (erefore, in our GCN

getDeviceld() UNIQUE_IDENTIFIER UNIQUE_IDENTIFIER

UNIQUE_IDENTIFIER

LOCATION_INFORMATION LOCATION_INFORMATION

NETWORK_INFORMATION NETWORK_INFORMATION

ACCOUNT_INFORMATION ACCOUNT_INFORMATION

CONTACT_INFORMATION CONTACT_INFORMATION

CONTACT_INFORMATION

CONTACT_INFORMATION

BROWSER_INFORMATION BROWSER_INFORMATION

SYSTEM_SETTINGS SYSTEM_SETTINGS

NFC

NFC

NFC

EMAIL EMAIL

SMS_MMS SMS_MMS

... ...

FILE_INFORMATION FILE_INFORMATION

API to Function Class De_redundancy Graph Construct

158

49

893 128

78

96

20
3

getphoneNumber()

getSerialNumber()

getContentUri()

query()

sendMessage()

sendSms()

getRawContactld()

getContactUri()

getAllContactName()

getViewAt()

getUserPassword()

getUid()

getDriverName()

...

getCellLocation()

Figure 3: (e process of converting dynamic API call sequence into function call graph. (e figure only shows the first three steps.

(1) Input: Dynamic API Call Sequence(S) and SUSI’s API Category(D)
(2) Output: Function Call Graph F_Graph (V, E, W)

(3) Initially: let V � (F1, F2, F3, . . ., F26) be all the function category in D and E←∅
(i) //Step 1: replace the API with corresponding function class
(4) for API ∈ S do
(5) Change API to its class in D
(6) let F(f1, f2, f3, . . . fn) be the Function call Sequence
(7) end for
(ii) //Step 2: delete adjacent duplicate function classes
(8) while i< length(F) do
(9) if F[i]� F[i− 1] then
(10) delete F[i]
(11) end if
(12) end while
(iii) //Step 3: convert the execution sequence of function classes to function call graph
(13) while i< length(F) do
(14) if (F[i], F[i + 1]) ∉ E then
(15) Add an edge (F[i], F[i + 1]) to E
(16) W(F[i], F[i + 1]) � 1
(17) else
(18) W(F[i], F[i + 1])+ � 1
(19) end if
(20) end while
(iv) //Step 4: normalization
(21) maxWeight ← max(W), minWeight ← min (W)

(22) for w ∈W:
(23) w←(w − minWeight)/(maxWeight − minWeight)
(24) end for
(25) Return F_Graph (V, E, W)

ALGORITHM 1: Graph construction algorithm. Our algorithm includes four steps, which are (1) replace the API with corresponding function
class, (2) delete adjacent duplicate function classes, (3) convert the execution sequence of function classes to function call graph, and (4) use
max-min algorithm method for normalization.

6 Security and Communication Networks



model, we use a double-layer GCN network. Each node
merges the information of the nodes that are within two
hops from the node, which can completely cover all the
malicious behaviours.

4.2.2. Merging Dynamic Behaviour Feature. In order to
reduce the amount of data and avoid the overfitting phe-
nomenon caused by excessive feature dimension, we
replaced API with the corresponding SUSI’s function class to
reduce the data dimension. Such coarse-grained method will
inevitably lose some detailed information, resulting in a
decrease in detection accuracy. We find Permission can be
used to make up for the lost detail information. For example,
sendTextMessage() and notifySendFailed() are assigned to
the same functional class, losing the differences in their
behaviours. However, sendTextMessage() requires Permis-
sion “SEND_SMS,” but notifySendFailed() does not, so we
can make up for lost details by introducing Permission. Due
to the fact that the Permission information is an advanced
feature, there is no need to apply complex deep neural
network on this feature. In order to efficiently utilize both
function call graph and Permission, a fusion model of GCN
and LR is proposed, as shown in Figure 4. For complex graph
data, we use double-layer GCN to extract the application
behaviour information from the graph. (en apply Aver-
age_pooling and Max_pooling operations on each node and
concatenate the two results together as the final graph
representation Vector_Graph with length of 1150. We
combine Vector_Graph with Permission features as
Vector_mix.

4.2.3. Malicious Judgment. After getting the Vector_mix, we
use a dense layer with 128 neural units to reduce the di-
mension of the intermediate vector to 128. A ReLU acti-
vation is adopted in this dense layer. (en we use a dropout
layer with a rate of 0.6 to reduce overfitting. Finally, we use a
full connection layer with an output dimension of 1 to obtain
themalware probabilities.(e binary cross-entropy function
is adopted as our loss function, which can characterize the
difference between the true sample label and the predicted
probability. (e loss function is

Loss � y logy +(1 − y)log(1 − y), (3)

where y represents the true label and y represents the
predicted label.

In addition, the optimization method we take is Adam,
and the learning rate is 0.0005.

5. Results and Discussion

5.1. Datasets and Experimental Environment. (e bench-
mark dataset used in this paper is shown in Table 2, in-
cluding 4217 normal applications downloaded from the
Google Play Store and 3950 malicious applications collected
from Andro_dumpsys Project, which includes 13 malware
families.

(e configuration of the experimental equipment is
shown in Table 3.

5.2. Effectiveness of Translating Dynamic APIs into Graph.
To evaluate the effectiveness of translating dynamic APIs
into function call graph, we measured the accuracies of the
other two mainstream process methods: using the statistical
features of dynamic API call sequences and intercepting a
fix_length subsequence of the dynamic API call sequence:

(a) SF: using the statistical features of dynamic API call
sequence. We count the number of occurrences of an
API in dynamic API call sequence and then use DNN
(deep neural network) to detect the maliciousness of
the application. What we use is a three-layer DNN
with 4500, 500, and 1 neural unit, respectively, and
the activation function is ReLU. During the training
process, we choose the learning rate of 0.003, the
optimizer is the Adam optimizer, and the loss
function is the cross-entropy loss function.

(b) FLS: intercepting a fix_length subsequence of the
dynamic API call sequence. We use the first 1000
APIs of dynamic API call sequences and then use
LSTM (Long Short-Term Memory) network to de-
tect malware. What we use is a single-layer LSTM
network, and the training process is consistent with
the above parameters.

(e results are shown in Table 4. Significantly, our
process method of translating dynamic APIs into function
call graph is superior to the other two processing methods in
four evaluation indicators. As for the metric MTTD (mean
time to detect), since we transformed the original sequence
into a graph with only 26 vectors, our schema also out-
performs the other two.

In the process of the experiment, we find that there is
obvious overfitting phenomenon in schemes which use
statistical features of dynamic API call sequences. On the
contrary, our method does not have this problem.We record
the change of loss value in the training process of using
statistical features and Ours. As shown in Figure 5, we can
clearly see that loss has been decreasing on the training set,
but, on the test set, there has been a large increase after a
small decrease. Obviously, there is an overfitting phenom-
enon when we use the statistical features of dynamic API call
sequences to judge malicious.

Using the frequency of each API that appears in dynamic
API call sequence as features will cause the data dimension
to be too high. Google officially provides 25834 APIs, so the
dimension of the feature is 25834. In some papers, they not
only use API but also include Permissions and opcodes. (e
final feature dimension can reach tens of thousands of di-
mensions. (e feature dimension is too high, so it is easy to
suffer from overfitting. Our processing method converts the
API call sequence into a graph with only 26 nodes, thus
reducing the data dimension and avoiding the occurrence of
overfitting.

5.3. Effect of the Layer of GCN. In this part, we verify the
influence of different layers of GCN on the detection result.
We conduct experiment under different layers of GCN from
1 to 5. (e results are shown in Table 5. (e best detection

Security and Communication Networks 7



performance is achieved when there are 2 layers. For two-
layer GCN, each node merges the information of the nodes
that are within two hops from the node, which can com-
pletely cover all the malicious behaviours. For example,
information leakage malware usually only needs to obtain
account information (ACCOUNT_INFORMATION) and
then send it to the server through network (NETWOR).
When the layer of GCN is greater than 2, the representation
of each node will tend to homogenize, which decreases the
accuracy of detection.

5.4. Effectiveness of Normalizing the Edges of Function Call
Graph. Android malware usually hides malicious code in
normal code, andmost of the dynamic API call sequences we
extracted are normal call relationships.(erefore, the weight
of the normal call relationship in the function call graph
obtained from the dynamic API call sequence transforma-
tion is much larger than the malicious call relationship,
which has a greater impact on the final judgment result. In
order to reduce misjudgment caused by the large difference
of edge weights, we normalized the edges.

To show the effect of normalizing the edges of the
function call graph, we added experiments to verify the
impact of edge normalization on the proposed scheme. (e
WW is a weighted graph without normalization, and WNW
is a weighted graph with normalization. As shown in Table 6,
the detection accuracy of WNW is significantly superior
than the other method, reaching 0.975.

5.5. Effectiveness of the Integration Model. Due to the fact
that the method of transforming dynamic API call sequences
into function call graph loses some details, we propose a way
to make up for the loss of details by merging the function call
graph and Permission. Asmentioned in the previous section,
both sendTextMessage() and notifySendFailed() are assigned
to the same functional class “SMS_MMS,” losing the dif-
ferences in their behaviours. However, sendTextMessage()
requires Permission “SEND_SMS,” but notifySendFailed()
does not, so we can make up for lost details by introducing
Permission. In order to evaluate the effectiveness of fusion
features, we conduct the three following groups of
experiments:

(a) Permission: use Permission only for maliciousness
determination

(b) Function call graph: use only the function call graph
for maliciousness determination

(c) Fusion feature: use fusion information to determine
maliciousness

Table 7 shows the experimental results. It can be seen
from the experimental results that our scheme is signifi-
cantly better than only using Permission or function call
graph, which indicates that our fusion scheme is indeed
effective in the determination of maliciousness.

Table 2: Summary of the dataset.

Dataset Number Source
Malware 3950 Andro_dumpsys
Benign 4219 Google Play Store

Table 3: Experiment environment.

Environment Configuration
Operating system Android 6.0.1
Phone model LG Nexus 5

Function 1

Function G
raph

Function 6

Function 5

Function 4Function 3

Function 2

Function 1
Function 6

Function 5

Perm
ission

Pooling

G
CN

Function 4Function 3

Function 2

Figure 4: Fusion model of GCN and LR. Use GCN to extract the application behaviour pattern from the function call graph and then splice
it with the Permission feature, and then use the LR model for malware detection.

8 Security and Communication Networks



5.6. Model Evaluation. In order to study the performance
improvement of FGL_Droid model, we compare the state-
of-the-art scheme of malicious detection using dynamic API
call sequences, which mainly includes two ways: using
statistical features of API call sequences or intercepting the
API call sequence to a certain length.

Table 8 shows the results of the comparative experiment.
Our scheme is significantly better than other methods. (e
precision of FGL_Droid in the test set is 0.975, and the
F-Measure is 0.978.

For the method of using the statistical features of the
dynamic API call sequence [5, 17, 22], they lose the sequence

Table 5: Results under different numbers of GCN layers.

Layer ACC Precision Recall F1
1 0.957 0.963 0.940 0.951
2 0.975 0.979 0.976 0.978
3 0.968 0.977 0.966 0.972
4 0.954 0.969 0.954 0.961
5 0.953 0.962 0.934 0.948

Table 6: (e performance comparison with other proposed systems.

Method ACC Precision Recall F1
FCG_WW 0.713 0.653 0.799 0.719
FCG_WNW 0.975 0.979 0.976 0.978
WW: function call graph with weights; WNW: function call graph with normalization weights.

40

35

30

25

20Lo
ss

15

10

5

0

0

Train dataset
Test dataset

20 40 60 80 100

(a)

20.0

17.5

15.0

12.5

10.0Lo
ss

7.5

5.0

2.5

0

Train dataset
Test dataset

20 40 60 80 100

(b)

Figure 5: (e change of loss value during model training and testing using different API call sequence processing methods. (a) Using
statistical features of API call sequence. (b) Ours: using function call graph.

Table 4: Effectiveness of translating dynamic APIs into graph.

Process method Approach ACC Precision Recall F1 MTTD (ms)
SF DNN 0.925 0.933 0.933 0.933 0.208
FLS LSTM 0.702 0.952 0.662 0.781 1.406
FCG+Permission GCN+LR 0.975 0.979 0.976 0.978 0.141
SF: statistical features of dynamic API call sequence; FLS: fix_length subsequence of the dynamic API call sequence; FCG: function call graph.

Table 7: Evaluating the effectiveness of the integration model.

Feature ACC Precision Recall F1
Permission 0.748 0.665 0.999 0.799
Function call graph 0.920 0.904 0.906 0.930
Fusion feature 0.975 0.979 0.976 0.978

Security and Communication Networks 9



information of the API call sequence. For the method of
intercepting a part of dynamic API call sequence [6, 9, 12]
may lose malicious behaviour, our method not only pre-
serves the complete sequence but also preserves the order of
the sequence. (erefore, our method obtains better detec-
tion accuracy compared to other methods.

6. Conclusion

In this paper, we propose a new framework for detecting
Android malicious applications. First, we transform the
multimillion-length dynamic API call sequence into a di-
rected and edge-weighted function call graph with only 26
nodes, which can greatly reduce the amount of data, while
preserving the order information of dynamic API call se-
quence. (en we use a double-layer GCN network to extract
the behaviour information of the application from the
heterogeneous function call graph and concatenate the re-
sults with the advanced features Permission. Finally, we feed
the results into an LR model for malicious detection. (e
experimental results show that the proposed method of
transforming API call sequence into a graph can significantly
improve the time efficiency of detection, while the loss of
precision is very small. We combined the two types of in-
formation through the fusion model, which was significantly
better than other baseline models.

Data Availability

(e data used to support the findings of this study are in-
cluded within the article. (e data presented in this study
will be available upon request.

Conflicts of Interest

(e authors declare that they have no conflicts of interest.

Acknowledgments

(is work was supported by the National Natural Science
Foundation of China under Grant nos. 61672543 and
61772559.

References

[1] C. Secutiry, “Cyber secutiry report,” 2021, https://www.ntsc.
org/assets/pdfs/cyber-security-report-2020.pdf%20.

[2] Kaspersky, “Mobile malware evolution 2020,” 2021, https://
securelist.com/mobile-malware-evolution-2020/101029/.

[3] A. Arora, S. K. Peddoju, and M. Conti, “Permpair: android
malware detection using permission pairs,” IEEE Transactions
on Information Forensics and Security, vol. 15, pp. 1968–1982,
2019.

[4] T. G. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im, “A
multimodal deep learning method for android malware de-
tection using various features,” IEEE Transactions on Infor-
mation Forensics and Security, vol. 14, pp. 773–788, 2018.

[5] Z. Yuan, Y. Lu, and Y. Xue, “Droiddetector: android malware
characterization and detection using deep learning,” Tsinghua
Science and Technology, vol. 21, no. 1, pp. 114–123, 2016.

[6] R. Agrawal, J. W. Stokes, M. Marinescu, and K. Selvaraj,
“Neural sequential malware detection with parameters,” in
Proceedings of the 2018 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE,
Calgary, AB, Canada, April 2018.

[7] M. Schofield, G. Alicioglu, R. Binaco et al., “Convolutional
neural network for malware classification based on API call
sequence,” in Proceedings of the 2021 the 14th International
Conference on Network Security & Applications, Computer
Science & Information Technology (CS & IT), Zurich,
Switzerland, January 2021.

[8] Y. Qiao, Y. Yang, L. Ji, and J. He, “Analyzing malware by
abstracting the frequent itemsets in API call sequences,” in
Proceedings of the 2013 12th IEEE International Conference on
Trust, Security and Privacy in Computing and
Communications, IEEE, Melbourne, VIC, Australia, July 2013.

[9] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah,
“Android malware detection based on system call sequences
and LSTM,”Multimedia Tools and Applications, vol. 78, no. 4,
pp. 3979–3999, 2019.

[10] W. Xie, S. Xu, S. Zou, and J. Xi, “A system-call behavior
language system for malware detection using a sensitivity-
based LSTM model,” in Proceedings of the 2020 3rd Inter-
national Conference on Computer Science and Software
Engineering, Beijing, China, May 2020.

[11] Z. Zhang, P. Qi, and W. Wang, “Dynamic malware analysis
with feature engineering and feature learning,” in Proceedings
of the AAAI Conference on Artificial Intelligence, NY, USA,
February 2020.

[12] B. Kolosnjaji, A. Zarras, G. Webster, and C. Eckert, “Deep
learning for classification of malware system call sequences,”
in Proceedings of the Australasian Joint Conference on Arti-
ficial Intelligence, Springer, Hobart, TAS, Australia, December
2016.

[13] R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and
A. (omas, “Malware classification with recurrent networks,”
in Proceedings of the 2015 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), IEEE, South
Brisbane, QLD, Australia, April 2015.

[14] W. Wang, J. Wei, S. Zhang, and X. Luo, “LSCDroid: malware
detection based on local sensitive API invocation sequences,”
IEEE Transactions on Reliability, vol. 69, no. 1, pp. 174–187,
2019.

[15] Y. Qin, W. Wang, S. Zhang, and K. Chen, “An exploit kits
detection approach based on HTTP message graph,” IEEE
Transactions on Information Forensics and Security, vol. 16,
pp. 3387–3400, 2021.

[16] T. Gu, C. Sun, X. Ma et al., “Practical GUI testing of Android
applications via model abstraction and refinement,” in Pro-
ceedings of the IEEE/ACM 41st International Conference on

Table 8: (e performance comparison with other proposed
systems.

Approach ACC Precision Recall F1
Mohammed K. Alzaylaee [17] 0.950 0.941 0.978 0.959
Jagsir Singh [22] 0.855 0.769 0.949 0.849
Zhenlong Yuan [5] 0.966 0.966 0.966 0.966
Xi Xiao [9] 0.923 0.939 0.905 0.922
Bojan Kolosnjaji [12] 0.894 0.856 0.894 —
Rakshit Agrawal [6] 0.954 0.963 0.951 —
Ours 0.975 0.979 0.976 0.978

10 Security and Communication Networks

https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf%20
https://www.ntsc.org/assets/pdfs/cyber-security-report-2020.pdf%20
https://securelist.com/mobile-malware-evolution-2020/101029/
https://securelist.com/mobile-malware-evolution-2020/101029/


Software Engineering (ICSE), IEEE, Montreal, QC, Canada,
May 2019.

[17] M. K. Alzaylaee, S. Y. Yerima, and S. Sezer, “DL-Droid: deep
learning based android malware detection using real devices,”
Computers & Security, vol. 89, Article ID 101663, 2020.

[18] M. Ali, S. Shiaeles, G. Bendiab, and B. Ghita, “MALGRA:
machine learning and N-grammalware feature extraction and
detection system,” Electronics, vol. 9, no. 11, p. 1777, 2020.

[19] S. Jha, D. Prashar, H. V. Long, and D. Taniar, “Recurrent
neural network for detecting malware,”Computers & Security,
vol. 99, Article ID 102037, 2020.

[20] D. Uppal, R. Sinha, V. Mehra, and V. Jain, “Malware detection
and classification based on extraction of API sequences,” in
Proceedings of the 2014 International Conference on Advances
in Computing, Communications and Informatics (ICACCI),
IEEE, Delhi, India, September 2014.

[21] Y. Fang, B. Yu, Y. Tang et al., “A new malware classification
approach based on malware dynamic analysis,” Australasian
Conference on Information Security and Privacy, Springer,
Cham, 2017.

[22] J. Singh and J. Singh, “Assessment of supervised machine
learning algorithms using dynamic API calls for malware
detection,” International Journal of Computers and Applica-
tions, vol. 44, no. 3, pp. 270–277, 2022.

[23] J. Kim, S. Lee, J. M. Youn, and H. Choi, “A study of simple
classification of malware based on the dynamic api call
counts,” in Proceedings of the Advances in Computer Science
and Ubiquitous Computing, pp. 944–949, Bangkok, (ailand,
December 2016.

[24] androguard, “reverse engineering, malware and goodware
analysis of android applications,” 2020, https://github.com/
androguard/androguard/.

[25] oracle. Java, “Debug wire protocol,” 2020, https://docs.oracle.
com/javase/8/docs/technotes/guides/jpda/jdwpspec.html.

[26] S. Arzt, S. Rasthofer, and E. Bodden, “Susi: A Tool for the Fully
Automated Classification and Categorization of Android
Sources and Sinks,” Rep. TUDCS-2013-0114, University of
Darmstadt, Darmstadt, Germany, 2013.

Security and Communication Networks 11

https://github.com/androguard/androguard/
https://github.com/androguard/androguard/
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwpspec.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/jdwpspec.html

