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In parallel with the rapid adoption of deep learning to multimedia data analysis, there has been growing awareness and concerns
about data security and privacy. (e recent advancement of federated learning enables many network clients to collaboratively
train a model under the orchestration of a central server while preserving clients’ privacy. However, the standard assumption of
independent and identical distribution (IID) may be broken under the federated learning because data label preferences may vary
across clients. Recent efforts address this issue either by adapting a strong global model for each local model, respectively, or by
training individual local models for similar clients together. However, both strategies degrade in highly non-IID scenarios. (is
work introduces a novel method, deep cooperative learning (DCL), to address this problem. It leverages the reciprocal structure
between deep learning tasks in different clients to obtain effective feedback signals to enhance the learning process of personalized
local models. To the best of our knowledge, this is the first time the non-IID is addressed under the principle of task interactions.
We demonstrated the effectiveness of DCL on the two tasks of medical multimedia data analysis.(e results show that our method
presents a significant performance improvement compared with the standard federated learning method. In conclusion, this work
developed a method for addressing non-IID problems in deep-learning-based privacy preservation learning. It allows the highly
non-IID data to be used to improve the local model performance.

1. Introduction

In recent times, with the widely available medical imaging and
computing devices, convolutional neural networks (CNNs) [1]
have proven to be powerful tools for medical image segmen-
tation task [2–6] and registration task [7, 8]. Segmentation is
considered themost essential medical image process as it divides
an image into the regions of interest based on anatomical
structures or pathological tumors.(e registration is the process
of identifying a spatial transformation that maps two imaging
modalities, such as CT (computed tomography) and MRI
(magnetic resonance imaging), to common coordination such
that corresponding anatomical structures are optimally aligned.
(e resulting pixelwise correspondence is fundamental for
multimodality image analysis applications. Typically, training a
CNN model requires patient scans to be transferred to a

centralized data server where comprehensive analyses could be
performed by using the parallel computing ability of the center.
Given the increasing volumes of imaging data, the massive data
collection and processing may be infeasible in a realistic scene
because of the high throughput demands and the growing data
privacy concerns. Federated learning [9] trains a global model
collaboratively among a set of hospitals under the orchestration
of a central server, without sharing their private raw data, so that
a global model such as CNN-based segmentation can achieve
better training performance than individually working alone.
Also, since the data never leave the owner, the concerns about
disclosing sensitive patient privacy and legal regulations are
mitigated.

While federated learning works well on independent and
identically distributed (IID) data, it experiences perfor-
mance degradation on non-IID data [10, 11]. (at is, the
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data distribution of individual hospitals may be totally
different from each other. (e heterogeneous data distri-
butions prevent the global model from convergence because
of the conflicting updating directions that these distributions
support. Unfortunately, non-IID happens often in real-
world applications [12, 13]. For example, consider the cases
of image segmentation, where there are two hospitals with
different label preferences, as illustrated in Figure 1. (e two
hospitals annotate different labels for the temporal lobe due
to individuals’ preferences, although the underlying CTscan
is the same. Global model aggregation becomes extremely
hard in this case since a correct prediction for hospital 1 is
incorrect for hospital 2. Having a single global model is
insufficient for this case. It is more appropriate to train a
personalized model for each hospital.

Recent efforts to address the non-IID issue can be
classified into two strategies. (e first strategy attempts to
personalize a trained global model for each hospital with
different label preferences. Personalization techniques for
this category are classified into data-based and model-based
approaches. Data-based approaches seek to reduce the local
distribution divergences by balancing the distributions with
a small amount of public [14, 15] or synthetic [16] data.
(ese methods generally need to modify the local data
distributions, which will disturb the local label bias, and
thereby are not suited for our case. Instead of changing data,
the model-based approaches learn a general global model for
future personalization in individual hospitals by domain
adaption learning that reduces the domain discrepancy
between the global and local models [17–20] or meta-
learning that enables the global model to adapt the private
data quickly and effectively [21–24]. However, these
methods presume the accessibility of a public proxy dataset
that a global model will train on, which is unavailable in our
case. In contrast to the first strategy that trains a single global
model, the second strategy trains personalized models in-
dividually. Personalization techniques are classified into
architecture-based and similarity-based approaches. (e
former achieves personalization by decoupling the local
private model parameters from the shared global parameters
[25], while the latter improves personalized model perfor-
mance by enforcing stronger pairwise collaboration among
hospitals with similar data distributions [26–28]. Both
methods exploit pairwise data similarities between hospitals
for improving local model performance, but other pairwise
relations, such as the reciprocal structure between tasks,
remain unexplored in current works.

We propose a new non-IID federated learning paradigm,
deep cooperative learning (DCL), which leverages the re-
ciprocal structure between federated learning tasks to obtain
effective feedback signals to enhance the learning process of
personalized models. We use the medical image segmen-
tation and registration tasks with inherent complementary
structures to build the cooperative learning loop. (e
principle of DCL is simple. Consider two hospitals tasked
with the two tasks, respectively. If the two task models work
well, the segmentation results, i.e., anatomical structures,

could be combined with the input of the registration model
to boost its performance since the extra anatomical infor-
mation helps the registration model find the right alignment
of the anatomies. Similarly, since some anatomies are only
visible on MRI, the aligned MRI produced from the regis-
tration model could be combined with CT to provide extra
modality for the segmentation model. More importantly,
DCL shares the models rather than model outputs among
hospitals during the cooperative training loop, thereby
achieving personalization and preserving data privacy
simultaneously.

2. Methods

(e deep cooperative learning consists of two steps. First, a
reward mechanism is designed to promote mutual benefits
between two tasks from different hospitals. (e gain pro-
duced by one task to another is regarded as reward and fed
back to the task model for adjusting its subsequent behavior
for better performance. (e non-IID labels are shared in this
way among hospitals to share task experience and improve
the model generalization. Second, a cooperative training
mechanism between task models is created which treats
individual model as a parameterized agent to maximize its
long-term reward. Below, we provide detailed explanations
for the two steps.

2.1. Reward. We design the reward mechanism via the
deep discriminator networks. Let c and m be unlabeled
CT and MRI images, respectively, and Reg(.) and Seg(.)

be trained registration and segmentation networks/
models, respectively. (e circulation between task
models can be summarized as follows (see Figure 2).
Reg(c, m) registers CTand MRI. Seg(Reg(c, m)) segments
the output of registration model. Seg(c) and Seg(m)

segment CT and MRI, respectively, and then
Reg(Seg(c), Seg(m)) registers the results of segmentation
models. Suppose Preg(.) and Pseg(.) are discriminator
networks after the adversarial training measuring the
confidence of the outputs of the segmentation and
registration networks. We define reward 1 as

Figure 1: Label (temporal lobe) preferences of two hospitals in-
volved in federated learning.
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r1 � log Preg(Reg(Seg(c), Seg(m))) − log Preg(Reg(c, m))  , (1)

where the subtraction measures the difference between di-
rect registration and the segmentation-then-registration, i.e.,

the promotion derived from the segmentation results.
Similarly, we define reward 2 as

r2 � log Pseg(Seg(Reg(c, m)))  −
1
2

log Pseg(Seg(c))  + log PsegSeg(m)  . (2)

to measure the difference between direct segmentation and
the registration-then-segmentation, i.e., the promotion de-
rived from the registration results.

2.2. Cooperative Training. With the defined rewards 1 and 2,
we next design the cooperative training mechanism. (e
segmentation and registration networks are treated as
parametric representations of the policy and we use a policy
gradient algorithm [29] to update these parameters alter-
natively through federated learning to achieve cooperative
learning. If a large or positive reward is observed after
performing an action (a parameter update), its gradient is
added to the parameters of the current policy function to
increase the probability of performing this action at this
state. On the contrary, if a small or negative reward is
observed after performing an action, its gradient is sub-
tracted from the parameters of the current policy function to
decrease the probability of performing this kind of action
under this state. Formally, letting the parameters of seg-
mentation [2] and registration networks be θreg and θseg,
respectively, and the number samples of a mini-batch be K,
then the stochastic gradient can be written as

∇θsegE r1  � 
K

K�1
r1k,

∇θregE r2  � 
K

K�1
r2k,

(3)

where the parameters θreg and θreg could be updated
according to the policy gradient. (e cooperative training
algorithm could be summarized as Algorithm 1 in Figure 3.

2.3. Implementation Details. We use the U-Net structure
[30] for the segmentation network as illustrated in Figure 4.
U-Net is considered one of the standard CNN archi-
tectures for image segmentation. (e unique skip-con-
nection layers of U-Net can capture the image features at
multiple scales while avoiding the loss of the high-fre-
quency details. We further improve the performance of
U-Net with two modifications. First, the squeeze-and-
excitation block is introduced to adaptively extract image
features after each convolution in the U-Net encoder.
Second, to avoid the resolution degradation caused by
pooling and downsampling, the last pooling layer and
downsampling layer of the network are changed to
Atrous Spatial Pyramid Pooling (ASPP) [31] block which
uses different perceptual field sizes around a single pixel
and fuses the convolution results to detect small targets
at multiple resolutions.

We use a two-stream regression network for the
registration network as illustrated in Figure 5. Each
stream takes an imaging modality as input and outputs
its feature map. (e subsequent regression layers predict
the shifts between two images based on their feature
maps. We further use the attention mechanism [32, 33]
that mimics human attention improving its performance.

Reg(Seg(c),Seg(m))
Seg(c),Seg(m)

Reg(c,m)

Discriminator
Reward

Reward

RegistrationSegmentation

Seg(Reg(c,m))

Figure 2: Schematic of the proposed DCL method.
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�e attention mechanism enhances the unaligned parts
of two images, thereby concentrating the limited com-
putational resource on them.

In the original generative adversarial network [34], the
generated images or the real images are alternately fed into
the discriminator network, and the generated images are not
preprocessed in any way. Considering the characteristics of
the segmentation and alignment tasks, we preprocess the
generated images based on the attention mechanism to

strengthen the relationship between the generated images
and the real tokens, emphasizing their higher-order se-
mantic inconsistencies for the evaluation of the generated
images by the discriminator.

To prepare the input images for segmentation and
registration models, we �rst resize the CT-MRI slice pairs
from 512× 512 to 480× 480 pixel size and then randomly
crop the downsampled images to 384× 384 pixel size. We
use the random crop to increase the sample size. �e

Algorithm 1: Deep Cooperative Learning
input :

Trained segmentation and registration models

Labels from different hospitals

Learning rate γ

Seg(·), Reg·), Pseg(·), Preg(·)

output Improved networks

:
repeat

t = t + 1
for k=1 to K do

Draw samples from ck and mk

Using Reg(·) register c, m to obtain Reg(c, m)

Using Seg(·) segment Reg(c, m) to obtain Seg(Reg(c, m))

Using Seg(·) segment c, m to obtain Seg(c), Seg(m)

Using Reg(·) register Seg(c), Seg(m) to obtain Reg(Seg(c), Seg(m))

Cal. reward r1 = log(Preg(Reg(Seg(c), Seg(m)))) – log(Preg(Reg(c,m))),

r2 = log(PSeg(Seg(Reg(c,m)))) – 1/2log(PSeg(Seg(c))), + log(PSegSeg(m)))

r1k = r1,r2k = r2

end

until Convergence or t > Max iter.

Cal gradient ∇θSegE[r1] = ΣK
k=1 ∇θSegr1k, ∇θRegE[r2] = ΣK

k=1 ∇θRegr2k

Update parameters θSeg = θSeg + γ∇θSegE[r1], θReg = θReg+ γ∇θRegE[r2]

c = ck, m = mk

Figure 3: Deep cooperative learning algorithm.
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Figure 4: U-Net with SE and ASPP modi�cations for segmentation task.

4 Security and Communication Networks



384× 384 pixel size facilitates the downsampling operations
in the networks because it could be divided by 2 many times
with no remainder. Before feeding the image into the net-
works, images are normalized to zero mean with unit-
variance intensities and augmented with a random hori-
zontal �ip.

2.4. Evaluation Metrics. We use Dice coe�cient and
Hausdor� distance (HD) to evaluate the quality of

segmentation.�eDice coe�cient is computed as the area of
overlap between the prediction (pred) and the ground truth
(GT) divided by the total number of pixels in prediction and
ground truth:

Dice �
2|Pred∩GT|
|Pred| +|GT|

. (4)

�e HD measures the boundary distance (D) between
predictions and ground truth and is de�ned as

HD � max maxgt∈GTminpred∈PredD(gt, p),maxpred∈Predmingt∈GTD(gt, p)( ). (5)

Since the HD metric is sensitive to outliers, we report
95th-percentile HD (HD95) instead.

We regard a registration prediction as successful if the
shifts di�erences are <3mm in both x and y directions. For I
sets of image pairs, we let xi and yi denote the shift in the x
and y directions, respectively. First, we calculate the number
of image pairs that can meet |xi|< 3 and |yi|< 3 and denote
that number as J. �e registration accuracy is then de�ned as

RegAcc �
I
J
× 100%. (6)

3. Results

We collected 178 and 81 patients with head and neck
cancer from two hospitals, respectively, for this study.
�e training dataset consists of 142 and 64 patients,
respectively, for the two clients and the remaining clients
were used to evaluate the DCL performance. We pre-
process the images before feeding them into the models.
�e DCL training protocol was implemented with the
TensorFlow federated learning framework [35] on
NVIDIA TITAN XP GPU. All networks are initialized
with the Xavier initializer and trained with the Adam
optimizer, the learning rate of 1e- 4, the batch size of 4,

and a total of 25 k updates [36]. An appropriate learning
rate is critical in our experiments. We found that
learning rate larger than 1e-4 will cause loss oscillation.

We updated the parameters of networks with a stochastic
gradient descent method where the initial learning rate was
set to 1e-4, and a total of ∼25 k updates are used to train the
networks.

We �rst compared the results from the segmentation
network for hospital 1 with and without DCL method
qualitatively. Twenty-four anatomy structures were used
in the study including brain, spinal cord, spinal cord
cavity, pituitary, parotid glands, oral cavity, mandible,
mandible joint, temporal lobes, and so on. Figure 6 shows
the segmentation results of standard federated learning
(left) and the results of DCL federal learning (right).
Since hospital 2 prefers smaller temporal lobes while
hospital 1 prefers larger ones, the label con�ict causes the
model of hospital 1 to produce an undesired small
temporal lobe (arrow). However, with DCL, a consistent
temporal lobe (arrow) is predicted by the segmentation
model of hospital 1.

We also show the segmentation results from hospital
2 in Figure 7. We �nd that federated learning with DCL
outperforms standard federated learning in small organs
such as eyeballs (arrow). �e reason could be attributed
to the fact that federated learning could increase the

384 384 256 4096
4096 21

384 384 256 4096
4096 21

Shifts

Attention Layer

Figure 5: Two-stream regression network with attention layer for registration task.

Security and Communication Networks 5



relatively insufficient training samples for the small
organs.

Table 1 provides the Dice values of segmentation results
for hospital 2. It is observed that DCL improved the average
Dice value by 5.49% over standard federated learning. We
perform Student’s t-test on the paired groups of standard
federated learning and DCL for all organs. (e p value of
0.02 (<0.05) leads to the conclusion that DCL outperforms
standard federated learning significantly in terms of the Dice
metric. Compared with standard federated learning, DCL

helped the segmentation network recognize small organs
such as pituitary and optic nerves.

Table 2 reports the comparison of HD95 values of the
federated learning with and without the proposed DCL
method. As shown in the table, the mean HD95 value is
improved by 2.2mm when federated learning is used with
the DCL method. Student’s t-test shows that DCL outper-
forms standard federated learning significantly in terms of
the HD95 metric (p � 0.003). It is also noted that the HD95
of small volume organs such as crystal, optic chiasma, optical

Table 1: Comparison of segmentation Dice values of federated learning with and without the proposed DCL method (large is better).

Organs Non-IID with DCL method Non-IID with standard federated learning
Brain 0.985 0.867
Brain stem 0.859 0.881
Spinal cord 0.872 0.856
Spinal cord cavity 0.889 0.73q
Eye L 0.935 0.897
Eye R 0.935 0.919
Len L 0.888 0.793
Len R 0.914 0.746
Optical nerve L 0.894 0.693
Optical nerve R 0.907 0.718
Chiasm 0.883 0.618
Pituitary 0.915 0.871
Parotid L 0.820 0.839
Parotid R 0.826 0.847
Oral cavity 0.918 0.948
Mandible 0.928 0.925
Mandible joint L 0.761 0.824
Mandible joint R 0.794 0.837
Temporal lobe L 0.855 0.848
Temporal lobe R 0.875 0.841
Larynx 0.896 0.933
Pharynx 0.818 0.672
Trachea 0.821 0.812
(yroid 0.715 0.827
Average 0.871 0.830
p value <0.05

Figure 6: Comparison of segmentation results of hospital 1 on two CT slice images without DCL (left) and with DCL (right).

Figure 7: Comparison of segmentation results of hospital 2 on two CT slice images without DCL (left) and with DCL (right).
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nerves, and pituitary is much smaller than that of the large

organs. (is means that the inconsistency label issue is more
significant in small organs and DCL could alleviate it
substantially.

We illustrate an example of the registration result for an
image pair in Figure 8. We find that the corresponding
anatomical structures such as cranium and brain are aligned
correctly.

We further provide the numerical comparison in suc-
cessful registration rates in Table 3. We also performed a chi-
square test on RegAcc between the standard federated
learning and the federated learning with the DCL method.
53 registration result pairs are involved in the test. It is
observed that the registration network with DCL outper-
forms the standard federated learning.

In Figure 9, we plot the loss values as the function of
training steps. (e top subfigure shows the segmentation
cross-entropy loss and the bottom subfigure shows the reg-
istration mean squared error.(e standard federated learning
and the DCL are plotted with gray color and red color, re-
spectively. As illustrated in the figure, we find that the extra
supervised signal from DCL prevents the segmentation
training from overfitting. (e segmentation quality is steadily
improved after 10 k training steps. In registration training, the
overfitting phenomenon is not observed, but the training of
standard federated learning is stuck at a high error level.

4. Discussion

In the previous section, we demonstrated the feasibility of
exploiting the reciprocal structure between segmentation
and registration task among different hospitals to improve

Figure 8: Illustration of the registration results.

Table 2: Comparison of average 95th percentile HD values of federated learning with and without the proposed DCL method (small is
better; unit: mm).

Organs Non-IID with DCL method Non-IID with standard federated learning
Brain 1.65 2.62
Brain stem 3.54 4.89
Spinal cord 4.09 7.53
Spinal cord cavity 3.47 4.38
Eye L 1.82 2.85
Eye R 1.16 2.74
Len L 1.04 2.94
Len R 1.11 2.63
Optical nerve L 1.22 3.96
Optical nerve R 1.53 4.91
Chiasm 1.22 4.58
Pituitary 1.40 2.05
Parotid L 5.01 7.22
Parotid R 4.65 6.96
Oral cavity 2.37 7.67
Mandible 5.34 2.58
Mandible joint L 4.61 3.02
Mandible joint R 2.66 2.95
Temporal lobe L 3.07 12.24
Temporal lobe R 2.24 14.27
Larynx 3.26 6.48
Pharynx 2.57 2.66
Trachea 11.83 21.10
(yroid 10.52 3.96
Average 3.39 5.61
p value 0.003< 0.05

Table 3: Comparison of registration shift and accuracy of federated
learning with and without the proposed DCL method.

Method Shifts (mm) RegACC
Non-IID with standard federated
learning 2.81 79.4%

Non-IID with DCL method 1.39 81.2%
p value <0.05 <0.05

Security and Communication Networks 7



the performance of the segmentation and registration model
in individual hospitals. (e experiment results suggest that
the proposed DCL method is necessary and contributes
significantly to performance improvement. (e proposed
DCL method outperforms the standard federated learning
by 5.49%, 2.2mm, and 1.8% in terms of Dice, 95th percentile
HD, and registration accuracy. (e superior performance of
DCL could be attributed to the model cooperation among a
set of hospitals under the orchestration of the DCL.

(e proposed DCL method is different from the global
model personalization methods that personalize a single
global model for each client through data or model adap-
tations that involve additional training on each local dataset
[14, 15, 37, 38]. While these methods aim to collaboratively
train a shared model without sharing private data, DCL is
designed to enhance the local model with the help of other
hospitals but still preserve the personalization of the local
model. In contrast to global model personalization methods,
personalization or preference is never lost for each client.

(e proposed DCL method could be classified to the
catalog of learning personalized models that build person-
alized models by modifying the federated learning model
aggregation process. Our method is most close to the
similarity-based approaches in this catalog which leverage
client pairwise similarities to improve personalized model
performance where similar personalized models are built for
related clients. FedAMP [28] excels in capturing pairwise
client relationships to learn similar models for related cli-
ents. It may be sensitive to poor data quality, whereas DCL
leverages tasks’ complementarity to provide extra supervi-
sion signals and thereby is not affected by the data quality.
Model interpolation methods [39] learn personalized
models using a mixture of global and local models. However,
they are likely to experience a degradation in performance in

highly non-IID scenarios as they use a single global model as
a basis for personalization. In contrast to the model
interpolation methods, DCL can work under any data
distribution. In this study, the data could be totally
different for the segmentation task and the registration
task. Overall, the major novelty of DCL is the exploi-
tation of the task reciprocal structure, whereas current
non-IID approaches mainly leverage the data similari-
ties. (e cooperative relationship is exploited to provide
mutual rewards or pseudo-labels for the tasks of different
hospitals. Since the reward is extracted from the first
hospital’s A task to the second hospital’s B task, the
biased data distributions are mitigated during the
learning loop. (e primary benefit of task cooperation is
the robustness of the data distributions.

While the task cooperation improves the local model
performance under highly non-IID scenarios, it also pre-
vents the tasks that do not contain reciprocal structures from
the DCL protocol. Additionally, since the trained models are
shared between hospitals, the label preferences of one
hospital may be leaked to others and may increase the risk of
privacy exposure. Furthermore, it is still not clear to what
extent these methods harm data privacy, and there are no
quantitative measures to identify the degree of privacy
leakage. Finally, while DCL is an effective method for the
non-IID problem, other issues remain as open questions for
the future when using federated learning for healthcare
including decentralized online optimization [40], unbal-
anced data [41], limited communication bandwidth [42],
and unreliable and limited device availability [43].

5. Conclusions

We developed a method named deep cooperative learning
(DCL) to address the non-IID problem in federated learning.
Comprehensive experiments have been carried out on CT
andMRI segmentation and registration tasks and datasets to
demonstrate the effectiveness of DCL. (e results obtained
from head-neck cancer patients of two hospitals show that
the method outperforms the standard federated learning in
segmentation and registration tasks. (e method is, there-
fore, a solution for leveraging biased labels across hospitals.
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