
Research Article
Ldasip: A Lightweight Dynamic Audit Approach for Sensitive
Information Protection in Cloud Storage

Li Lin,1,2 WenTing Tan ,1 and ZhenXing Chu1

1College of Computer Science Faculty of Information Technology, Beijing University of Technology, Beijing 100124, China
2Beijing Key Laboratory of Trusted Computing, Beijing 100124, China

Correspondence should be addressed to WenTing Tan; 344842529@qq.com

Received 11 November 2021; Revised 15 April 2022; Accepted 12 May 2022; Published 20 June 2022

Academic Editor: Wenxiu Ding

Copyright © 2022 Li Lin et al. -is is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

How to audit the integrity of data stored on the cloud with incomplete trust is an important problem that restricts the development
of cloud storage. Although there are several data integrity audit schemes in cloud storage, the increased need to protect sensitive
information and support large-scale data storage and dynamic update will result in a significant increase in audit cost, which
seriously affects the efficiency of existing cloud audit systems. To solve this problem, we propose Ldasip, a lightweight dynamic
auditing method that supports sensitive information protection in cloud storage. Exploiting identity-based data integrity audit, a
data masking technology is introduced into to protect user’s sensitive information. At the same time, an improved multibranch
tree structure is proposed to realize dynamic audit and reduce communication overhead in the verification process. -eoretical
analysis and comprehensive experiments have been conducted, which demonstrate the effectiveness of Ldasip. -e results show
that Ldasip can ensure the correctness of the audit, protect the sensitive information in the user’s stored content, and support the
dynamic update of data with less audit time and communication overhead.

1. Introduction

With the rapid development of information technology and
network technology, user data are growing explosively. -e
emergence of cloud services addresses the limitations of
computation and storing large amounts of data locally.
However, when the data are outsourced and stored in the
cloud, users lose absolute control over the data, and the
cloud data may be tampered or destroyed by attackers or
cloud service providers intentionally or unintentionally. For
example, in 2020, about 400GB of data was downloaded
from a UN cloud server in Europe by an intruder. -e
personal information of more than 4,000 UN staff members
was compromised [1]. In 2021, more than 200 million pieces
of user data stored on Sina servers, including the personal
data of 7.3 million Chinese citizens, were stolen and made
public by hackers [2]. In 2022, data from a cloud server of a
Croatian telephone operator was downloaded by an in-
truder. -e personal information of more than 200,000
people was compromised [3]. -ese events greatly reduce

users’ trust in cloud services and restrict the development
and promotion of cloud storage. -erefore, how to maintain
the security of cloud storage data is one of the important
problems to be solved in cloud storage.

Security audit is an important approach to ensure data
integrity. -e existing cloud environment data integrity
audit schemes are generally divided into two categories:
private audit and third-party audit. Private audit can only be
performed by users, which is more efficient, but requires
users to be responsible for data signing, audit verification,
and other calculation and maintenance of a large amount of
information [4]. In third-party audit [5], data integrity
verification is completed by a trusted third party and the
verification report is sent to the user, which greatly reduces
the computation cost of the user. Currently, more and more
experts and scholars at home and abroad are paying at-
tention to third-party audit. -e existing work has put
forward different solutions from three aspects: protection of
sensitive information, reduction of audit cost, and dynamic
update of data.

Hindawi
Security and Communication Networks
Volume 2022, Article ID 8508755, 21 pages
https://doi.org/10.1155/2022/8508755

mailto:344842529@qq.com
https://orcid.org/0000-0002-3726-3723
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8508755

-ere are two main types of threats concerned in the
existing methods of protecting sensitive information. First,
third-party auditors are usually honest and curious. When
they perform data integrity verification on behalf of users,
they may push back the original data through the audit proof
returned by the cloud service provider, resulting in user data
leakage [6]. Second, cloud service provider (CSP) is not
trustworthy, and he may leak user data to malicious users for
his own interests. Due to the introduction of third-party
auditors, there is communication overhead between the user
and the third-party auditor. Meanwhile, in order to facilitate
the validation, the auditor needs to maintain a large amount
of validation metadata, state, secret key information, etc.,
which itself incurs additional computation and storage
overhead.

In addition, for third-party audit, most data integrity
verification structures rely on the public key infrastructure,
where users need to generate and manage public key cer-
tificates and auditors need to validate them. In order to
simplify certificate management,Wang et al. [7] proposed an
identity-based integrity verification scheme based on bi-
linear pairings. In this scheme, a trusted key generator was
introduced to generate the private key that can sign the user
data, and the user’s ID number, e-mail address, or name was
directly regarded as the public key, which could eliminate
the cost of generating andmanaging the user’s certificate and
the cost of verifying the proof by the third-party auditor.
However, most current identity-based audit schemes did not
take into account the scenario when a user updates data in
the cloud. Supporting dynamic data manipulation means
allowing users to insert, delete, and modify data files during
the integrity audit of user data. Guo et al. [8] put forward an
identity-based dynamic integrity audit scheme. However,
this scheme adopted the Merkle Hash Tree authentication
structure, with the increase in data blocks, the authentication
process, and authentication data need too much auxiliary
information, so it took a long time for the cloud service
provider to query the data blocks in the verification and
update processes, which brought extra computation and
communication overhead to the cloud service provider.

To solve the problem, we proposed Ldasip, a lightweight
dynamic audit method that supports sensitive information
protection in cloud storage. Exploiting identity-based audit
model, this method can avoid the complex certificate man-
agement work such as the issue, management, and revocation
of public key certificate. At the same time, a data masking
technology is introduced into the proof generation algorithm
executed by the cloud service provider to prevent the third
party from pushing out the original data through the audit
proof and to realize the protection of sensitive information of
user data. In addition, an improved multibranch tree struc-
ture is proposed. By selecting the deputy root node to store
information, the length of authentication path is shortened.
-e locality principle is adopted to reduce the data block
query time, thus improving the efficiency of third-party audit,
and reducing the communication overhead in the verification
process while realizing dynamic audit.

Compared with existing work, our contributions are
summarized as follows.

(1) We proposed a new cloud service node proof gen-
eration algorithm by introducing data masking
technology, which can prevent third parties from
inferring the user’s original data based on the audit
proof after multiple challenges. A generation and
verification mechanism of third-party legal authority
is proposed to ensure that only the legitimate third-
party authorization by the user can verify the files on
behalf of the user and reduce the security threat
brought by the third-party auditor.

(2) We proposed an improved multibranch authenti-
cation tree structure. -e node utilization rate is
improved by storing data block information on the
nonleaf nodes of the authentication tree, and the
deputy root node is selected to describe the integrity
of the node and all its descendants. In this way, the
cloud service provider does not need to traverse the
whole authentication tree when conducting data
block query, which shortens the authentication path
length and improves the efficiency of user signature
while supporting the dynamic update of data.

(3) We conducted theoretical analysis and experimental
evaluation of the proposed scheme. -e results show
that Ldasip supports dynamic audit and sensitive
information protection, and has lightweight chal-
lenge response and integrity verification cost,
compared with the existing classical schemes such as
literature [9, 10].

-e rest of this paper is organized as follows.-is section
presents related work, describes the system model, intro-
duces Ldasip in detail, provides security theoretical analysis
of Ldasip, presents our experimental results, concludes this
paper, and shows some possible future work.

2. Related Work

In cloud storage, data outsourced in the cloud by users are
faced with external attacks and internal threats, and data
integrity audit is an important solution [11]. -ere are
several typical approaches to data integrity audit. -e fol-
lowing analysis and comparison are made from three as-
pects: audit performance optimization, support sensitive
information protection, and support data dynamic
operation.

In the process of data integrity audit, the protection of
sensitive information of user data is mainly threatened by
the untrustworthiness of cloud service providers and third-
party auditors. Ateniese et al. [12] put forward the concept of
provable data possessing verification scheme based on ho-
momorphic verification tag and random sampling strategy
for the first time. However, the computation and commu-
nication overhead of this scheme were high, and the pro-
tection of sensitive information of user data was not
considered. Shah et al. [13] proposed to encrypt users’ data
and calculate hash value based on symmetric encryption and
send them to auditors. In this scheme, auditors need to verify
whether the server had the previously promised decryption
key, and the scheme was only applicable to encrypt files and

2 Security and Communication Networks

users need to redownload their data from the cloud to the
local area, which increased the computation cost of the audit
process. Wang et al. [14] proposed a privacy-protected re-
mote data integrity audit scheme using random masking
technology, but this scheme was not applicable to identity-
based integrity audit scenarios, and there was no way to
prove the authenticity of audit proofs sent by cloud service
providers. In order to resist the attack of quantum computer,
Tan et al. [15] proposed an audit scheme based on lattice to
construct a randommask to cover up the audit proof, so that
user data could be protected from the attack of curious third
parties. Wang [16] et al. proposed a data integrity audit
method based on Hash Message Authentication Code
(HMAC) and indistinguishability confusion, which sup-
ported the protection of sensitive information of user data.
However, this method required the user to manage the
certificate, which had a large computation and storage
overhead.-erefore, Han et al. [17] put forward a distributed
data integrity audit scheme based on blockchain, which
could resist various attacks in the integrity audit process by
using blockchain system with decentralized, tamper-proof,
and traceability characteristics. However, this method did
not support data update.

Early data integrity verification schemes focus on en-
suring the integrity of static data. When users perform
dynamic operations such as adding, deleting, and modifying
files, they need to download the files to the local area for
update and then upload them to the cloud. -is process will
incur a lot of computation and communication overhead.
Erway et al. [18] proposed the authentication dictionary
based on Grade-based authentication dictionary (DPDP-I)
and RSA tree-based authentication dictionary (DPDP-II) to
construct the dynamic data audit scheme; however, when the
cloud service provider updated the data, the update of the
underlying nodes in the skip table would lead to a lot of
computation overhead, and this structure would have a
larger length when the number of data blocks was large,
which would lead to an increase in the amount of auxiliary
authentication information. Wang et al. [19] proposed a
dynamic audit method based on the classic Merck Hash Tree
Block Label Authentication and introduced bilinear aggre-
gate signature technology to support batch audit, but the
scheme did not consider the protection of sensitive user data.
Daniel et al. [20] proposed to build a data structure based on
file hash values to realize dynamic audit. Jian Shen et al. [21]
put forward a new dynamic structure composed of double
link information table and position array to realize dynamic
audit. Sookhak et al. [22] put forward a dynamic audit
scheme based on divide-and-conquer table, which divided
the data structure into k numbers to reduce its size and
reduced the computation cost of users when updating.
However, the scheme did not consider the protection of
sensitive information of user data. T. Shang et al. [23]
proposed a data structure of Merkle hash tree for block tag
authentication, allowing users to insert data after each data
block, which could effectively improve the efficiency of
dynamic integrity audit. Yuan et al. [24] proposed a mod-
ified index hash table (MIHT) structure, which can effec-
tively realize data dynamics.

Existing performance optimization efforts focus on re-
ducing the computation and storage overhead and com-
munication complexity of users, third-party auditors, and
cloud service providers in the data integrity audit process.
Ateniese [25] et al. proposed a Proof of Data Possession
Protocol (E-PDP) to reduce the computation and commu-
nication cost of the auditor through random sampling of data
blocks. However, this scheme did not consider the huge
computation cost of the cloud server. Sookhak et al. [22]
proposed a data integrity audit method based on file com-
pression and improved algebraic signature, which could re-
duce the computation and communication overhead between
the user and the cloud service provider. -ird party-based
data integrity audit structures mostly rely on public key in-
frastructure. Users need to generate and manage public key
certificates, and third-party auditors need to maintain a large
number of verified metadata, state, key information, and
verify certificates. -erefore, Wang et al. [7] proposed an
identity-based integrity audit scheme based on bilinear pairs
to simplify key and certificate management. A trusted key
generator was introduced into the original tripartite inter-
action and was responsible for generating the private key for
the user to sign the data. -e user’s ID number, e-mail ad-
dress, or name and other information were treated as the
public key, so there was no need for the user to generate and
manage the certificate, and third-party auditors to verify the
certificate, which reduced the computation overhead of the
user and third-party auditors. However, this method was only
suitable for small-scale users. For this reason, Zhang et al. [26]
proposed an identity-based audit scheme by introducing a
hierarchical private key generator suitable for large-scale user
groups, which improved the audit efficiency of large-scale
users. Shen et al. [27] proposed a data integrity audit scheme
without storing private keys in which biometric data (such as
iris scan and fingerprint) were used as the fuzzy private key of
the user to avoid using hardware token, which improved the
security and efficiency of audit. However, these schemes did
not support the protection of sensitive information of user
data and dynamic update.

3. System Model

In identity-based cloud data integrity audit system, the
public and private keys are generated based on the user’s
identity, and there is a third party responsible for verifying
the integrity and availability of the data stored in the cloud
[7]. As shown in Figure 1, there are four entities in the
identity-based data integrity audit system: user, third-party
auditor (TPA), cloud service provider, and private key
generator (PKG). Among them, users are entities that
outsource data stored in a cloud server. Cloud service
providers are entities that have powerful storage resources
and provide storage services for users. A third-party auditor
is a trusted entity with professional data audit capability that
performs data integrity verification on behalf of users. PKG
is a trusted entity that generates parameters for the system
and private keys for users.

As shown in Figure 1, the identity-based data integrity
audit process is as follows:

Security and Communication Networks 3

(1) -e user sends his identity information (ID) to the
PKG. -e PKG calculates the private key for the
user according to the user’s ID and sends it to the
user.

(2) -e user uses his private key to generate data tags
that will be used to verify the integrity of the data
blocks, and uploads all data blocks and his corre-
sponding tags to the cloud.

(3) To verify the integrity of data stored in the cloud, the
user authorizes a TPA to send an audit challenge to
the cloud.

(4) When CSP receives an audit challenge from TPA,
CSP generates the audit proof based on the audit
challenge and user data blocks stored in the cloud
and sends it to TPA.

(5) When TPA gets the audit proof, it will judge whether
the user’s data stored in the cloud are complete based
on the correctness verification of the audit proof, and
sends the verification result to the user.

Identity-based data integrity audit still faces the fol-
lowing security risks and performance problems.

During the audit process, data privacy is mainly
threatened by the following two aspects. As shown in Fig-
ure 1, firstly, the third-party auditor is not completely
trustworthy, and it is possible to deduce the user’s original
data when verifying the audit certificate out of curiosity in
step ①, thus causing the leakage of user data. In addition,
cloud service providers lack credibility, and data stored by
users may be damaged or missing due to external attacks or
adverse effects of the cloud in step ②.

-e audit process also faces performance problems in the
dynamic update and integrity verification stage. When users
update cloud data, they can only download the whole file
locally to update the data, which leads to the calculation and
communication overhead in step ③. In addition, data in-
tegrity audit meets the requirements of users to verify the
integrity of cloud data at any time, but long-term integrity
audit will bring bad user experience. For example, it takes
toomuch time in the file signature generation process in step

④ and integrity verification process in step ⑤, which se-
riously affects the audit performance.

Under the framework mentioned above, this paper
proposed a lightweight integrity dynamic audit approach
that supported sensitive data protection. -e approach has
the following objectives:

(1) Ensure the correctness of the private key.When PKG
sends the correct private key to the user, the private
key must be verified by the user.

(2) Ensure the correctness of TPA audit authorization.
Only the TPA authorized by the user can get a
certified reply from CSP.

(3) Ensure the correctness of the verification process
[28]. -e valid proof produced by the proof gen-
eration algorithm passes the verification algorithm
with overwhelming probability. In other words,
Ldasip can ensure that in the verification process, if
both TPA and CSP are trusted and the data files are
stored correctly, then the audit proof generated by
CSP based on the challenge information must pass
the verification successfully.

(4) Support sensitive data protection. User identity and
data content are not disclosed to TPA during the
audit process.

(5) Ensure the integrity of storage [29]. A CSP without
user data cannot provide a valid audit proof.

4. Design of Ldasip

In this section, we will give the design of the proposed Ldasip
approach, including its working principles and detailed core
functions.

4.1. Working Principle. In Ldasip, there are different func-
tion modules deployed in users, PKG, TPA, and CSP, re-
spectively. -e architecture of Ldasip is shown in Figure 2,
where PKG is responsible for system initialization and key
generation. Users perform third-party legal authority

User

Data transmission

TPAPKG

Vali
dati

on
res

ults

Sen
d re

quest

challenge

Verification proof

Id
en

tif
ic

at
io

n
in

fo
rm

at
io

n

Pr
iv

at
e k

ey

Figure 1: Identity-based data integrity audit model.

4 Security and Communication Networks

generation, signature generation, improved multibranch
tree authentication structure construction, update request
generation, and update proof verification. TPA performs
challenge and verification model. CSP executes third-party
legal authority verification, audit proof generation, and
update proof generation module.

System initialization module is executed to generate
relevant system parameters for initializing data integrity
audit by PKG. It is realized by Setup(1λ)⟶(PP, msk). It
inputs a security parameter and generates a public parameter
and a master key according to bilinear mapping, which can
be used for the subsequent data integrity verification.

Key generation module is executed on PKG [30], which
generates the corresponding private key for the user
according to the identity information provided by the user.
It is realized by KeyExtract (PP, msk, ID)⟶skID. It inputs
public parameters, master key, and user ID, and outputs the
private key corresponding to the user ID. In this process, the
user sends the ID to PKG, and PKG calculates the user’s
private key and sends it to the user through a secure channel.
When the user receives the private key sent by PKG, it
verifies whether the private key is valid through formula (1)
(details are shown in Table 1), and receives the private key if
the equation holds, otherwise, discards it.

-ird-party legal authority generation module is exe-
cuted by a user. -e user authorizes TPA to perform data
integrity audit instead of himself and generates legal au-
thority for the authorized TPA and legal authority verifi-
cation value for CSP according to the TPA’s identity
information and the user’s identity information, so that the
legitimacy of TPA can be verified during the audit process.
-e function is realized by Entrust(ID,IDTPA)⟶Entrust.
-e inputs of this function are user ID and TPA’s ID, and the
output is the corresponding legal authority. To prevent
malicious attackers from launching denial-of-service attacks
on CSP, it is stipulated that only TPA authorized by users
can launch integrity audit challenge.-e user generates legal
authority for TPA. In Ldasip, the user generates authori-
zation, calculates legal authority verification value, sends the

legal authority to TPA, and then sends the legal authority
verification value to CSP.

Improved multibranch tree authentication structure
construction module is executed on a user, who constructs
the improved multibranch tree authentication structure, and
sends authentication structure and signature together to the
CSP. -e function can be realized by Construct(mi)⟶C. It
inputs data blocks and outputs the authentication structure.
-e details of the algorithm are described in the following
subsections.

Signature module is executed on the user, which gen-
erates signature of the data blocks and the signature of the
root node and the deputy root nodes of the multibranch
authentication tree. -e function is realized by Sign
(mi,skID)⟶ (σi,Γ,c). -e inputs of this function are user’s
private key and data blocks, and the outputs are file au-
thentication tag and authentication structure signatures.-e
user generates an authentication tag for each data block of
the file by hash operation, calculates the root node and the
deputy root node by user’s private key, sends the data blocks
and signatures to the cloud server, and then deletes the local
data blocks.

Challenge module is executed on a TPA to generate audit
challenge. -e function is realized by Challenge (PP, ID)⟶
chal, where inputs public parameters and user ID, and
outputs challenge chal. TPA generates a challenge chal and
sends it to the cloud. In this process, TPA randomly selects a
set containing multiple elements to form a challenge chal.
TPA sends the challenge chal and legal authority (user ID,
TPA ID, and corresponding legal authority) to the cloud.

-ird-party legal authority verification module is exe-
cuted on CSP to verify the validity of TPA authorized by
users. It is realized by EntrustV(PP, Entrust,V,ID,IDTPA)⟶
{0,1}. -e inputs of the algorithm are public parameter, legal
authority, legal authority verification value, user ID, and
TPA ID, and the output is 0 or 1. CSP verifies whether the
TPA is legal through formula (2). CSP considers the TPA
legal and executes the audit proof generation algorithm if it
holds; otherwise, it terminates the process.

Initialization Module

Key Generation Module

Third Party legal authority
generation Module

Signature Module

Challenge Module

Verification module

Audit proof generation
module based on Data

masking

Update Proof Generation
Module

User

PKG

TPA

Improved Multi-branch
Tree Authentication

Structure construction
Module Third party legal authority

verification Module

CSP

Data Update Module
Update Request

Generation module
Update Proof

Verification Module

Figure 2: -e architecture of Ldasip.

Security and Communication Networks 5

Audit proof generation based on data masking module is
executed on CSP, which generates audit proof according to
the audit challenge sent by TPA. It is realized by
Proof(chal,σi,m)⟶P, where inputs are the data block mi,
the authentication tag σi and the challenge chal, and the
output is audit proof. Details will be introduced in the
following subsection.

Verification module is executed on TPA, which verifies
the audit proof returned by CSP and judges whether the CSP
stores the user data completely, then sends the verification
result to the user. It is realized by Verify(chal, PP,ID,P)⟶
{0,1}, where inputs are public parameters, challenge chal,
user ID, and audit proof, and outputs the audit result 0 or 1
to indicate whether the file stored in the cloud has been
tampered. -e TPA verifies whether formula (3) and (4) are
hold. If they do not hold, it means the integrity of the file
cannot be guaranteed and then outputs fail. If they are hold,
TPA judges whether the proof is correct by checking the
following formula (5). If the equation is true, it means the
data stored in the cloud are integrated, and TPA outputs 1,
otherwise outputs 0.

Supporting dynamic update means users can update
cloud data without downloading files from the cloud. -e
user data are updated through the interaction between the

user and CSP. -e module consists of two parts: one part is
update request generation and update proof verification run
by the user, and the other part is update proof generation run
by the cloud service provider. A user generates the update
request information as update and sends it to the CSP by
executing the update request generation module. After the
CSP receives the update request, it runs the update proof
generation module and sends the update audit proof Pupdate
to the user. -en, the user verifies Pupdate provided by the
CSP. If the verification is successful, it means the update
operation is performed correctly. -e user can delete the
locally stored data information; otherwise, the verification
fails. Specific agreements will be described in the following
sections.

For the convenience of subsequent introduction, a
unified symbol description table is given in Table 1.

4.2. Construction of Improved Multibranch Tree Authenti-
cation Structure. -e traditional multibranch tree authen-
tication [31] only stores the hash value of the data block in
the leaf nodes, the data structure is huge, and the effective
utilization of nodes is low. In Ldasip, the multibranch au-
thentication tree is reformed as shown in Figure 3. First, data

Table 1: Symbol description table.

Symbol Meaning
λ A security parameter as input
G Additive cyclic group whose two orders are big prime numbers q> 2k
GT Multiplicative cyclic group whose two orders are big prime numbers q> 2k
e:
G×G⟶GT

Bilinear mapping

H1/H2/H3

Hash functions:
H1:{0,1}∗⟶G, H2:{0,1}∗⟶Z∗q ,

H3 :G⟶Z∗q
g,u Generators of group G
ppub (mpk) PKG randomly selects x0∈Z∗q and calculates Ppub � gx0

Msk s selected randomly by PKG
skID -e corresponding private key to ID, skID� b+ x0H2(ID,B)modq, where b ∈Z∗q , B� gb

Pk Public key:pk�B·PpubH2(ID,B)modq

PP Public parameter
PP� {G, GT, e, q, g, u, H1, H2, H3, ppub (mpk)}

formula (1) gskID �B·PpubH2(ID,B)modq

Entrust Entrust � (H1(ID,IDTPA))x. x ∈Z∗q as the secret key to generate authorization, and calculate V� gx as the legal authority
verification value.

mi Data block of the file
C -e improved multibranch tree authentication structure
I -e index of the data block mi
Name -e file identifier
Vn -e current version number
ti -e timestamp
σi File authentication tagσi�(H1(name||Vn||ti)·uH3(mi))skID

Φ -e ordered set of σi
Γ Deputy root nodes signed by skID, Γ�(H1(R∗)) skID

γ Root node signed by skID, c�(H1(R)) skID

Chal Challenge chal� {1, vi} i ∈ I, where vi ∈Z∗q randomly generated by TPA
formula (2) e (Entrust, g)� e(H1(ID,IDTPA),V)
formula (3) e (c,g)� e(H1(R),pk)
formula (4) e (Γ,g)� e(H1(R∗),pk)
formula (5) e(T, g) � e(i∈IH1(name‖Vn‖ti)

vi · uμ, B · Ppub
H2(I D,B)modq)

6 Security and Communication Networks

block information is stored on nonleaf nodes of multibranch
tree such as zn+1. Second, the deputy root node is set to
shorten the length of the authentication path. -ird, the
principle of locality is used to add access frequency to the
node to record the frequency of the data block being
accessed.

Definition 1. Deputy root node R∗ In a multibranch tree, a
node is selected from all the tree nodes in a region of the tree
to describe the integrity of the information stored by this
node and all the descendant nodes below, and it is called the
deputy root node of this region, denoted by R∗.

In Figure 3, the node R∗ is the deputy root node of all
nodes in the rectangular box area, and Q is set as the
identifier of the deputy root node, which is expressed as
follows.

Root node R is a special deputy root node used to de-
scribe the integrity of the whole file. All R∗ are signed
separately to obtain the unique signature set Γ of the deputy
root nodes of file F. -ese deputy root nodes and signatures
are used for data integrity verification and user data update.

In the multibranch tree structure, there is an n-branch
tree below the deputy root node; that is, each leaf node of the
tree has n child nodes, while each leaf node can only have
one parent node. -e depth of the tree is d, and each node in
the tree is a data container, used to store the node identi-
fication information and the hash information of the data
block corresponding to the data block.

According to the principle of locality given by [32],
researchers find that data access is characterized by stages
and aggregation when analyzing programs in which ag-
gregation is usually reflected in temporal locality and spatial
locality. Locality of time refers to the fact that after data have
been accessed, it is likely to be accessed again shortly after.
Spatial locality means that after one datum is accessed, data
with adjacent addresses may also be accessed shortly
thereafter. -erefore, this paper designs the information
stored by the node of multibranch tree with the help of
locality principle, aiming to realize the efficient search of
multibranch tree. Specifically, the node storage information
is as follows.

Definition 2. Node storage information multibranch tree
storage information is denoted as zi �(Ψ,h(zi),F), where
Ψ�(Q,Ai) is the identifier, Q is the identifier of the deputy

root nodes, and Ai is the node version number identification
to ensure the freshness of the node, h(zi) is the hash value of
the node, which is obtained by hashing the hash value h(mi)
of its corresponding data block after linking with the hash
value of the child node, F is the recent access frequency; that
is, if there are q requests for access in the most recent time
interval t, then F� q/t.

Definition 3. Authentication path. -e authentication path
refers to the set of all parent nodes on the path of the i-th
node from bottom to top, starting from the user request
authentication node to the deputy root node, recorded as
pathi�(r1,i,r2,i,. . .,rj,root’), where pathl � d is the authentica-
tion path length, r1,i indicates the i-th node that needs to be
verified, and rd,root∗ represents the deputy root node.

-e construction process of the improved multibranch
tree authentication structure includes initialization and the
construction of multibranch tree, which are shown in Al-
gorithm 1 and Algorithm 2.

Compared with the traditional audit scheme based on
multibranch tree, Ldasip stores the data information in the
nonleaf nodes of multibranch tree. For the same level and
the branches of the tree structure, Ldasip stores more data
blocks, so the file will be divided into smaller blocks, and
smaller blocks will shorten the time of computing the hash
value, thus increasing the operation efficiency of the whole
tree structure. In addition, by adding deputy root nodes,
Ldasip enables decentralization. In the integrity of the audit
process, the CSP traverses the tree structure when retrieving
data blocks based on the audit challenge sent by the TPA,
and Ldasip can query the recent access frequency of the data
block from the node storage information of the deputy root
node. It starts to traverse from the deputy root node with
high recent access frequency to search for data blocks and
quickly find the area where the target data block is located.
-us, it does not need to traverse the entire tree structure to
leaf nodes like the traditional scheme, and Ldasip shortens
the retrieval path and reduces the file retrieval time of CSP
and the computation cost of cloud service providers.

In the same way, when users dynamically update the file,
CSP can quickly find the corresponding data block by
traversing from the deputy root node with high access
frequency, and then, CSP updates the file. Ldasip only needs
to update the part of the deputy root node hash value and
shortens the update levels of the hash value, and it also
shortens the path when it calculates the hash from the
bottom up and reduces the computation overhead of CSP.

4.3. Generation of Audit Proof Based on Data Masking. In
Ldasip, a data masking technology is introduced into the
proof generation algorithm executed by CSP in order to
prevent the sensitive information of users from deriving by
curious third parties. -e details are as follows.

-e CSP is responsible for executing the proof gener-
ation algorithm. First, CSP calculates T � iεIσvi

i and μ �

iεIvimi and then sends them to TPA as an audit proof for
verification after the CSP receives the audit challenge chal
sent by the third-party auditor. However, if μ is directly sent

R

ZiR*

Zn+1

Z1 Z2

Z2n+2

Zn+2 Zn+3 Z2n+1 Z2
n Z2

n+1 Z2
n+n-1

Zn

Zn(n+1)

Figure 3: Improved multibranch certification tree structure.

Security and Communication Networks 7

to TPA, with the increase of TPA verification times, it is very
likely that the data block m can be easily obtained through
solving linear equation μ � iεIvimi. To solve the above
problem, we learn from Cong Wang’s idea of random
concealment [19], but instead of setting random conceal-
ment factor, we directly encrypt the hash value of the user
data blocks. -e CSP uses hash function H3 to calculate the
user data block, so that μ � iεIviH3(mi) can hide the user’s
original data block and prevent the user data and sensitive
information from being deduced and leaked by curious third
parties. Finally, P� {T,μ,{H1(zi),Ωi}i ∈ I,c, Γ1≤i ≤ I} will be sent
to TPA as the audit proof. -e process of audit proof
generation includes two parts: block searching algorithm
and proof generation algorithm, which are shown in Al-
gorithm 3 and Algorithm 4.

4.4. Authentication Protocol Supporting User Data Update.
-e common update of data by users mainly includes
inserting, deleting, and modifying data blocks [33]. In the
process of data update, the user first sends an update request
to CSP, and then, CSP updates the data block; generates an
update proof, the new root node, and the new deputy root
node; updates the authentication structure; and sends the
update proof to the user. -e user needs to verify the validity
of the improved multibranch tree authentication structure
before verifies the update data block. If the verification
passes, it continues; otherwise, it terminates. -e root and
the deputy root node are then recalculated and compared
with the value returned from CSP. If they are consistent, it
means CSP updates the file correctly; otherwise, it does not.
After verification, the user signs the new root and the deputy
root node, and sends them to the cloud service provider for
updating.

Since the deputy root node R∗ is added to multibranch
tree structure and stores the hash value of the corresponding
data block for each node in the tree with it as the root, when
updating the data block, CSP does not need to retrieve the
bottom leaf node when retrieving the data block, which

shortens the file retrieval path and the update level of hash
value. -is scheme reduces the computation overhead of
CSP and reduces the auxiliary information and the com-
munication overhead between CSP and users. In addition,
CSP only updates the deputy root node nearest to the data
block to be updated, which reduces the auxiliary information
required during the generation of audit proof and improves
the audit efficiency of the whole system.

4.4.1. Verification Protocol When Data Are Modified.
-e user’s data modification operation is essentially a re-
placement process. Generally speaking, it is the process of
finding the target data block to be modified first and then
replacing it and modifying the data block mi to mi’. -e
modification process is shown in Figure 4.

(1) -e user generates the update request through the
authentication tag of the new data block, the au-
thentication tag is σi

′ � (H1(name‖Vn
′‖ti
′)·

uH3(mi)
’
)skID, and the update request is update�(M, i,

m’i,σ′i).
(2) -e user sends the update request to CSP, where M

represents the modification operation.
(3) After the CSP receives the user’s update request, CSP

modifies the files. First, CSP replaces the original
data blockmi with the new data blockmi’ to generate
a new file F’. -en, CSP replaces the old authenti-
cation tag σi with σi’ and calculates the hash value
H1(mi’) of the replaced data block and replaces the
hash value on the i-th node, calculates, and updates
the hash values H1(zi’) of all relevant nodes on the
authentication path to form a new tree structure and
outputs the new root node value R′ and the deputy
root node value R∗’. Finally, the CSP generates
the update proof Pupdate � {{H1(zi),Ωi}i ∈ I,c,
R′,Γ1≤i ≤ I,R∗’}.

(4) CSP sends Pupdate to the user.

Inputs: file information M, n blocks, tree height d, hash function H, traversal variable i
Outputs: {Ψ(Q, Ai), HASH, F}, List<TreeNode>
TREENODE//Set the node structure
{
{Ψ(Q, Ai), HASH, F}//Information set
List<TreeNode> Child;//Child linked list
TreeNode Father;//Father node
}
FILE INITIALIZATION (M)
List<TreeNode>up//x-1 layer node linked list
List<TreeNode>m//x layer node linked list
CUR_DEPTH� 0//Height of current tree
List<TreeNode>R∗� {R}//At present, R∗ includes the root node R, so it is only necessary to find all R∗
FOR i� 1 TO n̂d//if the n-tree of d-layer is formed, the file M needs to be divided into nd copies
{
m.add(new TreeNode(block_i))
}

ALGORITHM 1: Node storage information and file initialization algorithm.

8 Security and Communication Networks

Inputs: {Ψ(Q, Ai), HASH, F}, List<TreeNode>
Outputs: deputy root node R∗
BUILDTREE(M,n,d,H,i)//Achievements: file information M, n blocks, tree height d,
hash function H, traversal variable i.
FILE INITIALIZATION(M)
WHILE(CUR_DEPTH< d)//Build n-tree layer by layer until d-layer.
{
TreeNode tmp_father� new TreeNode ()
HASH� 0//Current hash value
List<TreeNode> tmp_up//Build temporary parent node
FOR i� 1 TO m.size
{
IF (tmp_up.size()< n)//Have not formed a block, continue to traverse the nodes
{
tmp_up.add(m[i])
hash�H(hash, m[i]-> hash)//Keep taking hash values
m[i]-> Father� tmp_father//Set the father of the current node as “temporary father node”
tmp_father ->Child.add(m[i])//Add a child to the “temporary father node”
}
ELSE
{
tmp_father-> hash� hash
IF (CUR_DEPTH� � d/2)//Mark the deputy root node and add it to the result
{
tmp_father->Q� 1
R∗.add(tmp_father)
}
ELSE
{
tmp_father->Q� 0
}
up.add(tmp_father)
tmp_up.clear()
tmp_father� new TreeNode()
i i-1
}
m� up;
up.clear();
++CUR_DEPTH;
}
return R∗

ALGORITHM 2: Improved multibranch tree authentication structure construction algorithm.

Inputs: user file block m, and deputy root nodes signature set Γ
Output: {path, {tp.Ψ, tp.HASH, tp.F}
SEARCHING (Γ, m, i)
SORT(R∗, cmp_F)//Order R∗ according to access frequency F.
FOR i� 1 TO R∗.size()//Traverse all R∗
{
QUEUE<TreeNode>QUE
QUE.push(R∗[i])
R∗[i].F +� 1
WHILE(!Q.empty())
{
TreeNode tp�QUE.top()
QUE.pop()
IF(tp.Child.empty() andand tp.HASH� �m.HASH)

ALGORITHM 3: Continued.

Security and Communication Networks 9

(5) -e user verifies the information based on the proof
Pupdate provided by the CSP and uses {H1(zi), Ωi} to
generate the original root R and deputy root R∗.

(6) -e user judges whether formulas (3) and (4) are true
or not. If they are not true, the user outputs fail. If
they are true, the user continues to verify whether
CSP performs the data modification operation
correctly.

(7) -e user generates root R″ and R∗″ with {H1(z′i),Ωi}
and compares with R′ and R∗′ returned from CSP if
the two values are equal. It means that CSP per-
formed the modification operation correctly.

(8) -e user computes the signatures of the root node c′
and the deputy root node Γ′.

(9) -e user sends the new signatures to the CSP.

4.4.2. Verification Protocol When Data Are Deleted. As
shown in Figure 5, verification interaction during data
deletion is as follows:

(1) In the process of data deletion, the user first sends a
delete request update�(D,i) to CSP, i represents the
sequence number of the data block to be deleted, and
D represents the deletion operation.

(2) CSP updates the file after receiving the request mes-
sage. First, CSP retrieves the data structure, finds and
deletes the specified data block mi, updates the hash
values of the root node R′ and the deputy root node
R∗′, and then sends the updated proof Pupdate�

{{H1(zi),Ωi}i∈ I,c,R′,Γ1≤i≤ I,R∗′ } to the user.
(3) -e user verifies the proof and judges whether CSP

updated honestly like the above modification
operation.

(4) If CSP updated the file correctly, the user sends the
new signatures to CSP.

4.4.3. Verification Protocol When Data Are Inserted.
Assuming that mi∗ is to be inserted after the data block mi.
-e process during data insertion is shown in Figure 6.

{
List<TreeNode> path;
path.add(tp)
WHILE(path.back().Q� � 0)

{
path.add(path.back().Father)

}
REVERSE(path)
return {path, {tp.Ψ, tp.HASH, tp.F}}//Return path, information

}
ELSE
{

FOR j� 1 TO tp.Child.size() DO
{
QUE.push(tp.Child[j])

}
}
}
}

ALGORITHM 3: Block searching algorithm.

Inputs: audit challenge Chal � (i, v[i]), file authentication label σ[i], user file block m, system parameter PP, root node signature c,
and deputy root nodes signature set Γ
Output: Audit proof P
AUDIT PROOF GENERATION(T,μ)
T�1;μ� 0;P�NULL;
FOR i� 1 TO TPAAuditElement.length I {
T � T∗Pow(σ[i], v[i]);
μ � μ + (Element fromHash3(m[i])) ·∗ v[i];

}
P� {T,μ,L,H(zi),path,c,Γ1≤i ≤ I};
Return P;

ALGORITHM 4: Audit proof generation based on data masking algorithm.

10 Security and Communication Networks

(1) -e user first generates an authentication tag σi
∗ �

(H1(name‖Vn
∗‖ti
∗) · uH3(m∗ i))skID for the data block

to be inserted and sends an update request
update�(I,i, m∗i σ

∗
i ,σ∗i) to CSP. I represents the in-

sertion operation.
(2) CSP inserts the data block at the specified position.

After the CSP receives the update request, it updates
the file. First, CSP retrieves the location of data block
mi and inserts m∗ behind it, then updates the au-
thentication tag set T’� σ1, σ2, . . . , σi, σ∗, . . . , σI .

-e node hash value of the inserted data block is
updated to the hash value of the original data block
mi and the inserted data block m∗, and then, CSP
updates the hash value of the deputy root node and
sends the update proof Pupdate � {{H1(zi),Ωi}i ∈ I,
c,R′,Γ1≤i ≤ I,R∗′} to the user.

(3) -e user verifies the proof and judges whether CSP
updated honestly like the abovemodification operation.

(4) If CSP updated the file correctly, the user sends the
new signatures to CSP.

USER CSP

4.send (γ, R’, H1 (zi), Ωi, Γ, R*’)

2.send (M, i, mi’, σi’)

3. Update the file and
calculate R’ and R*’

Modify information request update

Update certificate Pupdate

5.calculate R and R* with {H1(zi),Ωi}
6. Verify the root R and the deputy
root R* through equations (3) (4). If
they are equal, continue to verify,
otherwise the output will fail
7. Use {H1(zi’),Ωi} to calculate R”, check
Whether R”=R’, R*”=R*’
8. γ' = H1 (R')skID

9.send γ’, Γ’
10. Update R’, Γ’

1.calculate σi' = (H1(name||V'n||t'i).u
H3(mi))skID

Γ' = H1 (R*')skID

Figure 4: Verification interaction during data modification.

USER CSP

1.Generate an update
request update

2. Send (D, i)

3. Update the file and
calculate R’ and R*’

Delete information request update

10. Update R’,Γ’

4.send (γ, R’, H1 (zi), Ωi, Γ, R*’)
Update certificate Pupdate

9.send γ’, Γ’

5.Use {H1(zi),Ωi} to calculate R and
R*
6. Verify the root R and the deputy
root R* through equations (3) (4). If
they are equal, continue to verify,
otherwise the output will fail
7. Use {H1(zi’),Ωi} to calculate R”,
check R”=R’, R*”=R*’
8. γ' = H1 (R')skID

Γ' = H1 (R*')skID

Figure 5: Verification interaction during data deletion.

USER CSP

3. Update the file and
calculate R’ and R*’

2.send (I, i, mi*, σ i*)
Insert information request update

4.send (γ, R’, H1 (zi), Ω i, Γ, R*’)
Update certificate Pupdate

9.send γ’, Γ’ 10. Update R’, Γ’

5.Use {H1(zi),Ωi} to calculate R and
R*
6. Verify the root R and the deputy
root R* through equations (3) (4). If
they are equal, continue to verify,
otherwise the output will fail
7. Use H1(zi’),Ωi} to calculate R”,
check R”=R’, R*”=R*’

1.calculate σi*= (H1(name||V*n||t*i).u
H3(m*i))skID

8. γ' = H1 (R')skID

Γ' = H1 (R*')skID

Figure 6: Verification interaction during data insertion.

Security and Communication Networks 11

5. Theoretical Analysis

In this section, the Ldasip method is analyzed theoretically,
including functional, security analysis, and communication
cost comparison with existing schemes.

5.1. FunctionalComparison. -ere are several identity-based
data integrity audit schemes, in which scheme [9] and
scheme [10] are classic schemes. As shown in Table 2, both
Ldasip and the scheme [9] adopt identity-based integrity
audit, while the scheme [10] adopts fuzzy identity-based data
integrity audit. All three schemes can simplify certificate
management. -e scheme [9] does not support data privacy
protection and neither scheme [9] nor scheme [10] supports
data dynamic and batch verification. Ldasip supports data
privacy protection, data dynamic, and batch verification at
the same time.

5.2. Security Analysis. -is section mainly analyzes the
correctness, integrity, and sensitive information protection
ability of Ldasip.

5.2.1. Correctness Analysis. -e correctness of a cloud audit
approach is that the information generated by the private
key generation algorithm KeyExtract(), the authorization
algorithm Entrust(), and the proof generation algorithm
Proof() can be equation-verified with overwhelming prob-
ability. -e following analysis results are presented in the
form of propositions. See appendix for the proof process.

Proposition 1. Let the user’s private key be skID� b +
x0H2(ID,B)modq and public key pk�B·PpubH2(ID,B)modq, the
equation gskID �B·PpubH2(ID,B)modq can be proved to be true.

Proposition 2. indicates that the private key will definitely
pass the user’s verification when PKG sends the correct private
key to the user in Ldasip.

Proposition 3. Given the legal authority verification value
V� gx and the legal authority Entrust�(H1(ID, IDTPA))x, the
equation e (Entrust,g)� e(H1(ID,IDTPA),V) can be proved to
be true according to the properties of bilinear mapping [23].

Proposition 4. shows that only TPA with the legal authority
can get the proof provided by the cloud and audit instead of
the user in Ldasip.

Proposition 5. Let the root node signature be c �H1(R)skID,
the user’s public key be pk� gskI D, and the equation e(c, g)�

e(H1(R),pk) can be proved to be true according to the bilinear
mapping property. Knowing T � iεIσvi

i and μ �

iεIviH3(mi), equation (5) e(T, g) � e(i∈IH1(name‖Vn‖

ti)
vi · uμ, B · Ppub

H2(ID,B)modq) can be proved to be true.

Proposition 6. shows that the audit proof based on the
challenge information must pass the validation successfully if
both the TPA and the CSP are trusted, and the data files are
stored correctly in Ldasip.

5.2.2. Soundness Analysis. -e following analysis will ensure
that any CSP that can generate valid proofs and pass vali-
dation algorithms is in fact storing complete files. See ap-
pendix for the proof process.

Proposition 7. Suppose P� {T,μ,{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤ I},
the equation e(T, g) � e(i∈IH1 (name‖Vn‖ti)

vi ·

uμ, B · Ppub
H2(I D,B)modq) cannot be verified when mi is

replaced by m’i.

Proposition 7 indicates that an adversary may not
provide a valid audit proof if he does not store or does not
store files fully. In other words, if data stored outsourced in
the cloud have been compromised, it is computationally
infeasible for the CSP to fabricate data to obtain the veri-
fiable audit proof.

5.2.3. Ability to Protect Sensitive Information. -e following
part analyzes whether Ldasip can protect sensitive
information.

Proposition 8. Suppose that TPA has the audit proof P�

{T,μ,{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤ I}, but he cannot infer data block mi.

-e proof process is shown in the appendix.
Proposition 8 shows that the TPA cannot obtain the

user’s original data from the audit proof.

5.3. Performance Analysis and Comparison

5.3.1. Computation Overhead. -e computation cost of
Ldasip is analyzed, and Proposition 9–Proposition 13 are
obtained. See the appendix for specific proofs.

Proposition 9. If HashG represents a hash operation in G,
ExpG represents a power operation in G, and Pair represents a
pairing operation in e:GxG⟶ GT. Ke computation cost of
the integrity audit scheme in the third-party legal authority
generation and verification phase is 2HashG + 2ExpG + 2Pair.

Proposition 10. If HashG represents a hash operation in G,
ExpG represents a power operation in G, and MulG represents
a multiplication operation in G. Ke computation overhead of

Table 2: Function comparison of related schemes.

Scheme Public verification Simplify certificate management Support data privacy Data dynamic Batch verification
Scheme [9] √ √ × × ×

Scheme [10] √ √ √ × ×

Ldasip √ √ √ √ √

12 Security and Communication Networks

the signature generation stage is (n + 2)HashG + nMulG+

(2n + 2)ExpG + nHashz∗q.

Proposition 11. If Hashz∗q represents a hash operation in
Z∗q , ExpG represents a power operation in G, MulG represents
a multiplication operation in G, Mulz∗q and Addz∗q represent
one multiplication operation and one addition operation in
Z∗q , and c is the number of data blocks being challenged. Ke
computation overhead of the challenge response phase is (c-1)
MulG + cExpG + cMulz∗q + (c − 1)Addz∗q.

Proposition 12. If HashG represents a hash operation in G,
Hashz∗q represents a hash operation inz∗q , ExpG represents a
power operation in G, Pair represents a pairing operation in e:
GxG⟶ GT, MulG represents a multiplication operation in
G, and c is the number of data blocks being challenged. Ke
computation overhead of the verification phase is (c+2)
ExpG(c + 2)HashG + cMulG + Hashz∗q + 2Pair.

Proposition 13. If HashG represents a hash operation in G,
ExpG represents a power operation in G, Pair represents a
pairing operation in e: GxG⟶ GT, MulG represents a
multiplication operation in G, and c is the number of data
blocks being challenged. Ke computation overhead of the
dynamic operation phase is 7HashG + 4ExpG + 4Pair+
MulG · Hashz∗q.

According to the above Proposition 9–Proposition 13, it
can be compared with scheme [9] and scheme [10] in the
computation overhead of signature generation phase, challenge
response phase, verification phase, and dynamic operation
phase. As shown in Table 3, although the computation cost of
Ldasip in the signature process is slightly higher than that in the
literature [9], because Ldasip supports dynamic update, the
process needs to calculate the signatures of root nodes and
deputy root nodes. Compared with the large amount of
computation caused by users downloading files locally and
updating them in static audit, the cost of Ldasip in this stage is
far less than the above situation, and Ldasip can support
sensitive information protection, but the literature [9] does not.
Compared with the literature [10], the computational cost of
our scheme in tag generation and verification stage is obviously
less than that in the literature [10]. Ldasip uses the improved
multibranch tree as the authentication structure in the audit
process, which realizes the low-cost construction of the tree. In

addition, this structure can shorten the authentication path in
the audit process, effectively reduce the computational burden
of users and third-party auditors, and improve the efficiency of
integrity audit. Moreover, the scheme in this paper can meet
the needs of users’ sensitive information protection and dy-
namic update at the same time. Ldasip is more applicable in the
cloud storage environment, since it reduces the computation
burden of TPA and the user, and it can support sensitive data
protection and dynamic operation.

5.3.2. Communication Overhead. Communication overhead
mainly comes from the transmission of legal authority, audit
challenge, audit proof, and data update process. Proposition
14 analyzes the communication cost at each stage, and see
the appendix for specific proofs.

Proposition 14. If |p| represents the size of an element in G,
and according to the safety and practical experience, we
choose random numbers from the big prime number Z∗q ,
which |q| represents the size of an element in Z∗q , |m| is the size
of the data block, n is the number of data blocks, and |n|
represents the size of an element in set [1,n], and l represents
the number of deputy root nodes included in the retrieval
process of authentication structure. Ke communication
overhead of the authorization process is 2|p|+|q|. Ke com-
munication overhead of the data tag value and signature
upload process is (n+2)|p|+n|m|. Ke communication over-
head of the audit challenge response process is (c+3)|p|+(c+1)|
q|+c|n|, and the communication overhead of the data update
process is (l+7)|p|+|m|.

As shown in Table 4, the communication cost of
Ldasip is equivalent with one of [9] in the process of
uploading signatures and audit proof. Compared with
[9], Ldasip supports sensitive data protection and dy-
namic data update. -e communication cost of Ldasip is
lower than that in [10]. Compared with [10], Ldasip
supports dynamic data update and achieves high effi-
ciency of data integrity audit.

We further analyzed and compared the communication
complexity with schemes [9, 10]. As seen from Table 5, the
communication complexity of each entity in the audit
process is reduced in Ldasip. Where n represents the
number of data blocks, and m represents the number of

Table 3: Qualitative analysis of the calculation cost of this scheme and existing schemes.

scheme Signature generation stage Challenge response phase Verification phase Dynamic operation phase

[9] nHashG + nMulG+2ExpG
(c-1)

MulG + cExpG + cMulz∗q+(c-
2) addz∗q

(c+2)
ExpG + cHashG+(c+1)
MulG +Hashz∗q+6Pair

Not supported

[10] nHashG+3nMulG+(s+3)
nExpG

(c-1)
MulG + cExpG + cMulz∗q+(c-

1) addz∗q

(3c + cs+1)
ExpG + nHashG+(5c + sc-

1)MulG+(2c+1)Pair
Not supported

Ldasip
(n+2)

HashG + nMulG+(2n+2)
ExpG + nHashz∗q

(c-1)
MulG + cExpG + cMulz∗q+(c-

1) addz∗q

(c+2)ExpG+(c+2)
HashG + cMulG+
Hashz∗q+6Pair

4ExpG+7HashG +MulG+4Pair +Hashz∗q

Note. n represents the number of divided blocks of the file, s represents the number of sectors divided by each data block, and c represents the number of data
blocks challenged by the auditor.

Security and Communication Networks 13

subnodes of the deputy root node of the multibranch tree,
which n is much bigger than m.

6. Experimental Evaluation

We have implemented Ldasip in an OpenStack-based cloud
computing platform. Comprehensive experiments have
been conducted to compare with the existing schemes [9, 10]
at public verification, simplified certificate management,
support for data protection, data dynamics, and batch
verification.

6.1. Experimental Evaluation. -e experiment topology is
shown in Figure 7. Five physical machines are used in the
experiment. One physical machine serves as the user, one
physical machine serves as PKG, and one physical machine
serves as TPA. -e cloud service provider provides cloud
platform services. We deployed the control node to a single
physical machine, and the compute node and the network
node to a single physical machine. Figure 8 is a sequence
diagram between entities. In our experiment, we set the base
field size to 512 bits, and the size of Z∗q (|p|) is 160 bits.

6.2. Authentication Structure Effect. In the experiment, we
compared CSP computation time and the authentication
tree construction time of Ldasip with traditional MHT
authentication structure under different data block

conditions. -e file with the size of 200M is divided into
blocks according to each data block of 1KB from which
different numbers of data blocks are extracted each time and
record the computing time.

As shown in Figure 9 and 10, the horizontal axis is the
number of data blocks, and the vertical axis is CSP com-
puting time and the authentication construction time, re-
spectively.-e construction time of Ldasip is greatly reduced
compared with that of MHT, and the audit efficiency of
Ldasip is significantly improved compared with MHT
structure. -erefore, Ldasip can reduce the computational
burden of users and cloud service providers, thus improving
the performance of audit methods.

6.3. Computation Overhead. Table 6 shows the specific al-
gorithms of Ldasip and scheme [9, 10] in the signature gen-
eration stage, challenge response stage, and verification stage.

In the experiment, we compared the signature genera-
tion computational overhead of scheme [9, 10] with Ldasip
under different data block conditions. Let the file size be
20MB, each file is divided into 1000000 data blocks, with an
interval of 100, select different data blocks from 0 to 1000 for
experiment, and record the computation overhead.

As shown in Figure 11, where the horizontal axis is the
number of data blocks that generate the signature, and the
vertical axis is the signature computation time. -e exper-
imental results show that the computation overhead of the

Table 4: Compared with the communication cost of existing solutions.

Scheme Data tag value, signature upload Audit challenge Audit proof Data update
Scheme [9] n (|p|+|m|) c (|n|+|q|) |p|+|q| -
Scheme [10] (3n+1)|p|+n|m| c (|n|+|q|) s|q| + (2c+1)|p| -
Ldasip (n+2)|p|+n|m| c (|n|+|q|) (c+3)|p|+|q| (l+7)|p|+|m|

Table 5: Comparison of communication complexity of each scheme.

Scheme
Communication complexity

DO TPA CSP
Scheme [9] O (log2n) O (log2n) O (log2n)
Scheme [10] O (log2n) O (log2n) O (log2n)
Ldasip O (log2n) O (log2m) O (log2m)

PKG TPA

CSP
Physical nodesComputer nodes

and nework nodes
D0

Figure 7: Experimental topography.

14 Security and Communication Networks

signature process increases linearly with the increase of the
number of data blocks for all methods. -e cost of Ldasip in
signature generation stage is less than that in scheme [10] but
slightly higher than that in scheme [9].-is is because Ldasip
supports dynamic update, and the process needs to calculate
the signatures of root nodes and deputy root nodes.
Compared with the large amount of calculation caused by
users downloading files locally and updating them in static
audit, the cost of Ldasip at this stage is far less than the above
situation.

In the experiment, we compared the challenge response
computational overhead of scheme [9, 10] with Ldasip under
different data block conditions. Let the file size be 20MB,
each file is divided into 1000000 data blocks, with an interval
of 100, select different data blocks from 0 to 1000 for ex-
periment, and record the computation overhead.

As shown in Figure 12, the horizontal axis is the number
of challenged data blocks, and the vertical axis is the
challenge response overhead. Experimental results show that
the computation overhead of the challenge response process
increases linearly with the increase of the number of chal-
lenged data blocks for all methods. However, the overhead of
Ldasip is lower than that of the scheme [9, 10]. -e reason is
that Ldasip introduces an improved multitree, which makes

CSP spend less time on searching and calculating data
blocks. In addition, Ldasip can also realize the protection of
user sensitive data.

In the experiment, we compared the verification com-
putational overhead of scheme [9, 10] with Ldasip under
different data block conditions. Let the file size be 20MB;
divide each file into 1000000 data blocks, with an interval of
100; select different data blocks from 0 to 1000 for exper-
iment; and record the computation overhead.

As shown in Figure 13, the horizontal axis is the number
of challenged data blocks, and the vertical axis is the verifi-
cation overhead. -e experimental results show that the
computing overhead of verification increases with the in-
crease of the number of challenged data blocks. -e calcu-
lation process and parameter size of Ldasip and Scheme [9] in
the verification stage are nearly the same, and the simulation
results change linearly. Because the length of a single chal-
lenge chal is constant, with the linear increase of the number
of challenge data blocks, the computational overhead is also
linear. Although Ldasip adds the root node integrity verifi-
cation, the amount of calculation is very small, which is
practically negligible. -erefore, the cost of Ldasip is basically
the same as that in the scheme [9], but significantly lower than

0

100

200

300

400

500

50 100 150 200 250 300 350 400 450 500

CS
P

co
m

pu
tin

g
tim

e (
m

s)

number of data blocks

MHT
Ldasip

Figure 9: Different data block numbers with a step size of 50. -e
overhead of CSP computing time under different authentication
structures.

0
200
400
600
800

1000
1200
1400
1600

20 30 40 50 60 70 80 90 100

co
ns

tr
uc

tio
n

tim
e (

m
s)

number of data blocks (x10000)

MHT
Ldasip

Figure 10: Different data block numbers with a step size of 105.-e
overhead of construction time under different authentication
structures.

PKG User TPA CSP

Send ID
Return the user private key

calculate the auditIng
authorization and send it

Calculate block signature, root node signature and verify
Challenge

Return proofReturn data integrity information
Integrity

verification

Data
update

Send an update request

Update files and send update certificates

Send updated block signature and root signature

Figure 8: Sequence diagram of data integrity audit.

Security and Communication Networks 15

Ta
bl

e
6:

A
lg
or
ith

m
s
of

di
ffe
re
nt

au
di
t
sc
he
m
es

in
sig

na
tu
re

ge
ne
ra
tio

n
st
ag
e.

St
ag
e

Sc
he
m
e
[9
]

Sc
he
m
e
[1
0]

Ld
as
ip

Si
gn

at
ur
e

ge
ne
ra
tio

n
σ i

�
(

H
(

i)
μm

i)sk
ID

σ(
k

)
1i

�
sk

ID
·
(

H
(
na
m
e ‖

i)
·v
′ ·

s

j�
1

u
m

ij

j
)s k

⎧⎪ ⎨ ⎪ ⎩

⎫⎪ ⎬ ⎪ ⎭
k
ϵω

σ(
k

)
2i

�
g

−
s k

 k
ϵω

σ(
k

)
3i

�
g

−
r k

k
ϵ

ω

σ i
�

(
H

i(
na
m
e‖

V
n
‖t

i)
·
u

H
3(

m
i)
)sK

ID

c
�
(H

1(
R)
)
sk
id

Γ�
(H

1(
R∗

))
sk
ID

C
ha
lle
ng

e
re
sp
on

se
T

�
(

c j�

1
σi

vj ij
),

 m
�

c j�

1
v j

m
ij

μ j
�

(

i,
vi

)ϵ
I

v i
m

ij

σ(
k

)
1

�

(
i,
vi

)ϵ
I

σ(
k

)vi

1i

⎧⎪ ⎨ ⎪ ⎩

⎫⎪ ⎬ ⎪ ⎭
k
ϵω

σ(
k

)
2

�
σ(

k
)

2i

 iϵ
I,

k
ϵω

σ(
k

)
3

�
σ(

k
)

3i

 iϵ
I,

k
ϵω

T
�

iε

Iσ
vi i
,μ

�

iε
I
v i

H
3(

m
i)

V
er
ifi
ca
tio

n
e(

T
,g

)
�

e(

c j�
1

(
H

(
i j

))
vi
μ m

,R
·Y

H
(

ID
,R

))

(
i,
vi

)ϵ
I

A
vi

�
 k
ϵS

(
(

e(
σ(

k
)

1
,g

)
·

(

i,
vi

)ϵ
I

e(
T

(
k

),
σ(

k
)vi

3
)·

e(
(

H
(

n
a

m
e|

|i
)v
′)

vi

s j�
1

u
μj j

,σ
(

k
)

2
))
Δk

,S
(
0)

e(
c

,g
)

�
e(

iε

I
H

1(
na
m
e‖

V
n
‖t

i)
v i

·

u
u
,B

·
P
pu

bH
2(

ID
,B

)m
od

q
)e

(
T

,g
)

�

e(

i∈
I
H

1(
na
m
e‖

V
n
‖t

i)
v i

·
u
μ ,

B
·P

pu
bH

2(
ID

,B
)m

od
q
)

N
ot
e.ω

re
pr
es
en
ts

us
er

id
en
tit
y,

an
d

s k
,r

k
re
pr
es
en
ts

a
ra
nd

om
fo
r
ea
ch

us
er

ID
.

16 Security and Communication Networks

that in the scheme [10], indicating that Ldasip can guarantee
good audit performance on the premise of supporting data
sensitivity protection and dynamic update of data.

6.4. Communication Overhead. In the experiment, we
compared the communication overhead of schemes [9, 10]
with Ldasip under different data block conditions. Let the file
size be 20MB, divide each file into 1000000 data blocks every
100 intervals, select different data blocks from 0 to 1000 for
experiment, and record the communication overhead.

As shown in Figure 14, the horizontal axis is the number
of challenged data blocks, and the vertical axis is the
communication overhead. Experimental results show that
communication overhead increases with the increase in the
number of challenged data blocks. Because we introduces an
improved multibranch tree structure supporting lightweight
authentication, which shortens the authentication path and
auxiliary information, the communication overhead of
Ldasip is less than that of scheme [9, 10].

7. Conclusion

In recent years, cloud storage services have become an in-
creasingly important part of the information technology
industry. It is critical to ensure the integrity of data out-
sourced to the cloud. -erefore, we proposed Ldasip, a
lightweight dynamic audit method that supports sensitive
information protection in cloud storage. Exploiting identity-
based data integrity audit, a data masking technique is in-
troduced to protect users’ sensitive information. An im-
proved multibranch tree structure is proposed to realize
dynamic audit and reduce the communication overhead
during verification. -ird-party legal authority verification
mechanism is introduced to ensure that only the legitimate
third-party authorization by the user can handle the files on
behalf of the user and reduce the security threat brought by
the third-party auditor. Finally, the theoretical analysis and
experimental evaluation results of Ldasip are given.

However, some issues are not covered in this paper. First,
more efforts should be made to support data integrity audit in
more complex cloud service scenarios such as the cloud service
composition. Second, this paper mainly studies the integrity
audit of cloud storage data by trusted third-party auditors and
supports the integrity audit of dynamic operation of data by
users, without focusing on the security and performance issues
in data sharing scenarios. In the future, the security and
performance issues of integrity audit will be further considered
when data are shared by entities other than users.

APPENDIX

Proofs of Proposition 1. Given the correct private key
skID� b + x0H2(ID,B)modq generated by PKG, the verifi-
cation equation (A.1) in the KeyExtract algorithm will hold.

0

5

10

15

20

25

30

200 300 400 500 600 700 800 900 1000

sig
na

tu
re

 g
en

er
at

io
n

ov
er

he
ad

 (s
)

data blocks

scheme [9]
scheme [10]
Ldasip

Figure 11: Different data block numbers with a step size of 100.-e
overhead of signature generation under different audit schemes.

0
0.5

1
1.5

2
2.5

3
3.5

4

100 200 300 400 500 600 700 800 900 1000

ch
al

le
ng

e r
es

po
ns

e
ov

er
he

ad
 (s

)

challenged data blocks

scheme [9]
scheme [10]
Ldasip

Figure 12: Different challenged data block numbers with a step size
of 100. -e overhead of challenged response under different audit
schemes.

0
5

10
15
20
25
30
35

100 200 300 400 500 600 700 800 900 1000

ve
rif

ic
at

io
n

ov
er

he
ad

 (s
)

challenged data blocks

scheme [9]
scheme [10]
Ldasip

Figure 13: Different challenged data block numbers with a step size
of 100. -e overhead of verification under different audit schemes.

0
200
400
600
800

1000
1200
1400

100 200 300 400 500 600 700 800 900 1000
data blocks

scheme [9]
scheme [10]
Ldasip

A
ud

it
pr

oc
es

s c
om

m
un

ic
at

io
n

ov
er

he
ad

 (m
s)

Figure 14: Different data block numbers with a step size of 100.-e
overhead of communication is under different audit schemes.

Security and Communication Networks 17

Based on the properties of bilinear mapping, the equation (A
1) can be proved to be correct by deriving the left-hand side
from the right-hand side.

g
skID

� g
b+x0H2(ID,B)modq

� g
b

· g
x0H2(ID,B)modq

� B · Ppub
H2(ID,B)modq

.

(A.1)

□

Proofs of Proposition 2. Given the legal authority verification
value V � gx and legal authority Entrust� (H1(ID, IDTPA))x
generated by the legal authority generation algorithm, the
verification of the equation (A.2) in the Entrust algorithm
will hold. Based on the properties of bilinear mapping, the
equation (A.2) can be proved to be correct by deriving the
left-hand side from the right-hand side:

e(Entrust, g) � H1 ID, IDTPA((
x
, g(

� H1 ID, IDTPA((, g
x

(

� e H1 ID, IDTPA(, V(.

(A.2)

□

Proofsof Proposition 3. A valid proof P�

{T,μ,{H1(zi),Ωi}i∈I,c,Γ1≤i ≤I} is given from the cloud. TPA is
responsible for executing the verification algorithm. First, it
verifies whether the equations (A.3) and (A.4) will hold to
check the correctness of the authentication structure. If yes,
it judges whether the data blocks and authentication tags
stored by CSP are correct by checking whether the equation
(A.5) holds. According to the properties of bilinear mapping,
the left side of the equation can be deduced from the right
side, which can prove that the equations (A.3) and (A.5) are
correct. -e equation (A.4) can also be proved.

e(c, g) � e H1(R)(
skID

, g

� e H1(R), g
skID

� e H1(R), pk(.

(A.3)

e(T, g) � e
i∈I

σi
vi , g⎛⎝ ⎞⎠

� e
i∈I

H1 name Vn

����
����ti · u

H3 mi()
skID

vi

, g⎛⎝ ⎞⎠

� e
i∈I

H1 name Vn

����
����ti · u

H3 mi()
vi

skID

, g⎛⎝ ⎞⎠

� e
i∈I

H1 name Vn

����
����ti · u

H3 mi()
vi

, g
skID⎛⎝ ⎞⎠

� e
i∈I

H1 name Vn

����
����ti · u

H3 mi()
vi

, pk⎛⎝ ⎞⎠

� e
i∈I

H1 name Vn

����
����ti · u

H3 mi()
vi

, pk⎛⎝ ⎞⎠ · e u
rH3(L)

, pk

� e
i∈I

H1 name Vn

����
����ti

vi

· u

i ∈ I

H3 mi()vi

, pk⎛⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎠

� e
i ∈ I

H1 name Vn

����
����ti

vi
· u

μ
, B · Ppub

H2(ID,B)modq⎛⎝ ⎞⎠.

(A.4)

□
Proofs of Proposition 4. If the file has been damaged, and a
malicious cloud forged an audit proof about the damaged
data block and won the following security game, then we will
be able to solve the discrete logarithm problem (DL) on G.
-e safe games are as follows [34].

When TPA sends an audit challenge Chal � 1, v[i]{ }iεI to
the cloud, the audit proof of the correct data blockmi should

be P� {T, μ,{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤I}. However, a malicious
cloud wants to generate an audit proof of the wrong data
block m’i. -e wrong audit proof P� {T, μ′,{H1(zi),Ωi}i∈I,
c,Γ1≤i≤I}. Let us define Δμ � μ′ − μ(Δμ≠ 0). If this wrong
proof can be successfully verified by TPA, then the malicious
cloud is considered to have won the game; otherwise, it is
considered to have lost the game.

18 Security and Communication Networks

It is assumed that the malicious cloud won the
above game. e(T, g) � e(i∈IH1(name‖Vn‖ti)

vi · uμ, B·

Ppub
H2(ID,B)modq) can be obtained by the equation (A.5). It is

assumed that P� {T, μ′,{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤ I} can be
verified by TPA; then, the authors have the equation e(T, g) �

e(i∈IH2(name‖Vn‖ti)
vi · uμ′ , B · Ppub

H2(I D,B)modq).-rough
these two equations and using the characteristics of bilinear
mapping, the authors can get the following.

e
i∈I

H1 name Vn

����
����ti

vi
· u

μ
,B · Ppub

H2(ID,B)modq⎛⎝ ⎞⎠

� e(T,g)

� e T′,g(

� e
i∈I

H1 name Vn

����
����ti

vi
· u

μ′
,B · Ppub

H2(ID,B)modq⎛⎝ ⎞⎠.

(A.5)

-erefore, the authors can get uμ � uμ′ , uΔμ � 1. Given
(g, h)εG, because G is a cyclic group, so there is x ∈Z∗q that
makes h � gx does not loss of generality. Given g, h, let
u � gahbεG, where a and b are two random elements in Z∗q .
-e authors find a way to solve the discrete logarithm
problem on G, that is, 1 � uΔμ � (gahb)Δμ � ga·Δμ · hb·Δμ, the
solution of the discrete logarithm problem as follows:

h � g
(−aΔμ/bΔμ)

� g
(−a/b)

, x � −
a

b
. (A.6)

Note that the probability that b is zero is only 1/q.
Because q is a large prime number, the authors believe that
the probability of b being zero is negligible. In this way, the
probability that the authors can solve the discrete logarithm
problem is 1-1/q. However, this is contrary to our as-
sumption that solving the discrete logarithm problem is
difficult. -erefore, for a malicious cloud, it is computa-
tionally infeasible to generate an audit proof about incorrect
data that can be verified by TPA. □

Proofs of Proposition 5. -e TPA cannot obtain the original
data from the audit proof. -is scheme uses data masking
technology to disguise the original data, that is,
μ � iεIviH3(mi) . Because H3(mi) is a hash value, the input
data of the hash function cannot be obtained by reverse
deduction; even if the third-party auditor obtains the value
of H3(mi) through multiple verifications, it cannot deduce
the value of mi according to the equation μ � iεIviH3(mi),
so the third-party auditor cannot deduce the user’s original
data from the audit proof, thus protecting the user’s data
privacy.

-e TPA cannot obtain the user’s original data from the
audit proof. Because in{{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤ I}, H1(zi) is the
link between the hash value H1(mi) of the data block of this
node and the hash value of its child nodes,Ωi is the auxiliary
verification path information, which is also the hash value,
and c and Γ are the signature the of root node and deputy
root nodes. According to the one-way nature of the hash
function, it is difficult to find the input data through the hash

value, c and Γ are the signatures of the IBS, and the scheme is
secure, so the third party cannot obtain the original user
data. □

Proofs of Proposition 6. -e legal authority stage is divided
into two stages, namely, the third-party legal authority
generation stage of the user and the third-party legal au-
thority verification stage of CSP. In the authority generation
stage, the computation cost for the user to calculate the legal
authority verification value V � gx and the legal authority
Entrust� (H1(ID, IDTPA))x is HashG + 2ExpG. In the au-
thorization verification stage, the cloud service provider
verifies the legitimacy of authority through equation
e(Entrust, g) � e(H1(ID, IDTPA), V), and the required
computation overhead is HashG+2Pair. To sum up, the
cost of auditing authorization stage is 2HashG+

2ExpG + 2Pair. □

Proofs of Proposition 7. -e computation overhead of the
signature generation process is generated by the users. First,
users need to calculate tags σi � (H1(name‖Vn‖ti)·

uH3(mi))skID for n data blocks, and the computation overhead
is nHashG + nMulG + 2nExpG + nHashz∗q. After that, the
root node signature c � (H1(R))skID and the deputy root node
signature set Γ � (H1(R∗))skID are signed by skID, and the
computation cost is 2HashG + 2ExpG. To sum up, the
computation overhead of the signature generation process is
(n + 2)HashG + nMulG + (2n + n)ExpG + nHashz∗q . □

Proofs of Proposition 8. -e challenge response stage is
divided into two parts; namely, the third-party auditor
sends the audit challenge to CSP, and CSP provides the
audit proof to TPA. In an audit task, TPA only spends a
small amount of computation overhead to generate audit
challenge, which is ignored here. -e audit proof gen-
eration stage is performed by CSP. CSP first calculates
T � iεIσvi

i . -e required computation overhead is
(c − 2)MulG + cExpG, calculates μ � iεIviH3(mi), and
then sends the generated audit proof to TPA. -e com-
putation cost in this process is cMulz∗q+(c-1)Addz∗q. To
sum up, the computation overhead of the of challenge is
(c-1) MulG + cExpG + cMulz∗q+ (c − 1)Addz∗q. □

Proofs of Proposition 9. -e verification process is per-
formed by the third-party auditor. When TPA receives the
audit proof sent by CSP, it will judge whether the received
proof is correct by verifying the equations (A.3) and (A.4).
-e computation cost of this process is 4Pair + 2HashG. If
the equations do not hold, TPA terminates verification. If the
equations hold, TPA will judge whether the audit proof sent
by the cloud is correct according to e(T, g) � e(i∈IH1
(name‖Vn‖ti)

vi · uμ, B · Ppub
H2(I D,B)modq). -e computation

cost of this process is (c+2) ExpG + cHashG + cMulG+

Hashz∗q + 2Pair. To sum up, the calculation overhead of the
whole verification phase is (c+2) ExpG(c + 2)HashG+

cMulG + Hashz∗q + 6Pair. □

Proofs of Proposition 10. In the dynamic operation stage, the
main computation overhead is computation of the

Security and Communication Networks 19

corresponding tag, the update process of the root nodes, and
the equation verification process.

First of all, the user computes the new authentication tag
σi
′ � (H1(name‖Vn

′‖ti
′) · uH3(mi

’))skID and sends update
request to CSP. -e computation overhead is HashG+

2ExpG + MulG + Hashz∗q.
After receiving the update information, CSP calculates

the hash valueH1(zi’) of the updated data block and the hash
values of all relevant nodes on the update authentication
path. Finally, the new root node R′ and the deputy root node
R∗’ are output, the computation cost of this process is
2HashG, and then, the update audit proof is sent to the user.

Finally, the user verifies the information provided by
CSP, generates the original root R and the deputy root R∗
with {H1(zi),Ωi}, and judges whether the equation e(c, g) �

e(H1(R), pk) and (4) e(c, g) � e(H1(R∗), pk) hold. If they
does not hold, the user outputs fail; otherwise, it continues to
verify whether CSP correctly executes the update operation,
generates root R″ and R∗′ with {H1(z′i),Ωi}, and compares
them with the returned R′ and R∗′ If the two values are
equal, it means that CSP correctly executed the update
operation, then the user calculates c′�H1(R′)skID and
Γ′�H1(R∗′) skID, and sends them to CSP to complete the
update. -e computation overhead of this process is
4HashG + 4Pair + 2ExpG. -erefore, the total computation
cost of the modification process is 7HashG + 4ExpG+

4Pair + MulG · Hashz∗q, and the insertion process is the
same. Since the deletion process does not need to calculate
the block tag, the computation cost of the deletion process is
6HashG + 2ExpG + 4Pair. □

Proofs of Proposition 11. During the legal authority gen-
eration process, the user sends the audit authorization
Entrust�(H1(ID,IDTPA))x to TPA and sends the legal au-
thority verification value V � gx to CSP, where the cost of
Entrust is |p| and the cost of V is |q|. In the process of legal
authority verification, the third-party auditor needs to send
the legal authority to CSP, the communication overhead in
this process is |p| bits, so the communication cost in the
authorization process is 2|p|+|q| bits.

Users upload data blocks, data block tags and signatures
to CSP, where the total cost of data blocks is n|m|, and the
size of data block label σi

′ � (H1(name‖Vn
′‖ti
′)·

uH3(mi
’))skI D is n|p|. Because Ldasip uses the improved

multibranch authentication tree to sign, it needs to transmit
the signatures of root nodes c�(H1(R))skID and deputy root
nodes Γ�(H1(R∗))skID, and the communication cost of
both is |p|. To sum up, the communication cost in this
process is (n+2)|p|+n|m|.

-e communication overhead of the audit challenge
response process is divided into audit challenge and audit
proof transmission communication overhead in which TPA
sends audit challenge chal to CSP, and one audit challenge
1, vi{ }iεI occupies (|n|+|q|) bits. CSP calculates the audit
proof and sends the audit proof to TPA, with one audit proof
P� {T,μ,{H1(zi),Ωi}i ∈ I,c,Γ1≤i ≤ I} occupying (c+3)|p|+|q| bits.
To sum up, the total communication overhead of this
process is (c+3)|p|+(c+1)|q|+c|n| bits.

Data update is divided into three operations: data in-
sertion, modification, and deletion.

In the process of data modification and addition,
the main communication overhead includes data trans-
mission process, update proof transmission process, and
update signature transmission process. Transmission
data update information includes updated signature σi

′ �
(H1(name‖Vn

′‖ti
′) · uH3(mi

∗))skI D and data block mi, and
the overhead required is |p|+|m|. CSP updates root node
and authentication structure according to received update
information, calculates the update proof Pupdate �

{{H1(z′i),Ωi}i ∈ I,c, R′,Γ1≤i ≤ I,R∗‘}, and sends it to the user in
which the communication overhead of Pupdate is (l+4)|p|.-e
user receives the update proof and verifies it. After verifi-
cation, the signature values of the updated root node and
deputy root node are transmitted to CSP, and the overhead
of transmitting the updated signature is 2|p|. To sum up, the
communication overhead of data update process is (l+7)|
p|+|m|. Since the user does not need to transmit updated
signatures and the data block to CSP during the deletion
operation, the communication overhead of the deletion
operation is (l+6)|p|. □

Data Availability

All data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

-e authors declared that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

-is work was supported in part by the National Science
Foundation of China under Grant 61502017 and the Sci-
entific Research Common Program of Beijing Municipal
Commission of Education under Grant KM201710005024.

References

[1] Tencent.com, “Inventory of top ten cloud downtime accidents
in 2018: Nomainstream public cloud is spared!,” 2020, https://
xw.qq.com/cmsid/20181229A0W3UK00.

[2] “Take stock of domestic network security events in 2021,”
2022, https://m.thepaper.cn/baijiahao_17013245.

[3] “2022 inventory of global major cyber security events,” 2022,
https://zhuanlan.zhihu.com/p/496014016.

[4] L. Bai, Y. Zhu, and B. Lu, “Research and progress of cloud data
storage security audit,” Computer Science, vol. 47, no. 10,
pp. 290–300, 2020.

[5] Z. Qin, S. Wu, and X. Hu, “Overview of data integrity audit
schemes in cloud storage services,” Information Network
Security, vol. 10, pp. 1–6, 2014.

[6] B. Shao, X. Li, and G. Bian, “Overview of research on cloud
storage data integrity audit technology,” Information Network
Security, vol. 19, no. 6, pp. 28–36, 2019.

[7] H. Q. Wang, “Identity-based distributed provable data pos-
session in multicloud storage,” IEEE Trans. Services Compute,
vol. 8, no. 2, pp. 328–340, 2015.

20 Security and Communication Networks

https://xw.qq.com/cmsid/20181229A0W3UK00
https://xw.qq.com/cmsid/20181229A0W3UK00
https://m.thepaper.cn/baijiahao_17013245
https://zhuanlan.zhihu.com/p/496014016

[8] Z. Lin, Research on Identity-Based Data Integrity Verification
in Cloud Storage, Hebei University, Hebei, China, 2017.

[9] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer, “Identity-
based remote data possession checking in public clouds,” IET
Information Security, vol. 8, no. 2, pp. 114–121, 2014.

[10] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K. R. Choo, “Fuzzy
identity-based data integrity auditing for reliable cloud
storage systems,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 16, no. 1, pp. 72–83, 2019.

[11] L. Lin, W. Tan, and Z. Chu, “Summary of outsourcing data
integrity audit,” Cyberspace Security, vol. 11, no. 11, pp. 61–69,
2020.

[12] G. Ateniese, R. Burns, and R. Curtmola, “Provable data
possession at untrusted stores,” in Proceedings of the 14th
ACM Conference on Computer and Communications Security,
pp. 598–609, ACM, New York, NY, USA, October 2007.

[13] M. A. Shah, R. Swaminathan, and M. Baker, “Privacy-Pre-
serving Audit and Extraction of Digital Contents,” Pasos
Revista De Turismo Y Patrimonio Cultural, vol. 477-494, 2008.

[14] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou,
“Privacy preserving public auditing for secure cloud storage,”
IEEE Transactions on Computers, vol. 62, no. 2, pp. 362–375,
2013.

[15] Y. Tan, W. Fan, and J. Wang, “A cloud data integrity veri-
fication scheme supporting privacy protection,” Small Micro
Computer System, vol. 38, no. 12, pp. 2736–2740, 2017.

[16] Y.Wang, Research on Data Integrity Audit Method Supporting
Privacy Protection, Xi’an University of Architecture and
Technology, Xi’an, China, 2018.

[17] H. Baofu, L. Hui, and W. Chuansi, “Blockchain-Based Dis-
tributed Data Integrity Auditing Scheme,” in Proceedings of
the 2021 IEEE 6th International Conference on Big Data
Analytics (ICBDA), pp. 143–149, IEEE, Xiamen, China, March
2021.

[18] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” in Proceedings of the
2009 ACM Conference on Computer and Communications
Security, pp. 213–222, ACM, Illinois, IL, USA, January 2009.

[19] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling
public auditability and data dynamics for storage security in
cloud computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, no. 5, pp. 847–859, 2011.

[20] E. Daniel and N. A. Vasanthi, “A cost effective dynamic
auditing scheme for outsourced data storage in cloud envi-
ronment,” in Proceedings of the 2017 International Conference
on Innovations in Green Energy and Healthcare Technologies
(IGEHT), pp. 1–5, IEEE, Coimbatore, India, March 2017.

[21] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An
efficient public auditing protocol with novel dynamic struc-
ture for cloud data,” IEEE Transactions on Information Fo-
rensics and Security, vol. 12, no. 10, pp. 2402–2415, 2017.

[22] M. Sookhak, F. R. Yu, and A. Y. Zomaya, “Auditing big data
storage in cloud computing using divide and conquer tables,”
IEEE Transactions on Parallel and Distributed Systems, vol. 29,
no. 5, pp. 999–1012, 2018.

[23] T. Shang, F. Zhang, X. Chen, J. Liu, and X. Lu, “Identity-based
dynamic data auditing for big data storage,” IEEE Transac-
tions on Big Data, vol. 7, no. 6, pp. 913–921, 2021.

[24] Y. Yuan, J. Zhang, W. Xu, and Z. Li, “Enable Data Privacy,
Dynamics, and Batch in Public Auditing Scheme for Cloud
Storage System,” in Proceedings of the 2021 2nd International
Conference on Computer Communication and Network Se-
curity (CCNS), August 2021.

[25] G. Ateniese, R. C. Burns, R. Curtmola et al., “Remote data
checking using provable data possession,” ACM Transactions
on Information and System Security, vol. 14, no. 1, pp. 12–34,
2011.

[26] Y. Zhang, H. Zhang, R. Hao, and J. Yu, “Authorized identity-
based public cloud storage auditing scheme with hierarchical
structure for large-scale user groups,” China Communica-
tions, vol. 15, no. 11, pp. 111–121, 2018.

[27] W. Shen, J. Qin, J. Yu, R. Hao, J. Hu, and J. Ma, “Data integrity
auditing without private key storage for secure cloud storage,”
IEEE Transactions on Cloud Computing, vol. 9, no. 4,
pp. 1408–1421, 2021.

[28] M. Zhao, Y. Ding, and Y. Wang, “Cloud data security storage
scheme for designated auditors,” Information Network Se-
curity, vol. 11, pp. 66–72, 2018.

[29] S. Hiremath and S. Kunte, “A Novel Data Auditing Approach
to Achieve Data Privacy and Data Integrity in Cloud com-
puting,” in Proceedings of the 2017 International Conference
on Electrical, Electronics, Communication, Computer, and
Optimization Techniques (ICEECCOT), pp. 306–310, Mysuru,
India, December 2017.

[30] Y. Zhang, Yu Jia, H. Rong, C. Wang, and K. Ren, “Enabling
efficient user revocation in identity-based cloud storage
auditing for shared big data,” IEEE Transactions on De-
pendable and Secure Computing, vol. 17, no. 3, pp. 608–619,
2020.

[31] Y. Zha, S. Luo, J. Bian, and W. Li, “Multi-user and multi-copy
data possession proof scheme based on multi-branch au-
thentication tree,” Journal of Communications, vol. 36, no. 11,
pp. 80–91, 2015.

[32] P. J. Denning, “-e locality principle,” Communications of the
ACM, vol. 48, no. 7, pp. 19–24, 2005.

[33] Y. Zhao, S. Wang, S. Wu, and X. Hu, “A proxy remote data
integrity audit protocol,” Journal of University of Electronic
Science and Technology of China, vol. 45, no. 01, pp. 80–85,
2016.

[34] W. Shen, Ye Su, and H. Rong, “Lightweight cloud storage
auditing with deduplication supporting strong privacy pro-
tection,” IEEE Access, vol. 8, pp. 44359–44372, 2020.

Security and Communication Networks 21

