
Retraction
Retracted: Cloud Storage Model Based on the BGV Fully
Homomorphic Encryption in the Blockchain Environment

Security and Communication Networks

Received 5 December 2023; Accepted 5 December 2023; Published 6 December 2023

Copyright © 2023 Security andCommunicationNetworks.Tis is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in anymedium, provided the original work is
properly cited.

Tis article has been retracted by Hindawi, as publisher,
following an investigation undertaken by the publisher [1].
Tis investigation has uncovered evidence of systematic
manipulation of the publication and peer-review process.
We cannot, therefore, vouch for the reliability or integrity of
this article.

Please note that this notice is intended solely to alert
readers that the peer-review process of this article has been
compromised.

Wiley and Hindawi regret that the usual quality checks
did not identify these issues before publication and have
since put additional measures in place to safeguard research
integrity.

We wish to credit our Research Integrity and Research
Publishing teams and anonymous and named external re-
searchers and research integrity experts for contributing to
this investigation.

Te corresponding author, as the representative of all
authors, has been given the opportunity to register their
agreement or disagreement to this retraction. We have kept
a record of any response received.

References

[1] J. Huang and D. Wu, “Cloud Storage Model Based on the BGV
Fully Homomorphic Encryption in the Blockchain Environ-
ment,” Security and Communication Networks, vol. 2022, Ar-
ticle ID 8541313, 9 pages, 2022.

Hindawi
Security and Communication Networks
Volume 2023, Article ID 9768619, 1 page
https://doi.org/10.1155/2023/9768619

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/9768619

RE
TR
AC
TE
DResearch Article

Cloud Storage Model Based on the BGV Fully Homomorphic
Encryption in the Blockchain Environment

Jie Huang 1,2 and Dehua Wu1,2

1Hunan Provincial Engineering Research Center for Aircraft Maintenance, Changsha 410124, Hunan, China
2Changsha Aeronautical Vocational and Technical College, Changsha 410124, Hunan, China

Correspondence should be addressed to Jie Huang; huangjie918@163.com

Received 10 June 2022; Revised 29 June 2022; Accepted 2 July 2022; Published 20 July 2022

Academic Editor: Mohammad Ayoub Khan

Copyright © 2022 Jie Huang and Dehua Wu. +is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Blockchain is a distributed time-series database. Based on the blockchain platform, this paper designs the framework model of
cloud storage and designs the cloud storage model based on homomorphic encryption based on the operation process of the
model. According to the applicability of underlying blockchain storage, the HElib library is established as the algorithm for data
privacy protection. +e BGV homomorphic encryption algorithm is used as the bottom layer of the algorithm, and the efficiency
of the BGV homomorphic encryption algorithm is compared with that of the Gentry’s bootstrap-based homomorphic encryption
algorithm. It is proved that the BGV algorithm is more suitable for big data.

1. Introduction

At present, the blockchain cloud storage system is mainly
used to store all the data on the chain, so each user on the
chain should have the right to retrieve the data.+e on-chain
user, namely, the data owner, stores the data on the cloud
server (CS). How can the nodes in blockchain quickly re-
trieve the corresponding data in the face of massive ci-
phertext is an urgent problem to be solved at present.
Encrypting storage in cloud storage is a feasible solution.
+is paper designs a blockchain environment based on the
BGV (2011 Brakerski, Gentry, Vaikuntanathan, a fully ho-
momorphic encryption scheme, referred to as the BGV
scheme [1]) fully homomorphic encryption cloud storage
model, so that the cloud server can directly process the
ciphertext. When users need corresponding data, they only
send a request. +e cloud server returns the processed data,
and users get the processed plaintext data after decryption.
Compared with other models, the cloud storage model
proposed in this paper has high efficiency and simple op-
eration and can ensure data privacy.

2. Methodology

2.1. Homomorphic Algorithm. Since this paper mainly uses
blockchain as the basic platform, from the perspective of
practicality, data retrieval, and checking whether data are
linked, is the main demand in practical applications.
+erefore, it is the main demand of the cloud storage system
to select a homomorphic algorithm with high efficiency and
suitable for retrieval. +e following two important homo-
morphic algorithms will be analyzed [2].

From the perspective of applicability analysis of the basic
status of homomorphism encryption, first of all, addition
homomorphism and multiplication homomorphism are a
part of the homomorphism encryption algorithm; this
concept comes from recent algebra, Set <G, ∗> and <H, ∗>
are two unrelated algebraic systems, f: G⟶ H is a
mapping, if ∀a, b ∈ G will make f(a∗ b) � f(a)∗f(b),
then F is called a homomorphic mapping from G to H [3].
+e above formula is the multiplication homomorphic al-
gorithm, and because the formula only meets the multi-
plication operation, not the addition operation, so it is a

Hindawi
Security and Communication Networks
Volume 2022, Article ID 8541313, 9 pages
https://doi.org/10.1155/2022/8541313

mailto:huangjie918@163.com
https://orcid.org/0000-0002-4995-7132
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/8541313

RE
TR
AC
TE
D

partial homomorphic encryption operation. If both addition
and multiplication can be satisfied, all the operations of
addition and multiplication can be satisfied, which is called
full homomorphic operation.

At present, there are many fully homomorphic en-
cryption (FHE) algorithms. Gentry for the first time pro-
posed a homomorphic encryption algorithm that can carry
out both multiplication and addition operations, but its
implementation in practical applications is low [4]. A BGV
scheme designed a new homomorphic encryption con-
struction technology, and the two schemes are described in
detail as follows.

2.1.1. Gentry’s FHE Scheme. Gentry’s solutions are all
“bootstrapping FHE solutions”. Bootstrapping technology is
the core of this technology, and themain idea is to reduce the
noise in the ciphertext by processing its own decryption
function, so that noise content is reduced to the range that
can be correctly decrypted [5]. +e specific implementation
is the Recrypts operation in the Gentry’s FHE scheme. +e
Recrypts operation performs noise reduction during the
homomorphic decryption of the ciphertext. We set the
message as m and the public key as pk1, then

c1 � Encrypts pk1, m(􏼁. (1)

+e encrypted ciphertext is c1. Assuming that the other
public key is pk2 and the decryption key after pk2 is
encrypted as sk1, set

sk1 � Encrypts pk2, sk1(􏼁. (2)

Recrypts operation:

Recypts pk2, Dε, sk1, c1􏼐 􏼑. (3)

For each bit of c1, c1j is

c1j � Encrypts pk2, c1j􏼐 􏼑. (4)

It is written as

c1 � < c11, c12, . . . , c1i, . . . >. (5)

Output:

c←Encrypts pk2, Dε, sk1, c1􏼐 􏼑. (6)

In fact, the whole process can be regarded as the second
encryption of message m. +e public key pk1 is used for the
first encryption, and the public key pk2 is used for the second
encryption. +e function Recrypts is used to decrypt the
encrypted data, and the result of the second encryption is
retained, that is, the Recrypts function can retain the results
of the outer layer and decrypt the inner layer in the case of
two layers of encryption.

2.1.2. BGV Scheme. BGV designs a new homomorphic
encryption construction technology to ensure security and
improve efficiency. +e development process introduces
dimension modulus specification, which enables ciphertext

refresh to effectively control ciphertext dimension and noise
growth, and constructs a hierarchical homomorphic en-
cryption algorithm. Different from the Gentry’s homo-
morphic scheme, it does not require a bootstrap process [6].

Based on the encryption scheme based on GLWE
(general learning with error), the scheme is extended to
construct a fully homomorphic scheme with a hierarchical
structure. +e scheme is evaluated by using the parameter,
namely, the depth L of the arithmetic circuit. +e process of
the BGV solution is as follows:

Step 1: input safety parameters λ, circuit depth L, and
bit value b to represent the process as

Setup l
λ
, l

L
, b􏼐 􏼑, (7)

where b ∈ 0, 1{ } is mainly used to judge whether the
encryption scheme is based on the LWE scheme or the
R-LWE scheme.
Second, we calculate the parameters as

paramsj← Setup l
λ
, l

(j+1)·μ
, b􏼐 􏼑. (8)

j ∈ L, 0{ } decreases step by step, and

μ � μ(λ, L, b) � θ(log λ + log L). (9)

Step 2: the key generation process is expressed as

KeyGen paramsj􏽮 􏽯􏼐 􏼑. (10)

To loop j from L to 0, we perform the following steps:

(1) We run the formula

sj← SecretKeyGen paramsj􏼐 􏼑,

Aj←PublicKeyGen paramsj, sj􏼐 􏼑.
(11)

(2) We run the formula

sj
′ ← sj ⊗ sj ∈ Rqj

nj + 1
2

􏼠 􏼡. (12)

sj
′ is the tensor product of sj with itself.

(3) set

sj
″ ←BitDecomp sj

′, qj􏼐 􏼑. (13)

(4) We run the formula

When j� L, we do not perform this operation.
According to the calculation result in Step 2, the private
key sk is sj, and the public key pk is Aj and τn

sj−1⟶ sj
.

Step 3: the encryption process is represented as

Enc(params, pk, n). (15)

Wemake informationm in R2, and we run Enc(AL,m).
Step 4: the decryption process is

Dec(params, sk, c). (16)

2 Security and Communication Networks

RE
TR
AC
TE
D

Assuming that the ciphertext c is encrypted under the
public key generated by the private key sj, we run
Dec(sj, c).
Step 5: the process of performing homomorphic ad-
dition and multiplication is as follows:

(1) +e homomorphic addition process is as follows:
add (pk, c1, c2), so that the ciphertext c1, c2 are
encrypted under the public key pk generated by the
same private key sj. Setting c3← (c1 + c2)modq, c3
is the ciphertext under sj

′; the output ciphertext
refresh result is c4←Refresh(c3, τn

sj⟶ sj−1
, qj, qj−1);

(2) +e homomorphic multiplication process is as
follows: first, the ciphertext is multiplied by
Mult(pk, c1, c2) to obtain the new ciphertext, which
is mainly generated by encrypting the public key pk
generated by sj under the private key. +e new
ciphertext obtained by multiplication is the coef-
ficient vector c3 of linear equation L

long
c1·c2(x2) under

the private key sj
′← sj ⊗ sj, output: c4←Refresh

(c3, τn
sj⟶ sj−1

, qj, qj−1).

Step 6: the ciphertext refresh process is represented as
Refresh(c3, τn

sj⟶ sj−1
, qj, qj−1). +e input is the ci-

phertext c encrypted under the key sj
′, the auxiliary

information τn
sj⟶ sj−1

used for the key exchange, the
current module qj, and the next module qj− 1, which are
divided into the following three steps.

(1) Extension: set c1←Powersof2(c, qj);
(2) Analog to digital: c2← Scale(c1, qj, qj−1, 2);
(3) Key exchange: output ciphertext c3← SwitchKey

(τn
sj⟶ sj−1

, c2, qj−1), c3 is the ciphertext encrypted by
the private key sj−1 with the module qj−1.

BGV is more efficient than homomorphic encryption, so
it is more likely to be used in real scenarios.

+e cloud storage system designed in this paper mainly
determines the private key algorithm according to the ap-
plication scenarios of the system. +e current scheme uses
the fully homomorphic encryption (FHE) algorithm library
HElib to construct an FHE arithmetic model based on the
BGV homomorphic algorithm. FHE arithmetic operations
on arbitrary length integers and floating point numbers are
implemented. In addition, some optimizationmethods, such
as ciphertext packaging technology, are applied in the
library.

2.1.3. Full Homomorphic Encryption Algorithm Library
HElib. HElib is an effective homomorphic encryption soft-
ware library that implements homomorphic algorithms
based on BGV schemes. BGV is a completely homomorphic
encryption scheme based on learning with errors (LWE) and
independent of ideal lattices.+edetailed process is described
in Section 2.1.2.+emain idea of the scheme is to shorten the
ciphertext by using a mode dimension reduction technology,
which greatly reduces the complexity of decryption and
achieves the high efficiency of decryptionwhen the ciphertext
order increases [7]. In addition, directly applying the ho-
momorphism algorithm to low-order operation is inefficient

and waste. +erefore, the efficiency of homomorphism is
greatly improved by packaging multisegment ciphertext into
a batch for packaging [8].

In addition to basic functions and algorithm optimi-
zation, the library also has some other useful functions, such
as simple encryption functions [9]. +e growth of noise in
ciphertext is a big problem hindering its efficiency. Ho-
momorphic addition causes the accumulation of noise.
Homomorphic multiplication is the product of ciphertext
noise on both sides, and its growth rate is much faster than
addition.+erefore, in the HElib library, ciphertext refresh is
mainly carried out after each homomorphic multiplication
operation to achieve noise reduction.+eoretically, the noise
growth rate of homomorphic multiplication is higher than
that of homomorphic addition because the noise growth rate
of homomorphic encryption addition is the sum of two
ciphertext noises and the noise growth rate of homomorphic
multiplication operation is the product of ciphertext noises.
+erefore, after homomorphic multiplication, ciphertext
refresh is required to reducenoise.Although thenoise growth
of homomorphic addition is relatively small, the increasing
number of operations also requires ciphertext refresh to
reducenoise. Since thebottom layer of the algorithm library is
the operation in the logic circuit, and ciphertext refresh in the
HElib library will consume a layer of modulus, let Ls be the
total number of analog-to-digital conversion, themodulus in
the modulus chain Lc, and the multiplication depth L. +e
main relationship of these three parameters is

Lc � Ls + 1, (17)

Ls ≈ 2
L

2
􏼔 􏼕. (18)

From formulas (18) and (19), it can be concluded that

Ls ≈ 2
L

2
􏼔 􏼕 + 1. (19)

In the HElib library, the larger the modulus value of the
module chain is, the lower the efficiency of ciphertext ho-
momorphism calculation. +erefore, the multiplication
depth L should be reduced as much as possible in practical
application. +e cloud storage system described in this
chapter is mainly applied to data retrieval. +e complexity of
the cloud storage system is equivalent to addition and meets
system requirements.

2.2. Cloud Storage Model Based on the BGV Fully Homo-
morphic Encryption in the Blockchain Environment. Using
the existing technology of cloud storage, combined with the
actual characteristics of cloud on blockchain data, this
chapter adopts the method of cloud (untrusted participants)
storing the data uploaded by users. When uploading data,
users perform homomorphic encryption to avoid risks
during data transmission. +e key is only owned by users,
preventing data leakage during transmission. +e interac-
tion between users and the cloud storage systems consists of
four processes: key distribution, data storage, data retrieval,
and data retrieval.

Security and Communication Networks 3

RE
TR
AC
TE
D

2.2.1. Key Distribution. On the blockchain platform, users
participate in the consensus process, and then the corre-
sponding host node stores the transaction data on the chain.
+e transaction on each block will be sequentially stored in
memory, and then it will be persistent, that is, these data will
be written to the disk. Generally, level DB is used as a
database with LSM tree as its storage structure. Since each
user needs all the data on the storage chain, the pressure on a
single node will gradually increase in practical applications,
and the demand for the node host performance will also
increase. +erefore, users will initiate the demand for data
on the cloud. First, authentication is required between users
and cloud servers [10]. Figure 1 shows the process of key
distribution to facilitate subsequent data request by users. As
can be seen from Figure 1, the cloud authentication center
generates the public and private keys of the user and the
server.+e user has his own private key and the public key of
the server, and the cloud server also has its own private key
and the public key of the user.

+e cloud authentication center generates the public and
private keys of users and cloud servers. When users initiate
cloud storage, they need to apply for the key from the cloud
authentication center and store the public key of corre-
sponding users on the cloud server for later ciphertext
processing.

2.2.2. Data Storage. In this section, a relatively efficient
homomorphic encryption algorithm is adopted to construct
a cloud storage system. +e system is mainly applied to
blockchain, which encapsulates many encrypted transac-
tions. Users mainly inquire whether the transaction exists, as
shown in Figure 2. As shown in Figure 2, the main idea of
uploading cloud data is to upload the block id, transaction
hash, sender and receiver of the transaction, and transaction
status on the cloud. Users can query the actual situation of
the transaction and whether the transaction is on the chain.

Figure 3 shows the framework of CSS based on the
storage units mentioned above. As can be seen from Fig-
ure 3, the blockchain platform is the actual use scenario of
users. +e client is the end of initiating requests for users,
while the cloud service is the end of receiving requests from
users. Other participants, such as blockchain managers, can
also interact with the cloud server to initiate requests.

As shown in Figure 3, the steps of initiating storage on
the cloud for user data are as follows:

Step 1: users initiate storage requests based on their
own requirements.
Step 2: after receiving the request, the client uses the
homomorphic encryption algorithm to encrypt data.
Step 3: ciphertext on the cloud. +e data generated by
the client based on the encryption algorithm is
transmitted to the cloud server. Because the data is
encrypted, no additional protection is required during
data transmission.
Step 4: after the data is uploaded to the cloud data
storage center, the data is stored in the rented storage
space, and the public keys of the users are also stored in

the public key libraries of the users. During data
processing, users initiate data processing requests
through server applications, such as compression and
retrieval [11].
Step 5: the cloud storage server transmits the homo-
morphic encrypted ciphertext to the data processing
module.
Step 6: the data processing module processes the data.
Step 7: the data processing module collects the pro-
cessed data and returns the processed and sorted data
to the server application.
Step 8: the user module loads the processed data.
Step 9: the homomorphic encryption module gets the
processed data to decrypt the data to get plaintext.
Step 10: the decrypted plaintext to the user is returned.

+e above steps are details of data storage on the cloud.
+e homomorphic encryption algorithm adopted in this
chapter is the FHE algorithm library HElib, which is based
on the calculation model of the BGV homomorphic
algorithm.

2.2.3. Data Retrieval. Inverted index is a mapping structure
often used in full-text retrieval [12]. In the cloud storage
system designed in this chapter, users generally search for

Client has Cprivk and Cspubk

Cloud Certification Center generates
Cprivk Cpubk and Csprivk Cspubk

Cloud Server has Csprivk and Cpubk

Figure 1: Key distribution process.

Block head Random
number

Unique identifier of
the previous block

Unique identifier of
this block

Trading data

Sender

Receiver

Trading hash
Trading subscript

Trading status

Figure 2: Blockchain uploads cloud data.

4 Security and Communication Networks

RE
TR
AC
TE
D

the existence of corresponding data and its corresponding
attributes by entering keywords. However, as the amount of
data increases, the complexity of data matching will increase.
In addition, as the data of the designed system is uploaded
through encryption, it is of great importance to improve the
efficiency of retrieval and query, help users quickly locate
target information, and reduce the difficulty of information
acquisition.

Figure 4 is a schematic diagram of an inverted index
query. As shown in Figure 4, the request module is used to
receive the query’s request and keywords and return the
request results. In the inverted index structure, each word is
followed by a corresponding linked list, in which the doc-
ument number containing the word is stored. According to
this structure, the document in which each word is located
can be quickly queried. Applied to the blockchain platform,
the data request is the hash of the transaction or the block,
and the document in Figure 4 records the status of the
transaction as well as sender and receiver information.

+e inverted index model is combined with the cloud
storage model designed in this chapter to obtain the data
retrieval model. +e detailed steps of the data retrieval
process based on inverted indexes are shown in Figure 5.
According to Figure 5, the detailed steps of the data retrieval
scheme based on inverted indexes are as follows:

Step 1: the user initiates a keyword retrieval request and
uses the server public key to encrypt it.
Step 2: the cloud server receives the encrypted key-
words, decrypts them, and queries the index database
for the existence of inverted indexes. If yes, go to Step 3.
If no, go to Step 4.

Step 3: ee return the results according to the retrieval
process.
Step 4: we establish the data inversion index according
to keywords.

Step 5: the server verifies the validity of the retrieval
results.
Step 6: we search keyword results that is returned.
Step 7: the retrieval results are encrypted with the user’s
public key and transmitted to the user.
Step 8: the user decrypts data.

+e data retrieval process based on the inverted index
can effectively improve the efficiency of data retrieval by
establishing the index. Since the BGV homomorphism al-
gorithm supports data retrieval, the data retrieval process
described in this section is efficient and suitable for
blockchain application scenarios.

2.2.4. Data Update. +e cloud storage system designed in
this paper is mainly based on the homomorphic en-
cryption algorithm and stores the increasing data on the
blockchain platform [13], so the cloud storage solution
also needs to design appropriate data update strategy. +e
data update of the original symmetric and asymmetric
encryption system always decrypts the original data, and
then further updates the decrypted plaintext, which
consumes a lot of resources and time in terms of
implementation. In the cloud storage model based on
homomorphic encryption, users generate data docu-
ments, encrypt them, upload them, and send an update
operation request. After obtaining the request, the cloud
server updates the ciphertext according to the operation
request to obtain the updated ciphertext. +e specific
process is shown in Figure 6.

As can be seen from Figure 6, the specific steps of the
data update process are as follows:

Step 1: the user sends an update request to the server.
Step 2: we encrypt the unupdated data to generate a
data document.

Blockchain
platform

User data1
Transaction data

User data2
Transaction data

User data3
Transaction data

User data n
Transaction data

...

...

Client
(Trusted

participants)

User
application

Full
Homomorphic

encryption/decryption

(i) Initiating
storage
Requirements

(ii
)P

la
in

te
x

(x
i)

ci
ph

er
te

xt

(x) Return
datas

Cloud
Server (Untrusted

participants)

Application

Data
processing
algorithm

Untrusted
Cloud Storage
(Temporary)

Application

Other participants

Interaction

Interaction

(iv) Request
processing

(vii) Response
to request

(v) Unprocessed
ciphertext

(vi) Cipher
processing

(iii) Save

(v
iii

)L
oa

di
ng

Figure 3: Cloud storage framework based on blockchain.

Security and Communication Networks 5

RE
TR
AC
TE
D

Client
(Trusted

participants)

User
application

Full
Homomorphic

encryption/decryption

Cloud Server
(Untrusted
participants)

Application

Data processing
algorithm

Untrusted
Cloud Storage
(Temporary)

The index
library

(iii) Return based on
the query result

(ii) Keyword
decryption,

index library query
keyword

If yes, go to 3.If
no, go to 4

(v) Data
validation

(vi) Search keyword matching
Return result

(vii) The retrieval results
User Public Key Encryption

(i)
Th

e u
se

r i
ni

tia
te

s a
 re

tr
ie

va
l r

eq
ue

st
U

se
 th

e c
lo

ud
 se

rv
ic

e p
ub

lic
 k

ey
 fo

r e
nc

ry
pt

io
n

(v
iii

)
Th

e r
es

ul
ts

ar
e t

ra
ns

m
itt

ed
 to

 th
e u

se
r

Th
e u

se
r d

ec
ry

pt
s t

he
 se

ar
ch

 re
su

lts

Build an index base based on keywords

Figure 5: Data retrieval process based on the reverse sorting index.

Client
(Trusted

participants)

User
application

Full
Homomorphic

encryption /decryption

Cloud Server
(Untrusted
participants)

Application

Data processing
algorithm

Untrusted
Cloud Storage
(Temporary)

(iv) Data
request
processing (v) Data update

(ii) New data
encryption generates
data documents

(iii) Users upload
data files and send
data operations

(vi) Returns data
based on
requirements

(i) The user initiates
an update request

Figure 6: Data update process.

Request

Index1 Index2 Index n...

Index1

Index2

...

...

doc1 doc2 doc3

doc1 doc4 doc6 ... doc6

doc5 doc7 ... doc n

Figure 4: Data query flow of the inverted index.

6 Security and Communication Networks

RE
TR
AC
TE
D

Step 3: after the encrypted document is generated, we
upload the data to the cloud and send the data update
request.
Step 4: the cloud sends an update processing request to
the data processing module.
Step 5: the data processing module updates the data
according to the operation and returns the updated
data to the cloud server.
Step 6: the cloud server returns the updated data to the
user as required.

Due to the time sequence and a large amount of blockchain
data, continuous superimposed data will reduce efficiency in
the actual user retrieval and the upload process. +erefore, the
data update strategy effectively fits the user’s usage scenarios
and updates stored data according to user requirements, saving
cloud server resources and avoiding waste.

3. Results and Discussion

3.1. Security Evaluation. As a distributed large-scale data
storage system, the confidentiality of blockchain is the primary
feature that needs to be guaranteed. +erefore, the most im-
portant feature of the user data stored on the chain in the cloud
is data privacy. Different cloud storage systems have different
security advantages and disadvantages. Generally speaking, the
key points affecting data privacymainly focus on the encryption
algorithm, data transmission path, and key management.

Encryption algorithm is the basis of storage model
privacy protection.+e cloud storage system designed in this
paper is a storage model based on homomorphic encryption.
Only the sender has the encryption key of the data, and the
data need to be encrypted before transmission. After being
uploaded to the cloud, the data will be processed according
to the demand, but the plaintext data will not be leaked all
the time. +e sender only needs to get the corresponding
decryption of data which can be processed after the data, and
data security is improved.

Data transmission path is also one of the important
factors affecting data leakage. Generally, the data of cloud
storage model is through the Internet communication
network, which depends on the Internet environment, so the
model may have the risk of information leakage. However, if
the transmitted information is ciphertext, the risk of being
stolen or monitored is the main risk. +erefore, it is nec-
essary to adopt more secure network protocol in the
transmission process.

Key management also affects data security in cloud
computing environments. For the cloud storage framework
with homomorphic encryption, the key management or-
ganization generates a key for each user.+e key is encrypted
only during data upload and is not leaked. +erefore, the
complexity of the key management scheme is low. +e se-
curity evaluation of the three cloud storage system models
described above is summarized in Table 1.

3.2.EfficiencyAssessment. Overall, the efficiency of the cloud
storage system refers to the data encryption efficiency,

transmission efficiency, retrieval efficiency, and data update
efficiency. In terms of design details, it includes the means to
ensure data privacy, namely, the homomorphic encryption
security algorithm.

3.2.1. Evaluation of Cloud Storage System Efficiency.
Cloud storage systems, especially those on the blockchain
platform, are most widely used for data retrieval. Different
models have different retrieval schemes. For symmetric
encrypted cloud storage components, such as Amazon S3,
data retrieval requires decryption of ciphertext data before
retrieval, which has low loss in terms of time and efficiency.
+e same is true for the public key encrypted cloud storage
model. +e idea of the core encryption algorithm of the
homomorphic encrypted cloud storage model is that the
processed plaintext data can still be obtained after the
corresponding data is processed without data decryption.
+erefore, this model supports the operation of ciphertext
retrieval without decryption, and the operation of ciphertext
directly is relatively efficient. However, in practical appli-
cation, its accuracy is lower than that of plaintext retrieval
because it needs to establish the data index to match
ciphertext.

As data are constantly uploaded to the cloud, cloud
storage allocation needs to be updated constantly.+erefore,
data update is also an important part of the evaluation of
cloud storage efficiency. In the cloud storage model with
symmetric and asymmetric encryption systems, the main
steps of data update are as follows: “data decryption, update,
reencryption, and old data destruction”. However, in the
data update of homomorphic encryption, the client transfers
the new data to the cloud, and the cloud directly updates the
ciphertext data according to the data processing scheme, so
the above steps are not required to operate it, just like the
operation of plaintext. +e update strategy is simple and
efficient [14, 15].

3.2.2. Data Privacy Efficiency Assessment. +e cloud storage
system is built on the blockchain platform, which carries a
large amount of data, and the search for and determination
of the existence of data on blockchain is a big demand.
+erefore, the complexity of data retrieval is an important
feature of the homomorphic encryption algorithm in the
system designed in this chapter. +is section focuses on
evaluating the encryption and decryption efficiency of the
Gentry’s FHE encryption algorithm and the BGV algorithm,
as shown in Table 2.

It can be seen from Table 2 that the Gentry’s scheme has
low computing efficiency, and since data encryption and
decryption will produce noise, data refreshing is required to
reduce noise, and the time consumed by ciphertext re-
freshing is much larger than that of encryption and de-
cryption. In addition, the ciphertext data after encryption
expands greatly. As the amount of data increases, the time
consuming becomes long and the efficiency decreases
greatly. It is not practical to use this encryption method for
massive data storage on the blockchain platform.

Security and Communication Networks 7

RE
TR
AC
TE
D

BGV is a learning with error (LWE) scheme based on
polynomial rings. Both plaintext and ciphertext are defined
on rings, so homomorphic encryption and decryption on
ciphertext is closely related to operations on plaintext rings.
According to the operation efficiency and algorithm prin-
ciple of BGV in Table 3, it can be seen that the BGV scheme
has no bootstrap operation. Meanwhile, the scheme adopts
the mode of single instruction and multiple data streams to
package the plaintext of multiple channels and combine it
into a ciphertext, so that the ciphertext data expansion
growth rate meets the requirements of application.

3.2.3. Efficiency Evaluation of System Retrieval. Data re-
trieval on the cloud is based on the premise of storing a large
amount of data. With increasing data, the running time of
the blockchain-based cloud storage system is also changing,
and its distribution is shown in Figure 7.

As shown in Figure 7, this paper designs a cloud storage
system to store the data of blocks in blockchain. For a cloud
storage system that does not use the inverted index scheme,
the time spent in data retrieval gradually increases with the
increasing amount of data, as shown in Figure 2. +e re-
lationship between the two is, approximately, proportional.

At the same time, Figure 7 also shows the data retrieval
situation of the cloud storage system with the introduction of
the inverted index. +e curve shows a relatively smooth state
in the follow-up, and the growth rate of time spent decreases
with the increase of data volume. By comparing the two, it can
be concluded that the retrieval scheme of the inverted index is
introduced. In the process of increasing data, the time for
users to retrieve data will be shortened correspondingly,
which gradually improves the efficiency of retrieval.

3.3. Economic Performance Evaluation. Firstly, in terms of
computing resources, different models have different re-
source consumption according to application scenarios.

First of all, in terms of data retrieval, although the homo-
morphic encryption model is not as accurate as other
models, its efficiency and consumption are lower. In addi-
tion, in terms of data update, the model abolishes the tra-
ditional basic process that can only be updated after
decryption, greatly reducing the time and power of calcu-
lation. On the other hand, the amount of data server can
carry is also limited, so it is necessary to set reasonable
requirements and allocate computing resources. Secondly,
in terms of technical input, the encryption algorithm and the
security mechanism of homomorphic encryption are not
fully mature in the field of ensuring cloud storage data
security, and the input needs to be further increased.

4. Conclusion

+is paper mainly designed the framework model of the
cloud storage system, investigated the model-based

Table 2: Allowable conditions of the Gentry’s FHE algorithm.

Operation Execution time (s)
Encryption 2.33
Decryption 0.12
Cipher refresh 27.28

Table 3: BGV algorithm operation.

Operation Execution time (s)
Encryption 2.47
Decryption 0.57

Table 1: Security comparison of cloud storage models.

Encryption algorithm Data transmission path Key management
Symmetric encryption
system Symmetric encryption easy to

crack
Secure transmission channels are

required
Key management is complex and

easy to leakCloud storage model
(Amazon S3)
Public key encryption
system Asymmetric encryption

difficult to crack No secure transmission is required Key distribution is complex and
secureCloud storage model

Homomorphic
encryption system Homomorphic encryption

difficult to crack
Transmission in ciphertext does not

require secure transmission
Simple and efficient key

management, good securityCloud storage model

Reverse sorted index
Non-reverse sorted index

0

100

200

300

400

500
Sp

en
d

tim
e

5000 250 1000750 1250 17501500 2000
The amount of datas

Figure 7: Retrieval performance with and without inverted
indexes.

8 Security and Communication Networks

RE
TR
AC
TE
D

operation process on the market, designed the cloud storage
model based on BGV fully homomorphic encryption.
According to the applicability of the underlying blockchain
system, after comparing the efficiency and practicality with
the Gentry’s homomorphic encryption algorithm, the BGV
homomorphic encryption algorithm is used to protect data
privacy in this study. In addition, since the application
scenarios of the designed system mainly lie in the data state
query and data retrieval, the inversion index algorithm is
determined to design the retrieval scheme, and the key
distribution, data storage, data retrieval, and data update
processes are designed in detail. Comparing the efficiency of
the privacy protection homomorphic algorithm BGV with
the Gentry’s FHE scheme in terms of operation time and
ciphertext bloat, it is concluded that the BGV scheme is
more suitable for big data.

Data Availability

+e data used to support the findings of this study are in-
cluded within the article.

Conflicts of Interest

+e authors declare that they have no conflicts of interest.

Acknowledgments

+is study was supported by the Natural Science Foundation
of Hunan Province in 2022: “Design and Application of
Cloud Storage Security Architecture Based on Blockchain.”
(research funder: Huang Jie, Grant number: 2022JJ60091).

References

[1] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homo-
morphic encryption from LWE,” in Proceedings of the 2011
IEEE 52nd Annual Symposium on Foundations of Computer
Science, pp. 97–106, Palm Springs, CA, 2011.

[2] C. Gentry, A. Sahai, and B. Waters, Homomorphic Encryption
from Learning with Errors: Conceptually-Simpler, Asymptot-
ically-Faster, attribute-based, pp. 75–92, Springer, Berlin,
2013.

[3] R.-L. Lagendijk, Z. Erkin, and M. Barni, Encrypted Signal
Processing for Privacy protection Conveying, pp. 82–105, IEEE
Signal Processing Magazine, 2013.

[4] Z.-H. Mahmood and M.-K. Ibrahem, “New fully homo-
morphic encryption scheme based on multistage prtial ho-
momorphic encryption applied in cloud computing,” in
Proceedings of the Annual International Conference on In-
formation and Science, pp. 182–186, Fallujah, Iraq, February
2018.

[5] C. Gentry and S. Halevi, “Fully homomorphic encryption
without squashing using depth-3 arithmetic circuits,” in
Proceedings of the 2011 IEEE 52nd Annual Symposium on
Foundations of Computer Science, pp. 107–109, Palm Springs,
2011.

[6] K. Hariss, M. Chamoun, and A.-E. Samhat, “On DGHV and
BGV Fully Homomorphic Encryption schemes,” in Pro-
ceedings of the 2017 1st Cyber Security in Networking Con-
ference, pp. 1–9, Rio de Janeiro, Brazil, January 2017.

[7] C. Lupascu, M. Togan, and V. Patriciu, “Acceleration tech-
niques for fully homomorphic encryption schemes,” in Pro-
ceedings of the 2019 22nd International Conference on Control
Systems and Computer Science, pp. 118–112, Bucharest,
Romania, June 2019.

[8] S.-M. Ghanem and I.-A. Moursy, “Secure multiparty com-
putation via homomorphic encryption,” in Proceedings of the
2019 Ninth International Conference on Intelligent Computing
and Information Systems, pp. 227–232, Cairo, Egypt, March
2019.

[9] R. Jain, S. Madan, and B. Garg, “Homomorphic Encryption
over integers,” in Proceedings of the 2016 3rd International
Conference on Computing for Sustainable Global Development,
pp. 774–778, June 2016.

[10] M. Ilic, P. Spalevic, and M. Veinovic, “Inverted Index Search
in Data mining,” in Proceedings of the 2014 22nd Telecom-
munications Forum Telfor, pp. 943–946, Belgrade, Serbia,
February 2014.

[11] X. HongJu, W. Fei, and W. FenMei, “Some Key Problems of
Data Management in Army Data Engineering Based on Big
Data,” in Proceedings of the 2017 IEEE 2nd International
Conference on Big Data Analysis, pp. 149–152, Beijing, China,
October 2017.

[12] L. Li, L. Yang, and Y. Di, “Distribution Characteristics of
Transmission Line Galloping Events and the Analysis of Key
Meteorological factors,” in Proceedings of the IEEE 3rd
Conference on Energy Internet and Energy System Integration,
pp. 2360–2363, Changsha, China, April 2019.

[13] M.-C. Nguyen and H.-S. Won, “Data Storage Adapter in Big
Data Platform,” in Proceedings of the 2015 8th International
Conference on Database Aeory and Application, pp. 6–9, Jeju,
Korea (South), March 2015.

[14] S. Verma and R.-A. Satao, “A Survey on the Impact of
Economies of Scale on Scientific communities,” in Proceedings
of the 2015 International Conference on Advances in Computer
Engineering and Applications, pp. 722–726, Ghaziabad, India,
July 2015.

[15] R. Liu,W. Sun, andW.Hu, “Planning of geo-distributed cloud
data centers in fast developing economies,” in Proceedings of
the 2018 20th International Conference on Transparent Optical
Networks, pp. 1–4, Bucharest, Romania, September 2018.

Security and Communication Networks 9

