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With the popularity of big data, people get less useful information because of the large amount of data, which makes the
Recommender System come into being. However, the privacy and accuracy of the Recommender System still have great
challenges. To address these challenges, an efficient personalized recommendation scheme is proposed based on Federated
Learning with similarity ciphertext calculation. In this paper, we first design a Similarity calculation algorithm based on Or-
thogonal Matrix in Ciphertext (SOMC), which can compute the Similarity between users’ demand and Items’ attributes under
ciphertext with a low calculation cost. Based on SOMC, we construct an efficient recommendation scheme by employing the
Federated Learning framework. (e important feature of the proposed approach is improving the accuracy of recommendation
while ensuring the privacy of both the users and the Agents. Furthermore, the Agents with good performance are selected
according to their Reliability scores to participate in the federal recommendation, so as to further make the accuracy of rec-
ommendation better. Under the defined threat model, it is proved that the proposed scheme can meet the privacy requirements of
users and Agents. Experiments show that the proposed scheme has optimized accuracy and efficiency compared with
existing schemes.

1. Introduction

With the rise of big data, information overloadmakes people
get more useless information. (erefore, Recommender
System is gradually popular, the purpose of Recommender
System is providing users with personalized online products
or service recommendations, and Recommender System has
become an important way to resolve information overload
issues, which brings opportunities and challenges to edu-
cation, medical and other industries. However, the current
Recommender System has many potential risks, of which the
privacy disclosure is one of the primary concerns [1]. In
general, the Recommender System consists of two parts:
recommender server and users. In order to get a superior
model for recommendation, the traditional Recommender
System uses a central architecture and usually collects a large
amount of feedback information such as user preferences
[2]. But the information is often sensitive to users and can
lead to serious privacy and security risks: the users’ raw data

may be disclosed from the feedback information from some
programs [3]. For example, Recommender System only
needs to obtain the records about users watching movies,
and can infer some privacy information (e.g., age, income,
medical history, etc.). In addition, Recommender System
may collect users’ personal data and share it with a third
party to obtain profits [4]. Once this information is abused,
the consequences are unimaginable.

As a result, people are increasingly concerned about their
data privacy, and they hope that their private information
will not be known by Internet applications. In existing re-
search, there are many methods to protect data privacy, such
as anonymity, differential privacy, homomorphic encryption
and Federated Learning (FL). Federated Learning is a
popular tool to reduce privacy risks. (us, FL has received
increasing attention. Such as [5], it uses FL to protect users’
healthcare data privacy in the big data scenario. And in [6],
based on the framework of FL, a recommendation scheme is
proposed. (e scheme defines multiple agents for
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collaborative recommendation, and the FL framework is
used to ensure the users’ data privacy and to make the
recommended items more reliable. However, in the system
model of this scheme, the settings of the cloud are com-
pletely trusted, which is difficult to achieve in practice, and
all the records are stored in the cloud in plaintext, so there is
still a risk of exposing privacy.

In other aspects, the concept of similarity is often in-
troduced in order to achieve better recommendations [7, 8].
Generally, in order to ensure the accuracy of recommended
items, many Recommender Systems need to calculate two
parameters [9]. One is the similarity between users’ demands
and the attributes of recommended items, and the other is
the users’ evaluations about recommendation items. For the
former, the higher similarity implies that the items will be
more appropriate for the needs of users. For the latter, it
means that items will have higher recommendation priority.
After receiving recomendation items, the users will evaluate
the recommendation items, i.e., submit feedback scores. (e
Recommender System will collect these scores and calculate
the reliability of the recommendation agents according to
the evaluations.

Obviously, it is essential to protect users’ privacy in the
current Recommender System. When users submit re-
quirements or estimates, they wish their information to be
protected. (is is because the users’ demands and evalua-
tions are usually related to the privacy of information [10].
To solve these problems, some feasible solutions were
provided, such as [9, 11], but there are some problems: the
encryption method is too complicated and the computation
load is too heavy, and the server is set to be fully trusted,
which is difficult to achieve in reality.

To address these above challenges, we first set the cloud
to be semi-trusted, which means that it is possible to spy on
users’ privacy. (is makes our scheme have better prac-
ticability. (en we take the similarity as the criterion to
select the recommendation items to improve the accuracy
of recommendations. Next each user evaluates the rec-
ommendation items after receiving items, and the Cloud
server evaluates the reliability of the recommendation
agents according to the evaluations. Last, our scheme uses
the FL framework to improve recommendation accuracy
and protect users’ privacy. (e comparison of our scheme
and some studies about recommendation is discussed in
Table 1.

In this paper, we focus on how to perform a more secure
and effective recommendation process with a Federated
Learning framework. Our contribution is summarized as
follows:

(i) We design a Similarity calculation algorithm based
on Orthogonal Matrix in Ciphertext (SOMC),
which can not only reduce the calculation overhead,
but also ensure the privacy and security of users.

(ii) Based on SOMC, we construct an efficient recom-
mendation scheme by employing the Federated
Learning model, named Efficient Recommendation
Based on Federated Learning (ERBFL). ERBFL can
securely aggregate the recommendation weight
from the multiple Agents and calculate the simi-
larity between users’ demand and Items’ attributes
under ciphertext, so as to improve the accuracy of
recommendation while ensuring the privacy of both
the users and the Agents. Moreover, the Agents with
the good performance are selected according to
their Reliability scores to participate in the federal
recommendation, so as to further make better the
accuracy of recommendation.

(iii) Under the defined threat model, we prove the
proposed scheme is to meet the privacy require-
ments of users and Agents. In addition, we conduct
experiments that show our scheme has optimized
accuracy and efficiency compared with existing
schemes.

(e rest of this paper is divided into six parts. State-of-
the-art solutions about the privacy protection problem of
Recommender System are described in Section 2. Following
this we present the preliminaries of proposed work in
Section 3. ERBFL scheme is discussed in detail in Section 4,
and its security analysis are presented in Section 5. Com-
prehensive performance evaluation is given in Section 6.
Conclusions are drawn in Section 7.

2. Related Works

Recent years, Recommender System helps to solve the
problem of information overload while providing person-
alized information retrieval [14]. However, in order to
improve the recommendation efficiency, the system requires
the personal information of users, which is a serious privacy
concern for many users [15, 16]. Recent research indicates
that there are two methods to solve the privacy problem of
the Recommender system: Architecture-based and Algo-
rithms-based [17].

Architecture-based solutions usually exploit distributed
data storage to minimize the threat of data leakage, but some
existing schemes [18, 19] still have the risk of leaking users’
privacy and increasing the computing burden of local de-
vices. Algorithms-based solutions are different from them,
usually utilize an encryption algorithm to protect the
original sensitive data. Several studies have revealed that the
encryption-based solution can reduce the risk of leaking
users’ privacy [17]. At present, some researchers have

Table 1: Recommended method comparison.

Schemes Encryption
method Cloud Framework

Zhang et al.
[12]. BGN honest-but-

curious centralized

Xu et al. [13] Modified Paillier honest-but-
curious centralized

Peng et al. [10] MTDT-PKC honest-but-
curious centralized

Zhou et al. [6] None fully trusted FL

our scheme SOMC honest-but-
curious FL
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proposed various solutions to the privacy protection rec-
ommendation system, such as [20–22]. Erkin et al. [20]
prevented the malicious users and server from accessing
privacy-sensitive data by using homomorphic encryption.
Kaur et al. [21] introduced arbitrary distributed data based
on two techniques: multi-party random masking and
polynomial aggregation, which can improve the efficacy of
recommender system and protect users’ privacy. Ma et al.
[22] realized a friend recommendation in a way of protecting
privacy by utilizing social attributes and trust relationship
about online social network users. However, these schemes
all cause heavy computational overhead.

Besides, to ensure the accuracy of the recommendation
items, the current Recommender System will take the
similarity as the reference parameter of recommendation. In
[23], the similarity between users is calculated to help get
more accurate recommendation results. In [24], the simi-
larity between users and items is calculated. To further
improve the accuracy of recommendations, asymmetric
similarity method was mentioned in [25], where weighted
schemes made recommendations more accurate, taking into
account the varying degrees of influence of each factor. But
that will raise privacy issues. (is is due to the similarity
calculation in the recommendation process will involve the
user’s privacy information, the recommender server may be
able to know the users’ personal interests, which contain
sensitive information. Some studies have proposed solutions
to this problem, such as [12, 13, 26]. Li et al. [26] proposed a
privacy-preserving scheme to implement a contextual rec-
ommendation for online social communications, which can
hide users’ real identities from other users by using pseu-
donyms. Zhang et al. [12] used BGNCryptosystem to protect
users’ privacy in the recommendation process, which uti-
lized homomorphic property to calculate the similarity
between two users in the ciphertext domain. However, the
scheme causes heavy computing burden on the user side, in
which the computation of bilinear pairs is used. In addition,
Xu et al. [13] focused on similarity and evaluation of truth to
propose a privacy-preserving recommendation scheme.
However, it used a centralized framework so that it is un-
suitable for the scenario with multiple recommenders. FL
can solve this problem very well. Many existing studies
utilize FL to achieve collaboration while protecting data
privacy. In [27], a scheme called EPPDA was proposed,
which can resist the reverse attack by utilizing secret sharing
and an efficient privacy-preserving data aggregation method
for FL.

In order to address the above privacy problems and
improve accuracy, Federated Recommendation System(-
FedRec) is proposed, the goal of FedRec is to collaborate
with multiple parties to complete the more efficient and
accurate recommendation process without directly accessing
each other’s private data [4]. To perform the recommen-
dation process in multiple data-owners scenarios, Zhou et al.
[6] implemented a privacy-preserving contextual recom-
mendation which used Federated Learning framework to
protect users’ privacy and increase efficiency of recom-
mendation. However, in the scheme, the center server is set
to be fully trusted, which is hard to meet in practice [28], and

the center server processes the sensitive data in plaintexts,
which raises privacy risk [29, 30]. For instance, some
malicious Cloud servers may apply gradient inference at-
tacks or model inversion attacks to damage the client’s
sensitive data, as described in [31, 32]. Hence, it is im-
practical that schemes are under the assumption that the
Cloud server is full-trusted.

3. Preliminaries

3.1. Orthogonal Matrices. Orthogonal matrix is an impor-
tant type of matrix [33]. When the product of a matrix and
its transpose gives the value of the identity matrix, the matrix
is called an orthonormal matrix.(ese matrices are useful in
many scientific applications related to vectors.

Suppose A and B are n × n orthogonal matrices which
can also be represented by A � (a1

→
, a2
→

, . . . , an
→

),

B � (b1
→

, b2
→

, . . . , bn

→
), where ai

→
, bi

→
∈ Rn, 1≤ i≤ n. (e symbol

Rn represents an infinitely large set of vectors, where each
vector has n components. Mathematically,
v
→

� (v1, v2, . . . , vn)⊤, vi ∈ R; 1≤ i≤ n, where ⊤ is the
transpose symbol. A is a orthogonal matrix, if and only if:

ai
→⊤

· aj
→

�
����������������������
ai1aj1 + ai2aj2 + · · · + ainajn

􏽰
�

1 i � j,

0 i≠ j.
􏼨 (1)

Meanwhile, let A⊤ and B⊤ are the transpose matrices of
A and B, respectively. (en they have the properties as
follows:

(i) A · A⊤ � E , B · B⊤ � E ;
(ii) A− 1 � A⊤ , B− 1 � B⊤ ;
(iii) (AB)⊤ � B⊤A⊤ ;
(iv) (AB)− 1 � B− 1A− 1;

where E is the identity matrix of the order n × n. (·)− 1 is
the inverse of matrix (·).

Interestingly, the inverse and transpose of an orthogonal
matrix are the same that make the inverse operation of the
orthogonal matrix simple and fast. In light of this, it is
efficient to use orthogonal matrices as cipher keys.

3.2. Differential Privacy. Differential privacy (DP) is a
promising technology which can solve privacy problems
[34]. We have adopted the local version of DP for users,
which can protect users’ privacy under untrusted Cloud
server and Agents. We introduce several definitions about
differential privacy as follows [35]:

Definition 1 (ε-Differential Privacy, ε-DP). A random
mechanism L is said ε-indistinguishable if for all pairs

X
→

, X′
�→
∈ Dp which differs in only one entry, for all adver-

sariesA, and for all transcripts t, where Dp is p-dimensional
vector data set:

ln
Pr TA(X

→
) � t􏼔 􏼕

Pr TA(X′
�→

) � t􏼔 􏼕

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌􏼌

≤ ε. (2)
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In the definition, a privacy parameter ε is predefined in
order to control the privacy budget, which means that if ε is
smaller, the privacy protection will be stronger.

Definition 2 (L1-Sensitivity). Assume that f is a numeric
query function, and f maps a data set Dp into a p-dimen-
sional real space Rp such as f: Dp⟶ Rp. For any pair of
adjacent data sets Dp and D′

p, the sensitivity about f is
defined as:

Δf � max
Dp,D′

p
f D

p
( 􏼁 − f D′

p
􏼒 􏼓

������

������
L1

, (3)

where ‖ · ‖L1
denoted the L1 norm.

(eorem (Random-Laplace Mechanism). Let b ∈ R+,
and f is a numeric query function which maps a p-di-
mensional domain Dp p-dimensional real space Rp, such as
f: Dp⟶ Rp. (e mechanism L randomly selects t ele-
ments in vector X

→
, where t satisfies the following condition:

t � 􏼆p/3􏼇.

L(X
→

) � f(X
→

) + Lap1(b), Lap2(b), . . . , Lapp(b)􏼐 􏼑, (4)

provides ε-Differential Privacy, where selected subscript j:
Lapj(b) � 0. Other Lapi(b) is drawn from the Laplace
distribution with scaling parameter b, where b’s density
function is

d(b) �
1
2b

exp
− |x|

b
􏼠 􏼡, (5)

where b � Δf/ε is bound by the privacy budget ε and the
sensitivity of function Δf.

3.3. Digital Signature. Digital Signature is used to prevent
information from being tampered with [36]. Digital
Signature Λ is composed of the algorithms
Λ.KeyGen, Λ.Sign, Λ.Verify defined as follows:
Λ.KeyGen(1λ)⟶ (sk, pk): It takes as input 1λ, and

outputs a key pair (sk, pk), where λ is a security parameter.
Λ.Sign(sk, m)⟶ σ: It takes as input the private key sk

and the message m, and outputs the signature σ.
Λ.Verify(pk, m, σ)⟶ 0, 1{ }: It takes as input the public

pk, the message m, and the signature σ, and it outputs 0 if the
signature σ is invalid and 1 otherwise.

3.4.FederatedLearning. In order to improve the accuracy of
predicting users’ next input, Google built a horizontal
federated model, and Google first proposed a concept of
Federated Learning (FL) in 2017 [37]. FL is a distributed
deep learning framework, and it allows multiple clients
such as IoT devices and mobile devices to train the model,
but the sensitive privacy data in the device remains local,
the joint model trained by the server is sent back to each
client, and the client continues to learn the new model. (e
process iterates to get the optimal model [38]. (erefore,
the privacy of the client has been protected to a certain
extent.

4. Design of Proposed Scheme

Before introducing the proposed scheme, we first give the
basic symbols involved in the scheme. We define Ui is
Ageni’s user group, U is a set of user groups:
U � Ui, i � 1, 2, . . . , |U|􏼈 􏼉 where |U| is the size of Agents.
Note that here Ui � ui,j, j � 1, 2, . . . , |Ui|􏽮 􏽯 is a subgroup of
U based on geographic location, in which |Ui| is a size of
users included in Ui. For each user ui,j ∈ Ui, we define the

vector Ai,j

��→
� (aij,1, aij,2, . . . , aij,p)⊤ as ui,j’s demand vector,

where aij,l refers to an attribute about ui,j’s demand.
Each Ui ∈ U has a corresponding Ageni, and Ageni holds

a Item set Ii � Ii,i′
, i′ � 1, 2, . . . , ni􏼚 􏼛 where ni is the size of

Ageni’s Items. We define the vector
Bi,i′
��→

� (bii′,1
, bii′,2

, . . . , bii′,p
)⊤ as Ii,i′ ’s attribute vector, where

bii′,l
refers to an attribute about Ii,i′

. Besides, Ageni’s rec-

ommendation weight matrix consists of pweight parameters
wi,r(r � 1, 2, . . . , p), denoted as
Wi � diag(wi,1, wi,2, . . . , wi,p) which is a p × p diagonal
matrix. Notes: each wi,r(r � 1, 2, . . . , p) represents the im-
pact factor of the r-th attribute on the recommendation
item. According to the property of diagonal matrix, we can
know W⊤i � Wi.

4.1. System Architecture. As shown in Figure 1, our system
consists of four components as follows: users, Agent, Cloud
server and Trusted authority (TA).

(i) User: Considering our system, the user submits an
encrypted demand vector to Agent, and makes the
recommendation request. After receiving the rec-
ommended Item, the user sends an encrypted
feedback score to Agent.

(ii) Agent: Agent has its own user group and Item set. It
can recommend appropriate Items to users be-
longing to its user group, after receiving requests the
users send.

(iii) Cloud server: It is considered to be honest but cu-
rious. It is responsible to calculate similarity be-
tween users’ demand and Items’ attributes, and
calculate Agent’s Reliability score after receiving
request. It will follow the proposed scheme for
executing requests received. But we do not exclude
the possibility that it will disclose the privacy of
users. Additionally, the server is not allowed to
collude with Agents.

(iv) Trusted authority (TA): It is a fully trusted third
party and responsible to generate and distribute
keys to users, Agents and Cloud server.

Specially, all users submit their requests for recom-
mendation to Agents in ciphertext, and the Agents need to
cooperate with the Cloud server for recommendation.
According to the Agents’ Reliability scores, the server judges
whether it needs to select several Agents to form a group for
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federal recommendation. After recommendation finished,
the users will the give encrypted feedback scores to Agents,
then the Agents forwards to the Cloud server, and the Cloud
server updates the Agents’ Reliability scores.

4.2. Similarity Calculation Algorithm Based on Orthogonal
Matrix in Ciphertext. In order to improve the accuracy of
recommendation items, we need to calculate the simi-
larity between users’ demand and items’ attributes.
Meanwhile, to strengthen the privacy preservation of
recommendation, users’ demand and items’ information
should be compared under ciphertext form.(erefore, we
propose an efficient Similarity calculation algorithm
based on Orthogonal Matrix in Ciphertext (SOMC),
which can protect sensitive information privacy by
lightweight encryption. (e SOMC comprises the fol-
lowing three algorithms KeyGen, Enc, and Eval, and
detailed as follows.

SOMC.KeyGen (p)⟶ (KA, Ks,i, Ki, L, Ji): It takes as
input p where p is the dimension of the matrix, and outputs
the secret keys KA, Ks,i, Ki, L and Ji:

(i) It first takes as input p, generates p × p orthogonal
matrices KA, Ks,i and L as follows:

KA �

x11 . . . x1p

⋮ ⋱ ⋮

xp1 . . . xpp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

,

Ks,i �

y11 . . . y1p

⋮ ⋱ ⋮

yp1 . . . ypp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

,

L �

q11 . . . q1p

⋮ ⋱ ⋮

qp1 . . . qpp

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

p×p

,

(6)

where xll, yll, qll ∈ R.
(ii) (en, generating Ki and Ji according to the fol-

lowing formula: Ki � KA · Ks,i and. Ji � Ki · L

SOMC.Enc (SK, M)⟶ CSK: It takes as input secret
key SK and plaintext M, where SK is Ki or Ji, and M is a
p × p matrix (weight matrix) or a p-dimensional vector
(demand or item vector), and outputs the ciphertextCSK.(e
encryption process is as follows:

CSK � SK
⊤

· M. (7)

Distribution key

Distribution key

Distribution key

TA

Agent
Sending Demend

Sending Demend

Sending Demend

Sending Feedback

Sending Feedback

Sending Feedback

Item
Recommendation

Item
Recommendation

Item
Recommendation

Choosing Agents

Similarity Calculation

Choosing Item

Reliability Calculation

�e Cloud Server

... ... ... ...

Figure 1: System model.

Security and Communication Networks 5



SOMC.Eval (L, Ck, Cj)⟶ simk,j: On input the secret key
L, the ciphertext Ck and Cj, where Ck, Cj are obtained by
algorithm SOMC.Enc(Ki, Mk) and SOMC.Enc(Ji, Mj), the
similarities simk,j between Mk (item vector) and Mj (demand
vector) as output. Note that here Mk � (mk,1, mk,2, . . . , mk,p)⊤

and Mj � (mj,1, mj,2, . . . , mj,p)⊤ are p-dimensional vectors.
(e calculation process is as follows:

simk,j � Cj − L
⊤

Ck􏼐 􏼑
⊤

· Cj − L
⊤

Ck􏼐 􏼑

� J
⊤
i Mj − L

⊤
K
⊤
i Mk􏼐 􏼑

⊤
· J
⊤
i Mj − L

⊤
K
⊤
i Mk􏼐 􏼑

� J
⊤
i Mj − J

⊤
i Mk􏼐 􏼑

⊤
· J
⊤
i Mj − J

⊤
i Mk􏼐 􏼑

� Mj − Mk􏼐 􏼑
⊤

Ji · J
⊤
i Mj − Mk􏼐 􏼑

� Mj − Mk􏼐 􏼑
⊤

· Mj − Mk􏼐 􏼑

� 􏽘

p

x�1
mk,x − mj,x􏼐 􏼑

2
.

(8)

(erefore, we can calculate the similarity betweenCk and
Cj without obtaining the plaintext about them.

4.3. Efficient Recommendation Scheme Based on Federated
Learning

4.3.1. System Initialization. In this phase, it is divided into
two parts, firstly TA generates and distributes key, and then
the Agents encrypt attribute information. In order to fa-
cilitate description, we take Ageni and users ui,j ∈ Ui as an
example to illustrate.

Firstly, TA uses the algorithm SOMC.KeyGen(p) de-
scribed in the previous section to generate keys and system
parameters as follows:

(i) Step 1: TA exploits algorithm SOMC.KeyGen(p) to
generate (KA, Ks,iKi, L, Ji), and then distributes
{KA, Ki, Ks,i} to Ageni; {L, Ks,i} to the Cloud server;
{Ji} to each users ui,j ∈ Ui by secure channel. Note
that here for Agena and Agenb, if a≠ b, then
Ka ≠Kb, Ks,a ≠Ks,b. Beside, each Ageni has the same
KA.

(ii) Step 2: TA generates unique identification for each
Agent and each Item. We define IDi as Ageni’s
identification and Iidi,i′

as for Item Ii,i′
.

(iii) Step 3: On input 1λ where λ is the security parameter,
TA runs the signature algorithm Λ.KeyGen(1λ) to
generate (pkΛ,i,j, skΛ,i,j, pkΛ,S, skΛ,S). (en, TA dis-
tributes skΛ,i,j to ui,j ∈ Ui; skΛ,S to Cloud server. And
then TA public (pkΛ,i,j, pkΛ,S).

(iv) Step 4: TA sets each Ageni’s Reliability score RESi to
0 and its update times counti to 0.

Secondly, Ageni has own Item set

Ii � Ii,i′
, i′ � 1, 2, . . . , ni􏼚 􏼛, Ageni generates the encrypted

Item information for Bi,i′
��→

, i′ � 1, 2, . . . , ni􏼚 􏼛:

Bi,i′′
�→

� SOMC.Enc Ki, Bi,i′
��→

􏼒 􏼓 i′ � 1, 2, . . . , ni( 􏼁, (9)

and then upload Bi,i′′
�→

, i′ � 1, 2, . . . , ni􏼚 􏼛 to the Cloud server
for storage.

4.3.2. Item Recommendation. In this subsection, we intro-
duce how to recommend a suitable Item to a user when the
Agent cooperates with the Cloud server. (e whole process
can be divided into three parts: (1) User sends demand; (2)
(e Cloud chooses Agents; (3) Item choosing and recom-
mendation. (e pseudo-code of the Item Recommendation
is given in Algorithm 1.

(1) User sends demand. To avoid the disclosure of user needs
that contain a large amount of private information, user ui,j

will exploit SOMC.Enc to encrypt message Ai,j

��→
:

A
∗
i,j

��→
� SOMC.Enc Ji, Ai,j

��→
􏼒 􏼓 � a1′, a2′, . . . , ap

′􏼐 􏼑
⊤

, (10)

To resist brute-force exhausted attack [39], we apply a

Laplace mechanism [35] by adding noise to A
∗
i,j

��→
. Although

this noise will cause an error, we will experiment later to
prove that the error is in the acceptable range. First, ui,j

randomly selects t elements in A
∗
i,j

��→
to form a set Sub, where t

satisfies the following condition: t � 􏼆p/3􏼇 and then adds a
Laplace noise:

Ai,j
′

��→
� a
′′
ij,1, a
′′
ij,2, . . . , a

′′
ij,p􏼒 􏼓
⊤

�
a
′′
ij,x � aij,x

′ + Lap(b) aij,x
′ ∈ Sub,

a
′′
ij,x � aij,x

′ aij,x
′ ∉ Sub,

⎧⎪⎨

⎪⎩

(11)

where b is Laplace parameter. To simplify, we express the

noise as a vector Lapb(i,j)

��������→
. We can get Ai,j

′
��→

� A
∗
i,j

��→
+ Lapb(i,j)

��������→
.

(en ui,j generates a signature σi,j
��→

� Λ.Sign(skΛ,i, Ai,j
′

��→
).

Afterward, user ui,j submits (Ai,j
′

��→
, σi,j
��→

) to Ageni.

After receiving (Ai,j
′

��→
, σi,j
��→

), Ageni exploits SOMC.Enc to
encrypt weight matrix:

Wi
′ � SOMC.Enc Ki, Wi( 􏼁, (12)

and sends (Ai,j
′

��→
, σi,j
��→

, Wi
′) and a request for collaboration

about recommendation to the Cloud server.
(2) <e Cloud chooses Agents. After receiving Ageni’s

request, the Cloud server verifies the signature by per-

forming the algorithm Λ.Verify(pkΛ,i, Ai,j
′

��→
, σi,j
��→

) . If it fails,
the Cloud server refuses the request; otherwise, should
determine whether Ageni is eligible to make a recommen-
dation alone or federated recommendation according to its
Reliability score RESi.(e higher RESi, the more credible the
items Ageni recommends.

If RESi > r, where r is a threshold set by TA, the Cloud
server considers that Ageni can recommend credible items
to users alone, then go straight to 3) Item choosing and
recommendation. Otherwise, the Cloud server needs to
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choose some other Agents to participate in the federal
recommendation. Specific steps are as follows:

(i) Step 1: When RESi ≤ r, the Cloud server sorts all
Agents according to their Reliability score by
descending order firstly, then selects j Agents
with a higher score to form a set ACi with the
following threshold condition:
􏽐

j
z�1 RESmax− z ≤ z 􏽐

N
q�1 RESq , where z< 1 is set by

TA. We denote RESmax− z is the z− th max in the
Reliability score of Agents.

(ii) Step 2: For each Agenk ∈ ACi , the Cloud server
calculates PIDk � H(IDk

����Rk), where Rk is a ran-
dom number, then sends PIDk and recommenda-
tion request to each Agenk ∈ ACi.

(iii) Step 3: After receiving the message from the Cloud
server, Agenk ∈ ACi exploits SOMC.Enc to encrypt
own weight matrix: Wk

′ � SOMC.Enc(Kk, Wk), and
sends (PIDk, Wk

′) to the Cloud server.
(iv) Step 4: After receiving all encrypted weight matrices

from Agenk ∈ ACi, the Cloud server calculates
Waggr,k
′ for each Agenk ∈ ACi by shared key be-

tween the Cloud server and the Agent:

Waggr,k
′ � Ks,i · Ks,k · Wk

′

� Ks,i · Ks,k · K
⊤
k · Wk

� Ks,i · Ks,k · KA · Ks,k􏼐 􏼑
⊤

· Wk

� Ks,i · Ks,k · K
⊤
s,k · K

⊤
A · Wk

� Ks,i · K
⊤
A · Wk

� K
⊤
i · Wk.

(13)

Notes that if the Cloud server finds some weight matrices
missing according to the PIDk during collecting
(PIDk, Wk

′), the Cloud server will select another Agents and
repeat the previous step.

(en the Cloud server aggregates weight for Federated
Recommendation:

Wfed′ �
􏽐Agenk∈ACi

RESk · Waggr,k′

􏽐Agenk∈ACi
RESk

� K
⊤
i ·

􏽐Agenk∈ACi
RESk · Wk

􏽐Agenk∈ACi
RESk

,

(14)

where 􏽐Agenk∈ACi
RESk is denoted as the sum of all Reliability

scores of Agenk ∈ ACi.
We define Wfe d � (􏽐Agenk∈ACi

RESk · Wk)/
(􏽐Agenk∈ACi

RESk), then we can get Wfe d
′ � K⊤i · Wfe d.

(3) Item choosing and recommendation. (e process of
recommending alone by Ageni and federal recommendation
is the same in this step, therefore we use Wrec

′ to represent
both Wfe d

′ and Wi
′ which are weight matrices in ciphertext

form. According to Wfe d
′ � K⊤i · Wfe d, Wi

′ � K⊤i · Wi, we
define Wrec: Wrec

′ � K⊤i · Wrec.

For more accurate recommendation, the Cloud server

finds Bi,j′′
��→

􏼚 􏼛 and computes the similarities

sim(Ai,j

��→
, Bi,i′
��→

), i′ � 1, 2, . . . , ni􏼚 􏼛 as follows:

A
′′
i,j

��→

� W
′⊤
rec · L · Ai,j

′
��→

, (15)

B
′′
i,i′

��→

� L · W
′⊤
rec · Bi,j′′

��→
i′ � 1, 2, . . . , ni( 􏼁, (16)

sim Ai,j

��→
, Bi,i′
��→

􏼒 􏼓 � SOMC.Eval L, B
′′
i,i′

��→

, A
′′
i,j

��→

􏼠 􏼡

i′ � 1, 2, . . . , ni( 􏼁

� A
′′
i,j

��→

− L
⊤

B
′′
i,i′

��→

􏼠 􏼡

⊤

· A
′′
i,j

��→

− L
⊤

B
′′
i,i′

��→

􏼠 􏼡

� W
⊤
rec · Ki · L · J

⊤
i · Ai,j

��→
− L
⊤

L · W
⊤
recKi · K

⊤
i Bi,i′

��→
􏼒 􏼓

⊤
·

W
⊤
rec · Ki · L · J

⊤
i · Ai,j

��→
− L
⊤

L · W
⊤
recKi · K

⊤
i Bi,i′

��→
􏼒 􏼓

� Wrec · Ai,j

��→
− WrecBi,i′

��→
􏼒 􏼓

⊤
· Wrec · Ai,j

��→
− WrecBi,i′

��→
􏼒 􏼓

� Wrec Ai,j

��→
− Bi,i′

��→
􏼒 􏼓􏼒 􏼓

⊤
· Wrec Ai,j

��→
− Bi,i′

��→
􏼒 􏼓􏼒 􏼓

� 􏽘

p

x�1
w

2
rec,x aij,x − bii′ ,x􏼐 􏼑

2
.

(17)

(en according to sim(Ai,j

��→
, Bi,i′
��→

), i′ � 1, 2, . . . , ni􏼚 􏼛, the
cloud selects the Item Iopt with the best similarity, and
calculates: σser � Λ.Sign(skΛ,S, Iidopt) where Iidopt is the
unique identifier of the Iopt . (en send (Iopt, Iidopt, σser) to
Ageni, Ageni will forward the recommendation to the user
ui,j.

4.3.3. Update Reliability Score. After receiving the recom-
mendation, the user ui,j sets scores according to the rec-
ommended items and sends it to the Cloud server as
feedback, then the Cloud server updates the Ageni’s Reli-
ability score according to the feedback score. (e whole
process can be divided into two parts: (1) User scores for
recommendation; (2) (e Cloud calculates Reliability score.
(e pseudo-code of the Item Recommendation is given in
Algorithm 2.

(1) User scores for recommendation. First, the user ui,j verifies
the signature by performing the algorithm Λ.
Verify(pkΛ,S, Iidopt, σser) . If it fails, ui,j refuses the request;
otherwise, generates a feedback score matrix by calculating
the square root of the scores:
Ri,j � diag(

���
rj,1

􏽰
,

���
rj,2

􏽰
, . . . ,

���
rj,p

􏽰
), where rj,l represents to a

score about l-th attribute of demand.(e value of rj,l is 1 to 5.
To keep the Cloud server from knowing ui,j’s scores, ui,j

adds noise to the feedback score matrix Ri,j: We define a set
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Rsubi,j contains (p − t) scores which is selected by ui,j in the

set ���
rj,x

􏽰
, x � 1, 2, . . . , p􏼚 􏼛, where t satisfies the following

condition: t � 􏼆p/3􏼇.
And then ui,j adds noise to the feedback scoring matrix

Ri,j to get R∗i,j:

R
∗
i,j � diag rj,1′, rj,2′, . . . , rj,p

′􏼐 􏼑

�
rj,x
′ � 0 + r1

���
rj,x

􏽰 ∉ Rsubi,j,

rj,x
′ �

���
rj,x

􏽰 ���
rj,x

􏽰 ∈ Rsubi,j,

⎧⎪⎨

⎪⎩

(18)

where r1 is a random number. (en ui,j generates an in-
dicator vector Rj,0

��→
:

Rj,0
��→

� r0,1, r0,2, . . . , r0,p􏼐 􏼑
⊤

�
r0,x � 0 ���

rj,x

􏽰 ∉ Rsubi,j,

r0,x � 1 ���
rj,x

􏽰 ∈ Rsubi,j.

⎧⎨

⎩ (19)

(en We can get Ri,j(ture)

��������→
� R∗i,j · Rj,0

��→
� Ri,j · Rj,0

��→
, where

Ri,j(ture)

��������→
� r
′′
j,1, r
′′
j,2, . . . , r

′′
j,p􏼒 􏼓
⊤

�
r
′′
j,x � 0 ���

rj,x

􏽰 ∉ Rsubi,j,

r
′′
j,x �

���
rj,x

􏽰 ���
rj,x

􏽰 ∈ Rsubi,j.

⎧⎪⎪⎨

⎪⎪⎩

(20)

To prevent Ageni tampering, ui,j calculates as follows:

Ri,j
′ � SOMC.Enc Ji, R

∗
i,j􏼐 􏼑,

Rj,0′
��→

� Ji · Rj,0
��→

,

σr.i,j
���→

� Λ.Sign skΛ,i,j, Ri,j
′ · Rj,0

��→
􏼒 􏼓.

(21)

And then ui,j sends (Ri,j
′, Rj,0′

��→
, σr.i,j
���→

) to Ageni.

(2) <e Cloud calculates Reliability score. After receiving a
number of (Ri,j

′, Rj,0′
��→

, σr.i,j
���→

) from ui,j ∈ Ui, Ageni calculates

Rj,0
��→′′ � K

⊤
i · Rj,0′

��→
(22)

for each ui,j ∈ Fi, where Fi is defined as a set contains users
who send feedback to Ageni. When the amount of feedback
exceeds μ that is set by TA, Ageni sends

(Ri,j
′, Rj,0

��→″, σr.i,j
���→

), ui,j ∈ Fi􏼚 􏼛 to the Cloud server.

After receiving (Ri,j
′, Rj,0

��→″, σr.i,j
���→

), ui,j ∈ Fi􏼚 􏼛, the Cloud

server calculates to get Rj,0
��→

, ui,j ∈ Fi􏼚 􏼛:

Rj,0
��→

� L
⊤

· Rj,0
��→′′

� L
⊤

· K
⊤
i · Rj,0′

��→

� J
⊤
i · Ji · Rj,0

��→
.

(23)

(en the Cloud server verifies each the signature by
performing the algorithm Λ.Verify(pkΛ,i,j, Ri,j

′ · Rj,0
��→

, σr.i,j
���→

) .
If it fails, the Cloud server will punish Ageni by giving it a
low Reliability score; otherwise, calculates and updates
Reliability score RESi for each Ageni as follows:

% scoreui,j
� Ri,j
′ · Rj,0

��→
􏼒 􏼓

⊤
· Ri,j
′ · Rj,0

��→
􏼒 􏼓 (24)

� Rj,0
��→

􏼒 􏼓
⊤

· R
∗
i,jJi · J

⊤
i R
∗
i,j · Rj,0

��→
􏼒 􏼓

� Rj,0
��→

􏼒 􏼓
⊤

· R
∗
i,j · R
∗
i,j · Rj,0

��→
􏼒 􏼓

� Ri,j

��→
􏼒 􏼓

⊤
· Ri,j

��→
􏼒 􏼓

� 􏽘
��
rj,x

√
∈Rsubi,j

���
rj,x

􏽰
􏼐 􏼑

2

� 􏽘
��
rj,x

√
∈Rsubi,j

rj,x,

RESi(new) �
counti × RESi + 1/Fi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌􏽐ui,j∈Fi

scoreui,j
􏼒 􏼓

counti + 1
,

(25)

counti(new) � counti + 1, (26)

where |Fi| is defined as the number of users which send
feedback to Ageni, and counti is the number of times RESi

has been updated.

5. Security Analysis

In this section, we give the formal security proof of our
proposed scheme, and security requirements of our scheme
include verifiability and privacy. We have used the digital
signature so that the verifiability is guaranteed, which has
proven to be safe in [36]. (e privacy of our proposed
scheme is proved under the following threat model:

(i) (e Cloud server and Agents are honest-but-curi-
ous: we assume that Agents and the Cloud server will
follow the protocol, but may be curious about users’
sensitive information.

(ii) Agents does not collude with the Cloud server.

For privacy, it includes users’ data privacy and Agents’
parameter privacy. We give the proof of users’ data privacy
in (eorem 1, and Agents’ parameter privacy in (eorem 2.

Theorem 1. Under the above threat model, our schememeets
the requirement of users’ data privacy.

Proof. Depending on our scheme, users’ privacy is reflected
in Item Recommendation and Update Reliability score. So,
our proof is divided into two parts as follows:

(i) According to the Item Recommendation process in
Algorithm 1, no additional information about the
user (we use ui,j as an example) is sent except for the

encrypted demand vector Ai,j
′

��→
.

If the attacker wants to reveal users’ demand privacy

information Ai,j

��→
from Ai,j

′
��→

� J⊤i · Ai,j

��→
+ Lapb(i,j)

��������→
, he needs to
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get Ji and Lapb(i,j)

��������→
. So we can set up the following equation

to solve: Ai,j
′

��→
� J⊤i · Ai,j

��→
+ Lapb(i,j)

��������→
.

However, Ji � Ki · L, if attacker is Ageni, he has Ki, but
no L. Similarly, if the attacker is the Cloud server, he has L,
but no Ki. (at means Agent and the Cloud server cannot
get Ki and L at the same time. So, they cannot reveal Ji and
Ai,j

��→
.
(en we consider the known-sample attack [40] and

brute-force exhausted attack [39]:
If the purpose of the attacker is to recover plains from

encrypted demanding vectors, and the attacker gets a set of

plain demanding vectors Z � Ai,zx

���→
, x � 1, 2, . . . , |Z|􏼚 􏼛, but

he does not know Ai,zx
′

���→
, x � 1, 2, . . . , |Z|􏼚 􏼛 which is the

corresponding ciphertext of Z.
(e attacker can use brute-force exhausted attack: trying

every possible Ji and Lapb(i,j)

��������→
to recover Ai,j

��→
. We can

simplify the problem a little bit by setting all the elements of

Lapb(i,j)

��������→
to zero, then we can get Ai,j

��→
� Ji · Ai,j

′
��→

, and then
attacker just needs to recover Ji.

(en we assume the worst-case scenario forZ: there are
at least p linearly independent vectors in Z, and
|Z| � n≥p + 1. (e attacker can solve Ji by setting up the

following equations: Ai,zx

���→
� Ji · Ai,zx

′
���→

for x � 1 to p. If the
cloud server who has L as attacker needs to try every possible
X to recover Ji: Ji � X · L, then the attacker chooses p vectors
from Z to form a p × p matrix C such that
C � (Ai,z1

���→
, Ai,z2

���→
, . . . , Ai,zp

���→
). He has to try every possible

linearly independent Ai,zx
′

���→
permutations from the encrypted

demanding vectors which he has received to form a p × p

matrices D such that D � (Ai,∗1
′

���→
, Ai,∗2
′

���→
, . . . , Ai,∗p

′
���→

). (en the
attacker has J⊤i · C � D. Note that C is invertible since
Ai,z1

���→
, Ai,z2

���→
, . . . , Ai,zp

���→
are linearly independent. He picks a set

of p encrypted demanding vectorsD randomly and sets up a
hypothesis that D contains the corresponding encrypted
demanding vectors in C. (en he can set up equation J⊤i �

C− 1 · D to solve for Ji and choose some vectors

A∗
�→

|A∗
�→
∈ ZΛA∗

�→
∉ C􏼚 􏼛 to verify the hypothesis: if A∗

�→
∉ C,

the hypothesis cannot be correct; otherwise, the hypothesis
may be true.

However, it is for the attacker that the attack is expo-
nentially expensive. (at’s because there are P

p
n � O(np)

possible candidates of D. For each candidate, the attacker
performs to verify whether recovered key Ji is true which
takes O(n) validations. For example, if n � 5K, p � 4 and
the attacker is capable to perform 2M validations in a
second, then if the attacker wants to try all hypotheses, he
must spend more than 460 years. (erefore, our simplified
scheme (Lapb(i,j)

��������→
� 0 ) can also resist this the known-sample

brute-force exhausted attack. Noteworthy, in our scheme,
Lapb(i,j)

��������→
is a random vector, which the number of non-zero

is random and non-zero elements are also random. (e

blindness of the demanding vector is increased, whichmakes
his calculation aboved more difficult. (ere’s another sce-
nario: Agenk as attacker wants to recover ui,j’s demanding
vector, but it is more difficult since he does not have Ki.

Similarly, the Ageni who has Ki as attacker needs to try
every possibleY to recover Ji: Ji � Ki · Y, the proof process is
similar to the above.

(erefore, in the Item Recommendation phase, the
demanding privacy of users is guaranteed.

(ii) According to the Update Reliability score process in
Algorithm 2, no additional information about ui,j is

sent except for the encrypted feedback vector Rj,0′
��→

and matrix Ri,j
′.

If the attaker wants to reveal users’ preference infor-
mation Ri,j(ture)

��������→
� Ri,j · Rj,0

��→
and the total score of the feed-

back from Rj,0′
��→

� Ji · Rj,0
��→

and Ri,j
′ � J⊤i · Ri,j, where the non-

zero elements in Ri,j(ture)

��������→
represent that each true score in

Ri,j, Rj,0
��→

is used to mark which scores in the feedback Ri,j are

true, and the sum of elements in Ri,j(ture)

��������→
represents the total

score of the feedback, he needs to get Ji, Ri,j and Rj,0
��→

. So we
can set up the following equation to solve: Ri,j � Ji · Ri,j

′,

Rj,0
��→

� J⊤i · Rj,0′
��→

.
However, Ageni who has Ki as attacker only knows the

ciphertext Ri,j
′, Rj,0′

��→
and the semi-decrypted result

R
′′
j,0

��→

� K⊤i · Rj,0′
��→

. He cannot know Ri,j(ture)

��������→
and the sum of

elements in Ri,j(ture)

��������→
. (at’s because Ri,j(ture)

��������→
� Ri,j · Rj,0

��→
, and

he cannot get Rj,0
��→

without L. Meanwhile, the encryption
method for Ri,j is the same as the demand vector in Al-
gorithm 1 so that he cannot recover Ri,j. (erefore, he

cannot recover Ri,j(ture)

��������→
from Rj,0′

��→
and Ri,j
′. For the total score

of the feedback, we define a p-dimensiona vector V
→

with the
elements being all 1, he can get the sum of Ri,j by calculating

(Ri,j
′ · V

→
)⊤ · (Ri,j

′ · V
→

) � V
→⊤

· Ri,j · Ri,j · V
→
, but the result is

not the total score of the feedback, because Ri,j contains
random numbers.(e total score of the feedback can only be
obtained by calculating scoreui,

j � (Ri, j′ · Rj,0
��→

)⊤·

(Ri,j
′ · Rj,0

��→
) � (J⊤i · R i,j · Rj,0

��→
)⊤ · (J⊤i · Ri,j · Rj,0

��→
) � R
⊤
i,j(ture)

��������→
·

Ri,j(ture)
′

��������→
, where Ri,j(ture)

′
��������→

� SOMC.Enc(Ji, Ri,j(ture)

��������→
). How-

ever, he cannot know Rj,0
��→

so that he cannot get the total
score of the feedback. (is means that he cannot know the
ui,j’s preference information and the total score of the
feedback.

Similarly, the Cloud server who has L as attacker only

knows the ciphertext Ri,j
′ and the semi-decrypted result R

′′
j,0

��→

.

He cannot know Ri,j(ture)

��������→
, but can get the sum of elements in

Ri,j(ture)

��������→
to update Reliability score for Ageni. (is because
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Ri,j(ture)

��������→
� Ri,j · Rj,0

��→
, he can recover Rj,0

��→
� L⊤ · R

′′
j,0

��→

, but he
cannot recover Ri,j that is encrypted by the same method in

Algorithm 1. He only get Ri,j(ture)
′

��������→
� Ri,j
′ · Rj,0

��→
� J⊤i ·

R∗i,j · Rj,0
��→

� J⊤i · Ri,j(ture)

��������→
� SOMC.Enc(Ji, Ri,j(ture)

��������→
). (e en-

cryption method is the same as the demand vector in Al-
gorithm 1. (erefore, he cannot recover Ri,j(ture)

��������→
that

includes ui,j’s preference information. But he can get the

total score of the feedback: scoreui,j
� (Ri,j
′ · Rj,0

��→
)⊤·

(Ri,j
′ · Rj,0

��→
) � R
′⊤
i,j(ture)

��������→
· Ri,j(ture)

′
��������→

. (is means that he can
know the total score of the feedback but he cannot know the
ui,j’s preference information.

(erefore, in the Update Reliability score phase, the
preference privacy of users is guaranteed.

(iii) To sum up, our scheme meets the requirement of
users’ data privacy. □

Theorem 2. Under the above threat model, our schememeets
the requirement of Agents’ parameter privacy.

Proof. Depending on our scheme, Agents’ parameter pri-
vacy is reflected in Item Recommendation.

According to the Item Recommendation process in
Algorithm 1, no additional information about the Agent (we
use Ageni as an example) is sent except for the encrypted
weight matrix Wi

′. We consider that the attacker is the Cloud
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Figure 2: Comparison of the efficiency of encryption methods.
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server or other Agents, and he wants to recover Wi. (e
encryption method is the same as mentioned in (eorem 1.
so that the attacker cannot recover Wi. (e proof procedure
is the same as (eorem 1. Here is not described again.

(us, our scheme meets the requirement of Agents’
parameter privacy. □

6. Evaluation

In this section, we conduct simulation experiments to
compare the performance of the proposed SOMC and
ERBFL scheme with the existing schemes. We conduct all
the experiments on the server with an Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz 2.90GHz and 16GB of RAM and
uses TensorFlow to simulate the SOMC and ERBFL algo-
rithm in Python.

For experimental parameters, we choose appropriate and
security parameters with the given initial parameter p � 5
and λ � 128. We can get t � 􏼆p/3􏼇 � 2. So that the full
Reliability score is 15. To facilitate the test, we choose the
parameter r � 9, |U| � 10 and |Ui| � 50.

6.1. Efficiency Comparison. In order to show the computa-
tion costs about encryption (SOMC) in ERBFL, we compare
our scheme with PPO-NBR [12] and EPRT [10], which use

homomorphic encryption. We compare the running time of
encrypting vectors against varying number of Items. As
shown in Figure 2, it can be observed that as the number of
Items increasing, all of them increase. But we can see that

Input: Ai,j
′

��→
, σi,j
��→, Bi,i′′

�→
, i′ � 1, 2, . . . , ni􏼚 􏼛, Wi, RESi, i � 1, 2, . . . , |U|􏼈 􏼉, pkΛ,i,j, L, z and r

Output: (Iopt, Iidopt, σser)

(1) The Cloud server does:

(2) if (Λ.Verify(pkΛ,i, Ai,j
′

��→
, σi,j
��→

)) then
(3) if(RESi > r)then
(4) Wrec′ � Wi

′;
(5) end
(6) else
(7) while (the number of collected !� j) do
(8) choose j Agents which satisfy: 􏽐

j
z�1 RESmax− z ≤ z 􏽐

N
q�1 RESq

collecting (PIDk, Wk
′) from Agenk ∈ ACi;

(9) end
(10) forAgenk ∈ ACido
(11) calculate Waggr,k′ following equation (13);
(12) end
(13) calculate Wrec

′ � Wfe d
′ following equation (14);

(14) end
(15) calculate sim(Ai,j

′
��→

, Bi,j′′
�→

), i′ � 1, 2, .., ni􏼚 􏼛 following equation (15)–(17);

(16) choose Iopt: sim(Ai,j
′

��→
, Bopt
′

���→
) � sim(Ai,j

′
��→

, Bi,j′′
�→

), i′ � 1, 2, .., ni􏼚 􏼛
min

;

(17) Calculate σser←Λ.Sign(skΛ,S, Iidopt);
(18) end
(19) (e Agent Agenk does:
(20) if (Agenk ∈ ACi) then
(21) Wk

′←SOMC.Enc(Ki, Wi);

PIDk←H(IDk

����Rk);

send (PIDk, Wk
′) to the Cloud server

(22) end
(23) return (Iopt, Iidopt, σser)

ALGORITHM 1: Item Recommendation.
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our scheme takes the least time no matter how many Items.
(is is because the encryption form in PRO-NBR can only
deal with a bit message per encryption, and EPRT can deal
with an integer message, whereas our scheme can deal with p

integer messages. (us, our encryption scheme runs faster
and more efficiently.

Next, we conduct experiments to compare the running
time of recommendation phase in our scheme with PPO-
NBR [12] and EPRT [10] as shown in Figure 3. As the
number of items increases, the running time increases.
However, the running time of our scheme is always the
least.

Input: (Ri,j
′, Rj,0′

��→
, σr.i,j
���→

), ui,j ∈ Fi􏼚 􏼛, RESi, i � 1, 2, . . . , |U|􏼈 􏼉, counti, i � 1, 2, . . . , |U|􏼈 􏼉, pkΛ,i,j

Output: RESi(new), i � 1, 2, . . . , |U|􏽮 􏽯

(24) EachAgenidoes:
(25) countnum � 0;

for ui,j ∈ Fi do
(26) calculate Rj,0

��→″ following equation (22);
(27) countnum + +;
(28) if(countnum> μ)then

(29) send (Ri,j
′, Rj,0′

��→
, σr.i,j
���→

), ui,j ∈ Fi􏼚 􏼛 to the Cloud server;

(30) countnum � 0;
(31) end
(32) end
(33) <e Cloud server does:
(34) for eachAgeni do
(35) forui,j ∈ Fido

(36) calculate Rj,0
��→

following equation (23);

if(Λ.Verify(pkΛ,i,j, Ri,j
′ · Rj,0

��→
, σr.i,j
���→

))then

(37) calculate scoreui,j
following equation (24);

(38) end
(39) end
(40) calculate RESi(new) following equation (25);
(41) counti + +;
(42) end
(43) return RESi(new), i � 1, 2, . . . , |U|􏽮 􏽯

ALGORITHM 2: Update Reliability score.
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6.2. Impact of Laplace Noise on Similarity Accuracy. To
achieve better privacy protection, we use differential privacy
Laplace noise encryption, which makes us consider the
impact on the recommendation items. In fact, the accuracy
of the recommended items can be known from equation
(17), which is equivalent to the impact on the similarity
calculation items. (erefore, we conduct the following ex-
periments by setting three scenarios: noise added after
encryption, noise added before encryption and nosieless
encryption, as shown in Figure 4. It is easy to see that the
effect of putting noise after encryption is almost equal to that
of no noise, so the effect of our ERBFL scheme on similarity
calculation is negligible, therefore, this noise will not affect
the accuracy of recommendations in our scheme.

6.3.RecommendationAccuracyComparison. We use users to
score the recommended items to indicate the accuracy of the
recommended items. Because if the recommendation items
are more accurate, the users will be more satisfied and the
feedback score will be higher. (en we use a data set
MovieLens-100k [41], which includes 100000 movie ratings
from about 900 users on over 1600 movies, where the value
of all scores is 1 to 5. Since the data does not include all users’
scores for all movies, we fill in the missing scores with the
mean of two known values, where one of two known values
is the average of the corresponding user has scored, another
value is the average of the corresponding item has been
scored. We use the data as the users’ scores, the more
satisfied with the recommended items, the higher the score.
We repeat the recommendation process many times, find the
corresponding score from the data for each time, and
compare different schemes of average score. In addition, an
evaluation indicator called accuracy is also used. Accuracy is
defined as the fraction of correct recommendations in the
total number of recommendations, and accuracy is generally
considered to evaluate whether a Recommender System can
recommend accurate items. Higher accuracy means that the

Recommender System can recommend more comfortable
items. (en, due to the scores in data set MovieLens-100k
[41] are all real users scoring, we assume that an item with a
score above 4 is the correct recommendation. We repeat the
recommendation process many times, count the number of
correct recommendations, and compare the accuracy of
different schemes.

As shown in Figure 5, it can be seen that the items
recommended by our scheme always has a higher feedback
score. And as shown in Figure 6, it also can be seen that our
scheme always has the best performance in terms of accu-
racy. On the one hand, our scheme is designed based on a
federal learning framework, which is different from EPRT
[10] and PPO-NBR [12] used centralized recommendation.
On the other hand, our scheme uses similarity as a rec-
ommended criterion, which is different from PPO-NBR
[12]. (erefore, our scheme can recommend the item that
makes users more satisfactory.

7. Conclusion

In this paper, we propose ERBFL—an Efficient Recom-
mendation Based on Federated Learning for helping users
find an appropriate item. To protect privacy and improve
accuracy of recommendation, we design a privacy-preserving
ciphertext calculation for similarity calculation, and by
employing the Federated Learning framework. We analyze
the security of our scheme for achieving the design secure
goals and ensuring the accuracy of the recommended items.
In addition, the experiment proves that ERBFL is more ef-
ficient than the existing scheme. (e primary constraint we
faced was the high dimension of user or item information,
which can affect the execution time, and the performance of
our scheme. Furthermore, in our scheme, we assume that the
Cloud and agents cannot collude. (erefore, our future plans
are to extend our scheme to be applicable more complex
scenarios and to be able to resist collusive attacks.
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