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An intelligent maritime navigation system is expected to play an important role in the realm of Internet of Vessels (IoV). As a key
technology in navigation systems, vessel trajectory prediction technology is critical to the IoV. Automatic identification system
(AIS), an automated tracking system, is used extensively for vessel trajectory prediction. However, certain characteristics in the
AIS data, such as the large number of anchored trajectories in the area, anomalous sharp turns of some trajectories, and the
behavioral differences of vessels in different segments, limit the prediction accuracy. In this study, we propose a novel vessel
trajectory prediction model for accurate prediction with the following characteristics: (1) an anchor trajectory elimination al-
gorithm to eliminate anchor trajectories; (2) a statistical trajectory restoration algorithm to repair sharp turning; (3) a two-stage
clustering algorithm (D-KMEANS) to distinguish vessel behavior; and (4) a deep bidirectional gate recurrent unit (Stacked-
BiGRUs) model to predict vessel trajectory and compare the accuracy of the model before and after improvement. )e results
show that the mean square error and the mean absolute error of the improved model are reduced by 27% and 46%, respectively.
)is research shows good potential for maritime navigation early warning and safety.

1. Introduction

As an extension of Internet technology, the Internet of
things (IoT) takes advantage of communication sensing
technology to realize the information exchange between
things [1, 2]. Automatic driving technology benefits from the
rapid development of the IoT [3], and its functions such as
intelligent collision avoidance and collaborative control [4]
are becoming increasingly mature. Internet of Vessels (IoV)
provides vessel sensing and traffic information service in the
whole drainage area. IoV exchanges large volumes of data
among vessels and base stations, such as course, speed, and
location. )erefore, IoV has the ability to provide intelligent
navigation, a safer collision avoidance decision, and an ef-
ficient port area management by realizing the refinement of
vessel trajectory prediction. However, in offshore ports with

high vessel density and complex traffic, it very challenging to
predict the trajectory of vessels. Unlike vehicle or pedestrian
trajectory prediction, moving objects in a maritime envi-
ronment are not restricted by geometric structure and their
movement patterns are more complex than those of land
vehicles. According to the “International Regulations for
Preventing Collisions at Sea” (COLREGS), the navigation
rules of vessels rely substantially on experience, which is
difficult to quantitatively analyze. Furthermore, the histor-
ical Automatic Identification System (AIS) data contain the
potential movement patterns of vessels, such as usual be-
havior in some areas or periodic entry and exit of a channel.
However, the current methods rarely eliminate anchor
trajectory, repair abnormal AIS data, and classify the be-
havior of vessels before predicting. )e following features in
the raw AIS data reduce the prediction accuracy:
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(1) )ere are irregular anchor trajectories in the raw
data. )e vessel in the anchored state will float with
the wind and waves, producing irregular trajectories
in a small range.)e vessel at anchor can be regarded
as a static obstacle, which will mislead the model
training and reduce the prediction accuracy.
)erefore, eliminating anchor trajectory is of great
significance to improve the accuracy of trajectory
prediction.

(2) )ere are acute bends caused by abnormal points in
the raw data. )e cause of the abnormal point is that
the vessel urgently avoids obstacles or the marine
equipment sends wrong data. )e purpose of model
training is to learn the usual behaviors of the vessel,
but the abnormal point will reduce the convergence
speed of the model. )erefore, it is necessary to
design an algorithm to repair abnormal points.

(3) )ere are different behaviors in vessel navigation,
such as setting sail, crossing the waterway, and
working. Mixing these low similarity trajectories will
reduce the accuracy of prediction. )erefore, clas-
sifying vessel behaviors plays an important role in
improving prediction accuracy.

Recurrent neural networks (RNNs) can explore the
inherent laws from AIS data and have superior general-
ization ability. In this study, we proposed an improved vessel
trajectory prediction model based on Stacked-BiGRUs. )e
main contributions are as follows:

(1) We proposed an anchor trajectory elimination al-
gorithm to eliminate anchor trajectories. )e anchor
trajectory is identified by the speed characteristics of
vessel berthing and setting sail.

(2) We designed a statistical trajectory restoration al-
gorithm to repair outliers. )e outliers are repaired
based on the probability distribution of the latitude
and longitude changes in the trajectory.

(3) We proposed a two-stage trajectory clustering
method (D-KMEANS) to classify the vessel behav-
iors. )e trajectories are classified by the DBSCAN
and KMeans to extract behavior sets.

(4) We built a Stacked-BiGRUs model. Compared with
other recurrent neural networks, the bidirectional
structure gained additional feature extraction, which
effectively improved the prediction accuracy.

2. Related Work

2.1. Trajectory Restoration. Under ocean environment
conditions, vessel trajectory data are prone to inaccuracies
due to equipment abnormalities, wind, and waves. )ere-
fore, data repair technology is required to eliminate these
inaccuracies. )e technology is mainly divided into con-
straint-based trajectory restoration and machine learning
method-based trajectory restoration.

For the restoration method based on constraints, Song
et al. [5] first proposed a data cleaning method based on

speed constraints, considering the limitation of the speed of
data change. )ey achieved good results in a series of time
series data restoration experiments. Tu et al. [6] used an
improved RDP algorithm to address acute bends and self-
intersections in trajectory data, which improved the accu-
racy of trajectory prediction. Li et al. [7] used an improved
A∗ shortest path algorithm to fully consider road network
topology and historical matching points and proposed a new
trajectory restoration algorithm. Gao et al. [8] used a dy-
namic programming method to set multiple intervals for
sequence data, and searched for candidate repair points in an
iterative manner, avoiding excessive repair of sequence data.

For the repair method based on machine learning,
Kanarachos et al. [9] combined wavelet, neural network, and
Hilbert transform to propose a new time series anomaly
detection algorithm. Cheng et al. [10] proposed a trajectory
restoration algorithm based on bidirectional LSTM, which
had a good effect on trajectory restoration in curved wa-
terways. Xue et al. [11] proposed a fractional gradient RBF
neural network that drives momentum. )e training error of
this algorithm was lower than that of gradient descent, sto-
chastic gradient descent, and momentum gradient descent.

2.2. Trajectory Clustering. As an important spatiotemporal
object data type, vessel trajectories record the behavior
characteristics of vessels. )e trajectory behavior category
can be divided using the clustering method. )e method of
vessel trajectory clustering, which is categorized based on
distance, density, graph, and statistics, is summarized as
follows:

For distance-based clustering methods, Mao et al. [12]
proposed an incremental clustering algorithm, OCLUST, for
the online processing of trajectory stream data, which
achieved superior performance in clustering streaming
trajectories. Xiong et al. [13] proposed a privacy and
availability data clustering scheme (PADC) based on
KMeans to enhance the selection of the initial center point.

For density-based clustering methods, Liu et al. [14]
applied the extended density-based spatial clustering of
applications with noise (DBSCAN) algorithm to correlate
International Maritime Organization (IMO) rules with
vessel trajectories for cluster analysis. Sun et al. [15] pro-
posed a clustering method based on the minimum boundary
matrix and the similarity of the buffer zone, and applied the
DBSCAN algorithm twice to improve the accuracy of tra-
jectory clustering. Han et al. [16] proposed an enhanced
spatial clustering method based on density, which ensured
the accuracy of the behavior recognition result by including
additional geospatial information based on vessel speed and
direction.

For graph clustering methods, Tian et al. [17] present a
graph clustering privacy-preserving method that improves
the security of private information. Budimirovic et al. [18]
present a novel graph clustering method (IBC1/IBC2) to
cluster human behaviors, and the method has reference
significance in vessel behavior clustering.

For statistics-based clustering methods, Wen et al. [19]
applied the improved algorithm PrefixSpan for sequential
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pattern mining to vessel trajectory pattern mining, defined
vessel principal vectors, cross sections, and boundaries, and
identified vessel trajectories with similar motion patterns
through pruning strategies. Peel et al. [20] described the
activities of vessels as the four states of anchoring, sailing,
entering/exiting ports, and trawling. HiddenMarkovmodels
were used to identify the laws of vessel activities and cluster
the different states of vessels. Riveiro et al. [21] used kernel
density estimation (KDE) to cluster vessel trajectories by
selecting a suitable kernel function and window width and
using observations to characterize the overall vessel motion
pattern.

2.3.TrajectoryPrediction. )ere have been several studies on
vessel trajectory prediction methods. )ese methods are
mainly based on dynamic model analysis, statistics, and
machine learning.

2.3.1. Trajectory Prediction Based on Dynamic Model
Analysis. )eKalman filter is a classic method in the field of
linear system analysis. Several scholars have proposed
various trajectory prediction methods based on the Kalman
filter. Jaskolsk et al. [22] used the Discrete Kalman filter (KF)
algorithm to improve the possibilities of vessel motion
trajectory and monitoring in the TSS (Traffic Separation
Scheme) and fairways area. Qiao et al. [23] proposed a
dynamic trajectory prediction method based on Kalman
filtering that used the estimated value at the previous mo-
ment and the observation value at the current moment to
update the estimation of state variables, and subsequently
predict the position of the vessel at the next moment.

2.3.2. Trajectory Prediction Based on Statistical Models.
A Bayesian network is a probabilistic graph model that
comprises a directed acyclic graph composed of nodes
representing variables and directed edges connecting these
nodes. By combining empirical knowledge and prior in-
formation, posterior information was obtained. Mazzarea
et al. [24] proposed the Bayesian vessel position prediction
algorithm KB-PF based on particle filters.

)e Markov model is a statistical model that can predict
the trend of data changes at equal time intervals in the future
based on historical data. Tong et al. [25] used Markov chain-
and gray prediction-related methods to propose a hidden
Markov model based on the adaptive update parameters of
environmental data captured by dynamic objects. It showed
high accuracy in curve prediction. Qiao et al. [26] developed
a trajectory prediction algorithm, PutMode, based on
Continuous Time Bayesian Networks (CTBNs), and the
experimental results showed that PutMode could predict the
possible motion curves of objects in a more accurate and
efficient manner.

)e Gaussian process is a stochastic process mainly used
to solve regression problems. Rong et al. [27] proposed a
probabilistic trajectory prediction model, which decom-
posed vessel motion into horizontal and vertical predictions.
In the horizontal direction, a Gaussian process was used to

model the uncertainty of horizontal motion, and the vertical
direction was estimated through acceleration. Anderson
et al. [28] regarded the trajectory as a one-dimensional
Gaussian process. )ey calculated the posterior distribution
of the predicted value by obtaining the joint prior density
and covariance matrix of the observed value and the pre-
dicted value. Qiao et al. [29] proposed the Gaussian mixture
model-based trajectory prediction method (GMTP), which
used a Gaussian mixture model to model complex motion
modes and calculated the probability distribution of dif-
ferent motion modes. Subsequently, the Gaussian process
regression was used to predict the plausible motion tra-
jectory of a moving object. Dalsnes et al. [30] proposed the
Gaussian mixture model (GMM), which provided a measure
of the uncertainty of the prediction results and addressed
multiple modalities.

2.3.3. Trajectory Prediction Based on Machine Learning.
Extreme learning machines (ELMs) are a single hidden layer
feedforward neural network. Mao et al. [31] proposed an
ELM-based trajectory prediction algorithm to predict the
trajectory of vessels. )e algorithm did not require the
weights and biases of an iterative neural network; thus, its
training speed was faster.

An autoencoder (AE) is an unsupervised neural network
model that includes encoding and decoding. Inspired by the
generative model, Murray et al. [32] proposed a bilinear
autoencoder method to iteratively predict the future state
and then generate the entire vessel trajectory. )e model
could estimate the distribution of future trajectories of
vessels and quantify the uncertainty in predicting vessel
positions.

A long short-termmemory (LSTM) solves the long-term
dependence of RNNs. Gao et al. [33] proposed a method that
combines the advantages of LSTM and TPNet.)e proposed
method was not only easy to implement and suitable for real-
time analysis, but also presented a high prediction accuracy.
Nguyen et al. [34] proposed a scalable sequence-to-sequence
learning model combined with LSTM. Chen et al. [35]
combined the advantages of LSTM, support vector machine
(SVM), and extreme value optimization algorithms and
avoided the weak generalization ability and robustness of a
single deep learning method. Suo et al. [36] compared the
accuracy and training efficiency of gated recurrent unit
(GRU) and LSTM in vessel trajectory prediction. Xiao et al.
[37] proposed a two-step LSTM, the unidirectional and
bidirectional LSTM (UB-LSTM), combined with behavior
recognition for vehicle trajectory prediction. Zhang et al.
[38] proposed a multiscale convolutional neural network
(MSCNN)-based high-frequency (HF) radar vessel trajec-
tory prediction method to predict the trajectory hidden in
the clutter. Jaseena et al. [39] combined the wavelet trans-
form and the bidirectional LSTM and proposed the EWT-
LSTM model to forecast wind. Xue et al. [40] proposed
social-scene-LSTM for pedestrian trajectory prediction,
which was a novel hierarchical LSTM-based network. It
considered the social neighborhood and scene composition
and employed three different LSTMs to capture people,
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society, and scene scale information. )e accuracy of pe-
destrian trajectory prediction was significantly improved.

3. Trajectory Prediction Model

)is section introduces the trajectory prediction model. As
shown in Figure 1, the model was divided into the four parts,
namely anchor trajectory elimination, outlier repair, clas-
sification of vessel behavior, and trajectory prediction. We
proposed an anchor trajectory elimination algorithm and a
statistical trajectory restoration algorithm to improve tra-
jectory quality. In the classification of vessel behavior, we
designed a two-stage trajectory clustering algorithm (D-
KMEANS) to extract the main navigation modes of vessels.
Finally, in trajectory prediction, we trained the Stacked-
BiGRUs model and use sliding window to predict vessel
trajectory.

3.1. Anchor Trajectory Elimination Algorithm. Some an-
chored trajectories existed during the sailing cycle of vessels.
As shown in Figure 2, these trajectories generally appeared
as overlapping points at the same position or irregular
clumps formed by reciprocating motion in a small area. We
proposed an anchor trajectory elimination algorithm to
eliminate the anchor trajectory.

Dividing the trajectories of different vessels according to
the MMSI number, if the total number of vessels is Ms, get
the trajectory set Traj � Traj1,Traj2, . . . ,TrajM􏼈 􏼉; TrajM is
the set of trajectory points of the m th vessel, eliminating the
anchor trajectory Trajm for each vessel.

)e very high-frequency (VHF) transceiver automati-
cally broadcasted the vessel’s kinematic information (vessel
position, speed, heading, etc.) and static information (vessel
name, vessel unique identifier, message serial number, vessel
type, vessel size, current time, etc.) [41] in the form of AIS
messages. We defined the trajectory of the vessel in articlem
as Trajm � pi(MMSI, t, lon, lat, Sog)|i � 1, 2, . . . , N􏼈 􏼉, and
pi represented the locus point at time i on Trajm, which
included the marine mobile service identification (MMSI),
timestamp (t), longitude (lon), latitude (lat), and speed over
the ground (Sog).

Based on the above symbols, the anchor trajectory
elimination process of Trajm is shown in Algorithm 1. )e
specific process of the algorithm is as follows:

(1) Every point of Trajm was traversed. When the Sog at
a certain point pi was less than Sog0, the next Ts

points were continuously judged.When the Sog of all
points was less than Sog0, the point pi was marked as
an anchoring point and the sailing point was located.
Otherwise, the detection of the anchoring point was
continued until the end of the trajectory traversal.

(2) If the anchor point of the vessel is detected, continue
to detect whether there is a trajectory point Pk after
the trajectory point Pi+Ts

, of which the Sog is higher
than the sailing speed threshold Sog1. If yes, continue
to check whether the consecutive Sog of Ts points
following the trajectory point Pk is higher than the
sailing speed threshold Sog1. If yes, determine the

trajectory point Pk as the point where the anchor is
weighed, and delete the trajectory between the an-
chor point and the point where the anchor is
weighed; otherwise, repeat step (2) to detect the
anchor point until the loop is over.

(3) Return to step (1) and continue to detect until the
end of the trajectory traversal.

3.2. Statistical Trajectory Restoration Algorithm. )e tra-
jectories that have undergone anchor trajectory elimination
still include some abnormal points, resulting in abnormal
movement patterns. To repair these outliers, a statistical
trajectory restoration algorithm is used.

Each vessel trajectory is split into longitude and latitude
sequences, which are marked as Sβ � β1, β2, . . . , βn􏼈 􏼉. )e
longitude and latitude sequences then both receive anomaly
repairs. In the Sβ, β � lon (longitude) or lat (latitude). Slon
and Slat, respectively, represent the sequence of all longitudes
and latitudes of a trajectory. )e acceleration of a trajectory
point βi is ai, which is calculated by the formula:

ai �
Vβi,i+1 − Vβi−1,i

ti+1 − ti−1
,

Vβi,i+1 �
βi+1 − βi

ti+1 − ti

,

Vβi−1,i �
βi − βi−1

ti − ti−1
,

i � 2, 3, . . . , n − 1.

(1)

)e specific steps of probabilistic trajectory anomaly
repair are as follows:

(1) )e acceleration sequence Sa � a1, a2, . . . , an􏼈 􏼉 of Sβ
is calculated from formula 1. Sa is used to establish
the table of acceleration probability distribution Pa.
)e schematic diagram of Pa is shown in Figure 3.
Consider the number of intervals is n − 2 and the
interval size is δ � max(Sa) − min(Sa)/n − 2; the
probability value of each interval equals the ratio
between the number of trajectory points whose ac-
celerations fall within the interval and the total
number of trajectory points.

(2) Initialization Wi � 0, i � 2, 3, . . . , n − 1. )e se-
quence is windowed (size: 3, step: 1). )e subse-
quence under each window is
Sβi−1,i,i+1

� βi−1, βi, βi+1􏼈 􏼉, i � 2, 3, . . . , n − 1.
(3) Determine whether the current i is equal to n − 1. If

yes, record the post-repair sequence as Sβ′. If no,
update i � i + 1 and then proceed to step (4).

(4) Repair trajectory points under the i-th window.

(a) Make Wi+1 � Wi;
(b) Build a repair value array for the trajectory points

βb, βb − εmax ,β + u, . . . , βb + εmax ,β􏽮 􏽯, where
b � i − 1, i, i + 1. )e elements in the array are
sorted in ascending order. εmax ,β and u are the
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Figure 1: Improved vessel trajectory prediction model.
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Figure 2: A marine chart of anchor trajectories.

(i) Input: trajectory to be processed Trajm, number of trajectory point n, anchoring speed threshold Sog0, sailing speed threshold
Sog1, Detection length Ts

(ii) Output: processed trajectory Trajm
(1) Trajm � [P1, P2, . . . , Pn]

(2) For Pi in Trajm do//Start identifying anchoring point
(3) If Pi · Sog < Sog0 and all Pj in [Pi.t, Pi.t + Ts] meet Pj · Sog< Sog0
(4) Mark Pi as an anchor point
(5) For Pk in [Pi.t + Ts, Pn.t] do//Start identifying sailing point
(6) If Pk · Sog > Sog1 and all Pl in [Pk.t + Ts + 1, Pk.t + 2Ts + 1] meet Pl · Sog> Sog1
(7) Mark Pk as an sailing point
(8) Delete the trajectory between Pi and Pk //Eliminate anchor trajectory
(9) Break
(10) End If
(11) End For
(12) End If
(13) End For
(14) Return Trajm

ALGORITHM 1: Anchor Trajectory Elimination.
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maximum repair range and step length of each
repair, respectively. Traverse the candidate repair
value array and then attempt to repair the tra-
jectory point using the candidate repair values.
Calculate the post-repair acceleration according
to Formula (2) and then obtain the probability
from the acceleration probability distribution
table Pa. If Wi+1 <Wi + P(ai

′), replace with
βi−1′ , βi
′, βi+1′􏼈 􏼉 and update the probability value

Wi+1 � Wi + P(ai
′).

(c) Determine whether b is equal to i + 1. If yes, skip
to step (3). If no, update b � b + 1 and then
return to step b).

ai
′ �

Vβi,i+1′ − Vβi−1,i
′

ti+1 − ti−1
,

Vβi,i+1′ �
βi+1′ − βi

′

ti+1 − ti

,

Vβi−1,i
′ �

βi
′ − βi−1′

ti − ti−1
,

i � 2, 3, . . . , n − 1.

(2)

)e specific flow of the algorithm is shown in Algorithm 2:

0
Acceleration

Pr
ob

ab
ili

ty

…

–3δ 3δ–2δ 2δ–1δ 1δ

…

The number of points whose 
acceleration is in the interval

Total number of points

Figure 3: Schematic of the acceleration probability distribution of trajectory points.

(i) Input: Sequence to be repaired Sβ � β1, β2, . . . , βn􏼈 􏼉, maximum repair range εmax ,β, step length of each repair u

(ii) Output: repaired sequence Sβ′ � β1′, β2′, . . . , βn
′􏼈 􏼉

(1) Compute Sa � a2, a3, . . . , an−1􏼈 􏼉 according to equation (1)
(2) Create a Probability distribution table of acceleration Pa according to step 1
(3) Initialize Wi, i � 2, 3, . . . , n − 1
(4) For i � 2 to n − 1 do//Start repairing
(5) Sβi−1,i,i+1

� βi−1, βi, βi+1􏼈 􏼉 //Windowing the subsequence (size: 3, step: 1)
(6) For βi+1′ in βi+1 − εmax ,β, βi+1 − εmax ,β + u, . . . , βi+1 + εmax ,β􏽮 􏽯

(7) For βi
′ in βi − εmax ,β, βi − εmax ,β + u, . . . , βi + εmax ,β􏽮 􏽯

(8) For βi−1′ in βi−1 − εmax ,β, βi−1 − εmax ,β + u, . . . , βi−1 + εmax ,β􏽮 􏽯

(9) Compute a’
i according to equation (2)

(10) Read P(ai
′) from Pa

(11) If Wi+2 <Wi+1 + P(ai
′) //If the probability goes up

(12) Sβi−1,i,i+1
′ � βi−1′ , βi

′, βi+1′􏼈 􏼉//Update the subsequence
(13) Wi+2 � Wi+1 + P(ai

′)//Update the acceleration sequence
(14) Update Sa, ai � ai

′ //Update the probability
(15) Update Pa //Update the table of acceleration probability distribution
(16) End If
(16) End For
(17) End For
(18) End For
(19) End For
(20) Return Sβ′ � β1′, β2′, . . . , βn

′􏼈 􏼉

ALGORITHM 2: Statistical Trajectory Restoration.

6 Security and Communication Networks



3.3. Ship Behavior Classification Algorithm. Vessels have
different or even conflicting navigation behaviors in the voyage
cycle. For example, when the vessel starts sailing, the trajectory
is in one direction, and the shape of the trajectory is short and
dense.When the vessel goes to the target location at high speed,
the trajectory is characterized by long distance, less turning,
and smoothness. When the vessel reaches the target location,
the trajectory is characterized by periodic repeated folding.
Mixing different and conflicting trajectory features is not
conducive to improving the accuracy of prediction. After
obtaining the trajectory repaired in the previous section, this
section mainly introduces the vessel behavior classification
algorithm based on D-KMeans (DBSCAN-KMeans), which is
used to distinguish different behavior patterns. )e behavior
sets are used for model training.

Ship locations are considered as spatial data; similar
vessel behaviors can be given as clusters with enough spatial
proximity. From the characteristics of vessel behaviors, we
found that the DBSCANmeets the requirement of extracting
the behavior trajectories. In the DBSCAN, it is necessary to
specify two parameters, MinPts and ϵ, which are the smallest
number of vessels in a cluster and the sailing radius to a
behavioral cluster. When vessels are sailing, a distance be-
tween vessels is typically calculated by the Mercator method.
)e distance unit of the Mercator method is sea mile. When
the DBSCAN is applied to oceanographic data such as AIS
data, the Mercator method is more accurate than the Euclid
method to calculate the distance between two data points.
Moreover, the time complexity of the Mercator method is
similar to the Euclid method. )erefore, it is more rea-
sonable to adopt the Mercator method in vessel trajectory
clustering.

After clustering by DBSCAN, a large number of clusters
C � (C1, C2, . . . , Cm) are generated. To merge these clusters
into three vessel behaviors, KMeans is required. Because the
points belonging to the same behavior have similar speed,
KMeans is expected to cluster the average speed set
V � μ(1), μ(2), . . . , μ(m)􏼈 􏼉; μ(i) is the average speed of points
in Ci. In KMeans, the data are divided into k clusters, setting
the k value of KMeans to 3; by calculating the average speed
of each cluster in the result of the previous step, and merging
the first-step clusters with similar average speed, three types
of vessel behaviors were obtained.

)e algorithm is shown in Algorithm 3. )e D-KMeans
flow is described below:

(1) )e DBSCAN algorithm is used to cluster the vessel
trajectory points that received outliers repair in
section 3.3 to obtain the first-step clustering result.

(2) )e average speed set of each cluster
V � (μ(1), μ(2), . . . , μ(m)) is calculated from the first-
step clustering result C � C1, C2, . . . , Cm􏼈 􏼉 in step
(1).

(3) With k � 3, the KMeans algorithm is used for the
second-step clustering of average speed set
V � μ(1), μ(2), . . . , μ(m)􏼈 􏼉. )is is to obtain the three
behaviors of the vessel, including setting sail,
crossing waterway, and working.

3.4. Stacked-BiGRUs Model. After obtaining the vessel be-
havior set in the previous section, we used the behavior set to
train the Stacked-BiGRUs model. As shown in Figure 4, the
Stacked-BiGRUs model includes an input layer, three
BiGRU units, and a dense layer.

)e trajectory data are vectorized, and the trajectory
points of several consecutive time steps are used as an input
trajectory l � [p1, p2, . . . , pn].

To ensure dimensionless interference, the trajectory data
were standardized before being used as the input trajectory of
the model. )e z-score standardization method was used to
process the longitude and latitude in the trajectory data sep-
arately. As shown in Equation (3), l is the input trajectory, u is
the mean of the series, σ is the standard deviation of the series,
and l � [p1′, p2′, . . . , pn

′] is the normalized input trajectory.

l′ �
l − u

σ
. (3)

In the trajectory prediction task, the bidirectional re-
current neural network processes the entire trajectory in the
forward and reverse orders, and each output node comprises
complete context information at the current time. )e bi-
directional GRU (BiGRU) structure is shown in Figure 5.
)e first GRU network processes the forward vessel tra-
jectory, whereas the second GRU network processes the
reverse vessel trajectory. )e outputs of the forward and
reverse networks are spliced into the final output
ht � (ht1, ht2) after each time step. Compared with an or-
dinary GRU, the BiGRU has additional feature extraction.

In the forward calculation process, the trajectory
[p1′, p2′, . . . , pn

′] is input into the forward GRU unit, and the
hidden layer output of the forward unit is saved. In the
backward calculation process, input the trajectory
[pn
′, pn−1′, . . . , p1′] into the backward GRU unit, and save the

output of the backward hidden layer. At each moment,
concatenate the corresponding output results; the output of
the BiGRU layer is [h1, h2, . . . , hn].

)e dense layer maps the output to the target dimension,
and the result pre of the Stacked-BiGRUs model is the next
location of the vessel. )e output pre should be mapped to
the original dimension of the sample pre′.

pre′ � σpre + u. (4)

Multi-step prediction of vessel trajectory can be realized
using the sliding window method. Figure 6 is a schematic
diagram of the sliding window method, in which the window
size is 5 and the number of response steps is 1. For the tra-
jectory on the left, the sliding window inputs the historical
trajectory from t-4 to t, and outputs the predicted point pre′ at
t+1. For the trajectory on the right, the historical trajectory
point from t-3 to t and pre′ was taken as input, and the
predicted trajectory point at t+2was the predicted point. In this
way, the predicted trajectory of any time step can be output.

To evaluate the model, the mean square error (MSE) and
the mean absolute error (MAE) were used to evaluate the
effect of trajectory prediction. MSE is the squared expec-
tation of the difference between the predicted value and the
true value; MAE is the average of the absolute error.
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MSE �
1
m

􏽘

m

i�1
yi − 􏽢yi( 􏼁

2
,

MAE �
1
m

􏽘

m

i�1
yi − 􏽢yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌.

(5)

4. Results and Discussion

4.1. Experimental Environment and Dataset. )e platform
hardware configuration was a 2.9GHz six-core Intel i5-
9400CPU with 16GB memory and Intel UHD Graphics 630.
)e following frameworks were used in the development

process: Python 3.7-based deep learning framework TensorFlow
2.0 and Keras, Scikit-learn for data processing, and GeoPandas
and MovingPandas for trajectory analysis and visualization.

)e dataset was selected from the data of vessels in the
East China Sea, containing more than 100GB of AIS point
information collected from different types of vessels. )e
data were stored in the Analytical Massively Parallel Pro-
cessing (MPP) database in real time, and the spatial con-
nection and spatial index (PostGIS) were established
simultaneously to realize the rapid extraction of trajectory
data at a specific time and area. Between January 28 and
February 1, 2021, 624,307 AIS data points from 522 vessels
were selected as experimental data.

(i) Input: Samples to be clustered L, sailing radius ϵ, the smallest number of vessels in a cluster MinPts, number of behaviors k

(ii) Output: clustering results Act

(1) Mark all points in L � p1, p2, . . . , pn􏼈 􏼉 as unvisited//Start DBSCAN clustering
(2) Calculate the matrix M, with each cell representing the Mercator distance between each two points
(3) Do
(4) Randomly select an unvisited point pi

(5) Mark pi as visited
(6) Initialize C � ∅
(7) If there are at least MinPts points in ϵ field of pi, then//)emercator distance between two points can be found in the M
(8) Initialize Ctemp � ∅, add p to Ctemp
(9) Let N be the points set in the ϵ field of pi

(10) For each pi
′ in N

(11) If pi
′ is unvisited, then

(12) Mark pi
′ as visited

(13) If there are at least MinPts points in the ϵ field of pi
′, then

(14) Add points to N

(15) End If
(16) If pi

′ is not a member of any cluster, then
(17) Add pi

′ to Ctemp
(18) End If
(19) End If
(20) End For
(21) Add Ctemp to C

(22) Else mark pi as noise point
(23) End If
(24) Until all the points are marked, C � C1, C2, . . . , Cm􏼈 􏼉 //DBSCAN clustering is complete
(25) Compute the average speed set V � μ(1), μ(2), . . . , μ(m)􏼈 􏼉 of each Ci in C � C1, C2, . . . , Cm􏼈 􏼉

(26) Select k points as the initial center point: μ(1), μ(2), . . . , μ(k)􏼈 􏼉 //Start KMeans clustering
(27) Do
(28) Initialize Acti � ∅(1≤ i≤ k)

(29) For x(j) in V � μ(1), μ(2), . . . , μ(m)􏼈 􏼉 do
(30) Compute the speed difference between x(j) and μ(i)

(31) )e cluster label of x(j) was determined according to the nearest cluster center
(32) Add x(j) to the nearest cluster: Acti � Acti ∪ x(j)􏼈 􏼉

(33) For i � 1, 2, . . . , k do
(34) Compute the new cluster center: (μ(i))’ � 1/|Acti|􏽐x∈Acti

x

(35) If (μ(i))′ � μ(i), then
(36) Update (μ(i))′ as the cluster center
(37) End If
(38) End For
(39) End For
(40) Until the update of all clusters is complete//KMeans clustering is complete
(41) Return Act � Act1,Act2, . . . ,Actk􏼈 􏼉 //Behavior classification is complete

ALGORITHM 3: D-KMeans.
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Figure 4: Structure of a Stacked-BiGRUs model.
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4.2. Anchor Trajectory Elimination. )e anchor trajectory
elimination algorithm is based on speed constraints; hence,
it was necessary to perform statistical analysis on the speed
of the Zhoushan offshore vessel. )e primary research object
of this study was a small vessel with a length of less than
60m.)e hull was characterized by small linear dimensions,
low mass, small acceleration, and stopping inertia. )ere-
fore, it was easily affected by external forces during move-
ment. When the length of this type of vessel is twice the
length of the berth, the speed of the vessel can be controlled
below 0.3 knots.

From Figure 7, the speed of the vessels in the dataset is
approximately two knots, and the remaining speeds are
distributed between 0 and 0.5 knots and between 4 and 12
knots. )e position of the vessel below 0.3 knots represents
the anchoring state of the vessel. In the experiment, the
anchor speed threshold VT in the algorithm was set to 0.3
knots and the time step Ts was set to 5.

)e experiment uses the dataset marked with anchor
trajectories to test the algorithm performance. )e dataset
contains a total of 39,662 AIS trajectory points of 58 vessels,
of which 16,411 trajectory points are vessel anchor points,
and 17 vessels are completely berthed vessels. Table 1 shows
the comparison of the number of stopped vessels and the
number of anchored AIS points before and after processing
the dataset by the algorithm. )e results show that the total
number of vessels processed by the algorithm has decreased
by 17, all completely berthed vessels have been identified,
and their anchoring trajectories have been eliminated; all
points are reduced by 41%, and the total number of anchor
points is reduced by 97.9%, indicating that the anchor
trajectory elimination algorithm can effectively eliminate
most of the anchor trajectories.)e remaining anchor points
that have not been cleared are mainly composed of abnormal
points.

)e visualization comparison of the chart before and
after the algorithm processing is shown in Figure 8. )e line
segments of different colors represent the AIS trajectories of
different vessels. )e dense ring-shaped trajectories in the
figure represent the trajectory data of the floating and an-
chored vessels. Affected by wind and ocean currents, it
reciprocates in a small area. )e picture on the right shows
the processed chart trajectory. Compared to the left picture,
the anchor trajectories are completely eliminated, which
proves that the algorithm has a better processing effect.

4.3. Trajectory Restoration. After eliminating anchor tra-
jectories, a section of the vessel trajectory that includes 1527
AIS points was selected to carry out experiments; the anchor
trajectory was eliminated and the trajectory was split into a
longitude and latitude sequence. )e latitude sequence was
selected as an example to show the repair result. Gaussian
noise was added to the true sequence to obtain a dirty se-
quence, as shown in Figure 9.

)e max repair range εmax ,lat changed from one to four,
as shown in Figure 10. As the repair cost increased, the repair
effect increased accordingly. )e repaired curve gradually
fitted the real curve before Gaussian noise was added.

Figure 11 is a graph of the RMSE of curve repair versus
repair cost. Experimental results show that when the repair
cost was four, the repair effect was strong, and the RMSE
reached 0.0131, which is 58.9% lower than when the repair
cost was one.

4.4. Classification of Ship Behavior. After repairing the
outliers, the two-stage vessel trajectory flow clustering al-
gorithm D-KMEANS was used to extract the trajectory of
vessels crossing the waterway, as shown in Figure 12. We
chose a vessel that has been processed in the previous
section; the trajectory of the vessel 271217 contained 2459
AIS points. )e vessel had experienced multiple departure
and return cycles, and the behaviors of the vessel in different
voyages had obvious temporal and spatial characteristics.
We considered the historical trajectory data as the sample L

and used the D-KMEANS algorithm for clustering.

(1) We calculated the distance between each point of the
trajectory and stored it as a Mercator distance ma-
trix. )e density of DBSCAN reached a radius of 3.6,
the minimum sample value was 2, and the 2459
points in L were clustered. )e spatial clustering
results were clustered into 266 categories, as shown
in Figure 12. Of these, 23 categories contained only
one piece of data, which were outliers.

(2) We excluded abnormal categories, leaving 243 cat-
egories to form a new sample L′. We then calculated
the average speed of each type of AIS point and
recorded the average speed set of all as V. )e first
step of clustering was complete.

Second, we performed a second-step clustering of the
average speed set using KMEANS, as follows:

(1) We clustered the average velocity set k into three
categories.)e average speed cluster between 0.5 and
1.5 knots was classified as low speed, the average
speed cluster between 1.5 and 3 knots was classified
as medium speed, and the average speed cluster
between 5.5 and 11 knots was classified as high speed.
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Figure 7: Box diagram of vessel speed.
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Each average speed in V was labeled as low speed,
medium speed, or high speed.

(2) We used the label obtained in step (1) to divide the
266 classes in L′ into three classes. Finally, the second
stage of clustering was complete.

As shown in Figure 13, clusters formed by blue dots
represent low-speed trajectories, red squares represent
medium-speed trajectories, and green triangles represent
high-speed trajectories. )is distribution shows the
following obvious behavioral characteristics: when the
vessel was in the initial state, its speed was slow; when the

vessel entered the waterway to sail to the work area, its
speed increased, and when the vessel reached its desti-
nation for operation, its speed was medium. Table 2 lists
the relationship between the speed and vessel behavior.
)is study used the green high-speed trajectory of a
vessel sailing in a waterway as an example to perform the
next prediction.

4.5. Trajectory Prediction. )e dataset was divided into the
following three parts: training set, verification set, and test
set, with a ratio of 6 : 2 : 2. )e training set was used to train

Table 1: Comparison of data before and after anchor trajectory eliminating.

State Number of vessels Number of points Number of berthed vessels Number of anchor points
Before 58 39662 17 16411
After 39 23578 0 327
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the model. In the training process, the verification set was
employed to verify the performance of the model and im-
prove its generalization ability. )e test set was used to
generate some prediction results. )e Adam optimizer was

used as the activation function of the hidden and output
layers. )e selectable range of the batch size was {16, 32, 64,
128, and 256}, and the experimental results of different batch
size parameters are shown in Table 3.
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)e training process is shown in Figure 14. )e three
models had fast iteration speeds in the first three rounds.
When the number of training rounds was approximately
150, the models reached the extremum. )e MSE of the
LSTMmodel was 0.0037 and theMAEwas 0.036; theMSE of
the stacked-BiLSTM model was 0.0021 and the MAE was
0.0194; and the MSE of the stacked-BiGRU was 0.0018 and

the MAE was 0.0191. )e deep bidirectional structure had
additional feature extraction; therefore, the stacked-BiLSTM
model and the stacked-BiGRU model presented lower
errors.

)e stacked-BiGRU and stacked-BiLSTM models had
similar losses. When the number of training rounds was
approximately 10, theMSE of the stacked-BiGRUmodel was

271217
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Figure 12: First-stage DBSCAN clustering result. First, we performed the first-step clustering of the trajectory using the DBSCAN
algorithm, as follows:
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Figure 13: Second-stage KMeans clustering result.

Table 2: Comparison of data before and after anchor trajectory eliminating.

Speed status Ground speed (knots) Ship behavior
Low speed 0.5< Sog≤ 1.5 Setting sail
Medium speed 1.5< Sog≤ 5.5 Working
High speed 5.5< Sog≤ 12 Crossing waterway
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Table 3: Comparison of the experimental results of different batch size parameters.

Model Metrics
Batch size

16 32 64 128 256

LSTM MSE 0.00383 0.00371 0.00472 0.00611 0.0093
MAE 0.0378 0.0363 0.0465 0.0505 0.0721

Stacked-BiLSTMs MSE 0.00221 0.00209 0.00313 0.00422 0.00627
MAE 0.0202 0.0194 0.0298 0.0441 0.0602

Stacked-BiGRUs MSE 0.00184 0.00180 0.00247 0.00317 0.0544
MAE 0.0216 0.0191 0.0207 0.0322 0.0511
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0.004, while the stacked-BiLSTMmodel reached this value at
the 20th round. )e stacked-BiGRU model converged faster
mainly because the gate of the GRU unit was more simplified
than the LSTM unit.

We also compared the impact of anchor trajectory
elimination, outlier repair, and behavior classification im-
provement on different recurrent neural network models. As
shown in Figure 15, the MSE of the improved model was
27% lower than that of the unimproved model on average,
and the MAE was 46% lower than that of the unimproved
model. )e model converges after 55 epochs on average
before improvement, and the improved model converges
after 26 epochs. )e results show that the improved model
has quicker convergence rapidity and less error. )is is
because after improving, the abnormal data were eliminated,
and the characteristics of the trajectory data were more
concentrated, making it easier to analyze the inherent laws of
the trajectory data.

)e results of the simulation prediction are shown in
Figure 16. From a path plan developed by the test, using a
flexible window, the output of the previous model was used
as the new trajectory data input, the planning model results
at the corresponding time were repeatedly generated, and
the predictions were 100 trajectories of flight trajectories.
)e online green line represents the historical trajectory, the
blue line represents the predicted trajectory, and the red line
represents the real trajectory. )e predicted trajectory ba-
sically fitted the real trajectory, achieving a good trajectory
prediction effect.

5. Conclusions

Trajectory prediction is a key requisite for navigation; in this
research, to further improve the quality of maritime navi-
gation in IoV, we considered the influence of anchor tra-
jectory, trajectory abnormal points, and different vessel
behavior characteristics on trajectory prediction, and

designed an improved vessel trajectory prediction model
based on a recurrent neural network. For the anchor tra-
jectory in the data, an anchor trajectory elimination algo-
rithm was proposed to detect and eliminate abnormal data.
A statistical trajectory restoration algorithmwas proposed to
repair the abnormal points in the trajectory. )e vessel
behavior classification algorithm D-KMEANS realized the
extraction of different vessel behavior trajectories. Finally, a
Stacked-BiGRUs model was built, and the sliding window
was used to iteratively predict the position of the vessel at
any step length.

)e experimental results of the data processing part
showed that the proposed algorithm achieved the expected
results in terms of anchor trajectory elimination, trajectory
repair, and vessel behavior classification. )e comparative
experiment of prediction models proved the performance of
the Stacked-BiGRUs model in terms of prediction accuracy
and convergence speed. )is was mainly because the bidi-
rectional model extracted additional features of the data, and
the simplified gate structure of the GRU unit improved the
training efficiency. )e comparative experiments to verify
the accuracy of the model showed the mean square error of
the improved model is 0.0018 and the mean absolute error is
0.0191, which are reduced by 27% and 46%, depicting that
the improved method can effectively improve prediction
accuracy. )e processing eliminated anchor trajectories and
repaired abnormal data, and behavior classification resulted
in a higher concentration of the characteristics of the vessel
trajectory data, which made it convenient for the model to
mine the inherent laws of trajectory data. Owing to this, the
method proposed in this study may be well suited to pro-
actively assist collision avoidance systems in ports and
offshore areas.
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