
Research Article
LPS-ORAM: Perfectly Secure Oblivious RAM with Logarithmic
Bandwidth Overhead

Yunping Gong ,1,2 Fei Gao ,1 Wenmin Li ,1 Hua Zhang ,1 Zhengping Jin,1

and Qiaoyan Wen1

1State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications,
Beijing 100876, China
2State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China

Correspondence should be addressed to Fei Gao; gaof@bupt.edu.cn

Received 9 May 2022; Accepted 11 July 2022; Published 12 August 2022

Academic Editor: Wenbo Shi

Copyright © 2022 YunpingGong et al.)is is an open access article distributed under the Creative CommonsAttribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Oblivious Random Access Machine (ORAM) is a cryptographic tool used to obfuscate the access pattern. In this paper, we focus
on perfect security of ORAM. A perfectly secure ORAM is an ORAM that can resist against an adversary with unlimited
computing power, and the failure probability of ORAM is zero rather than negligible. Since all existing perfectly secure single-
server ORAM solutions require at least sublinear worst-case bandwidth overhead, we pose a natural and open question: can we
construct a perfectly secure single-server ORAMwith logarithmic worst-case bandwidth overhead? In this paper, we propose the first
tree-based perfectly secure ORAM scheme, named LPS-ORAM. To meet the requirements of perfectly secure ORAM, two
techniques are presented. One technique is dynamic remapping associated with a mutable scope, and the other is dynamically
balanced eviction. )eir combined effect allows the root bucket to never fill up while maintaining its statistical security in tree-
based ORAM. In the worst case, our solution achieves logarithmic bandwidth overhead.)erefore, our solution answers the open
question in the affirmative. In terms of overhead for temporary storage on the client side, compared with the latest perfectly secure
ORAM solution, our solution is reduced from sublinear to logarithmic, and even if the server storage overhead scales lightly, it is
still at the same level of quantity as the state of the art. Finally, the evaluation results show that our LPS-ORAM has a significant
advantage in terms of bandwidth overhead and overhead for temporary storage on the client side.

1. Introduction

)anks to the interconnectivity of a large number of mobile
smart devices in the Internet of )ings, huge amounts of
data are being generated. To save money on data storage,
consumers choose to store their private data on the cloud
server. In order to guarantee confidentiality of the private
data, consumers need to encrypt the data before uploading
them to the server. But using encryption alone, the data
access pattern might still be broken, and the opponent can
deduce some sensitive information from this [1–3]. Obliv-
ious Random Access Machine (ORAM) [4–6] was presented
decades ago to mitigate this security issue. Nevertheless,
these early ORAM solutions are not viewed favorably by

most researchers due to the poor efficiency. Since then, a
large number of ORAM solutions [7–26] have been put
forward to make the efficiency better. Among them, Path
ORAM [13] algorithm is very simple and very efficient in
logarithmic bandwidth overhead, so it is excellent.

Goldreich and Ostrovsky [6] proposed the first lower
bound of O (log N) bandwidth overhead, where N is the
number of real blocks outsourced to the cloud server. )e
lower bound holds if the client storage size isO (1)-block and
the ORAM is in a balls-and-bins model with a uniform block
size of O (log N)-bit. Boyle and Naor [27] further stated that
this lower bound only holds for statistically secure ORAM
that is in a “balls-and-bins” manner. Larsen and Nielsen [28]
then stated that the lower bound of O (log N) bandwidth

Hindawi
Security and Communication Networks
Volume 2022, Article ID 9032828, 12 pages
https://doi.org/10.1155/2022/9032828

mailto:gaof@bupt.edu.cn
https://orcid.org/0000-0001-9219-4583
https://orcid.org/0000-0002-1546-4364
https://orcid.org/0000-0002-4665-8508
https://orcid.org/0000-0002-0532-9783
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/9032828


overhead for computationally secure ORAM still holds even
it is not in a “balls-and-bins” manner. However, for perfectly
secure ORAM, it is not clear whether the lower bound holds.

)e theme of a lot of works [13, 27–35] associated with
ORAM is to find a lower bound of bandwidth overhead in
different settings. Typically, there are two ways to measure
the bandwidth overhead. One approach is worst-case
overhead, which is the maximum overhead of completing a
single request in a long list of requests. )e other is am-
ortized-case overhead, which is the average overhead of each
request in a long list of requests. )e most famous lower
bound in the worst case was proposed by Stefanov et al. [13],
who presented a tree-based statistically secure ORAM with
O (logN) bandwidth overhead when the block size is set toO
(log2N)-bit. )us, this only partly matches the lower bound
of Goldreich and Ostrovsky [6] because the lower bound
only holds when the block size is O (log N)-bit. )e most
famous lower bound in the amortized case was proposed by
Asharov et al. [31], who presented a computationally secure
ORAM with O (log N) bandwidth overhead, which com-
pletely matches the lower bound of Larsen and Nielsen [28].

)e first perfectly secure ORAM was designed by
Damgard et al. [36], which has the amortized-case bandwidth
overhead of O (log3N)-block and the server storage overhead
of O (N ∗ log N)-block. )is was further improved by Chan
et al. [37], who presented a perfectly secure ORAM with a
lower server storage overhead of O (N)-block and the same
amortized-case bandwidth overhead. Recently, another per-
fectly secure ORAM, Lookahead ORAM, was proposed by
Raskin and Simkin [38], which has the worst-case bandwidth
overhead ofO (

��
N

√
)-block and the server storage overhead of

O (N)-block. )is is the first perfectly secure single-server
ORAM with sublinear worst-case bandwidth overhead. Since
all existing perfectly secure single-server ORAM solutions
require at least sublinear worst-case bandwidth overhead, we
pose a natural and open question.

Can we construct a perfectly secure single-server ORAM
with logarithmic worst-case bandwidth overhead?

)is is an important academic question because it fa-
cilitates the process of reaching the lower bound for perfectly
secure single-server ORAM.Whether this open question can
be resolved is a necessary step in the development of ORAM
research. )e importance of perfectly secure ORAM was
elaborated by Chan et al. [37]. In addition to the three points
listed, we have added another point. To the best of our
knowledge, in the standard model without server comput-
ing, the lower bounds of both computationally secure
ORAM and statistically secure ORAM are logarithmic,
which are Goldreich–Ostrovsky lower bound [6] and Larsen
and Nielsen lower bound [28], respectively. However, so far,
the lower bound of perfectly secure ORAM has not yet
emerged. )erefore, it is significant to keep approaching the
lower bound by constructing a perfectly secure ORAM
solution with better bandwidth overhead.

1.1. Our Contribution. In this paper, we propose a new
perfectly secure ORAM solution, called LPS-ORAM, which
is designed to resolve the above open question. )e main
contributions of our paper are summarized as follows:

(i) Design of LPS-ORAM construction. We propose
the detailed design of the first tree-based perfectly
secure ORAM construction. )e proposed tech-
niques can be applied to implement other perfectly
secure tree-based ORAM solutions.

(ii) Simplicity and logarithmic worst-case bandwidth
overhead. Our scheme has an extremely simple
algorithm that makes it practical to implement, and
it gains logarithmic bandwidth overhead in the
worst case.

(iii) Small overhead for temporary storage on the client
side. Our solution achieves logarithmic overhead for
temporary storage on the client side, instead of the
previous sublinear. )us, our solution can be ap-
plied to small smart devices with limited client
storage in the Internet of )ings.

1.2. An Overview of Our Techniques. To the best of our
knowledge, if only the requested block is remapped after
each access in tree-based ORAM, the root bucket in the
ORAM tree will be full sooner or later because if the path
corresponding to the remapped leaf label and the eviction
path are exactly at two branches of the binary tree, the
requested block will have to be evicted into the root bucket.
)e detailed reason is as follows. It is assumed that the new
remapped leaf label of the requested block and the eviction
path at that time are exactly at two branches of the binary
tree. )is is the worst case. Even if the greedy strategy is
applied to the eviction process, the requested blocks are
continuously allocated to the root bucket, causing the root
bucket to accumulate until it is full. To ensure perfect se-
curity of ORAM, we need to achieve the goal of allowing the
root bucket to never fill up while maintaining its statistical
security in tree-based ORAM. As a result, it is not feasible
that only requested block is remapped after each access in
tree-based ORAM. )us, dynamic remapping associated
with a mutable scope is proposed.

1.2.1. Dynamic Remapping Associated with a Mutable Scope.
In tree-based ORAM, to ensure the obliviousness property
of ORAM, the new remapped leaf label of the requested
block is random and uniform after each access. However,
each remaining real block retrieved from the path is
remapped to a new leaf label that belongs to the scope from
the corresponding leaf label of the eviction path to the
original leaf label of the block. )is is a dynamic remapping
associated with a mutable scope. )e scope is mutable be-
cause depending on the leaf label of the real block, the real
block may be written back into the bucket closer to the leaf
bucket, but which bucket in the path the real block is located
in is a secret for the honest-but-curious server. For example,
assuming that the eviction path at that time is labeled by 3,
the original leaf label of a remaining real block is 5, and then
the scope at that time is [3, 5]. In our ORAM solution, if the
block cannot be directly located to a bucket lower than the
original bucket according to the original leaf label, then the
new remapped leaf label needs to ensure that it places the

2 Security and Communication Networks



bucket in which the block is located closer to the leaf bucket
than the original leaf label.

1.2.2. Dynamically Balanced Eviction. In our solution, the
goal is allowing the root bucket to never fill up while
maintaining its statistical security in tree-based ORAM.
)us, what kind of eviction should be combined with the
above dynamic remapping to implement the goal? )e
dynamically balanced eviction is proposed at this time.
During the eviction, the requested block is first arranged to
the deepest bucket of the path according to the new
remapped leaf label, which is closest to the leaf bucket.
Because the new remapped leaf label of the requested block is
random and uniform after each access, according to dy-
namic remapping with a mutable scope, if one path is
accessed multiple times, almost all of the real blocks in the
path will be squeezed to the buckets near the leaf bucket.)is
information is harmful because it is inferred easily by the
honest-but-curious server. )us, the dynamically balanced
eviction is utilized to avoid the above harmful information.
Whether a real block in the path needs to be located in a
bucket lower than the original bucket depends on whether
the root bucket is empty. If the root bucket is not empty, the
above dynamic remapping needs to be executed. Otherwise,
it cannot be executed. )us, the proposed eviction is dy-
namically balanced.

1.3. Other Related Work. A great deal of work has con-
tributed to implementing perfectly secure ORAM. In the rest
of this section, we provide only a high-level overview of
solutions that are directly relevant to our work.

In order to reach the lower bound of O (log N), a large
number of solutions have been proposed in the client-
server environment. Mayberry et al. [39] proposed a
solution with server-side computations, called Path-PIR,
in order to obtain a actually very small, but still poly-
logarithmic bandwidth overhead. Apon et al. [40] for-
mally defined the primitive for verifiable oblivious storage
by allowing server-side computations to be generated
from the ORAM primitive and by providing a solution
with constant bandwidth overhead, but it is based on fully
homomorphic encryption (FHE), so it shows that O (log
N) lower bound has been broken in their setting with FHE.
Another solution, called Onion ORAM [41], is proposed
that also breaks the O (log N) lower bound, but it relies on
additively homomorphic encryption (AHE). However, in
this work, we will focus on the client-server setting
without server-side computations.

Demertzis et al. [42] proposed a computationally secure
ORAM solution with worst-case bandwidth overhead of
O(N1/3) and perfect correctness. Perfect correctness means
that the ORAM solution fails with the probability of 0.
Subsequently, several works cite this and claim that their
solution is perfectly secure. However, according to their
definition of perfectly secure ORAM, Raskin and Simkin
[38] stated that this is not correct and this claim is not made
by the authors of that paper either.

1.4. Organization. )e rest of this paper is organized as
follows. Section 2 introduces the background knowledge
including the definition of perfectly secure ORAM and an
overview of Path ORAM. Section 3 provides the details of
our LPS-ORAM solution. Section 4 gives the performance
analysis in terms of bandwidth overhead, storage overhead,
and further optimization. A detailed evaluation is intro-
duced in Section 5. Finally, the conclusion is provided in
Section 6.

2. Preliminaries

2.1. Security Model. In the security model of ORAM, it is
assumed that there is an honest-but-curious server and a
trusted client. It requires that for any two requests sequences
with the same length, the corresponding access pattern
should be indistinguishable. Note that all blocks are
encrypted by the client before they are uploaded to the
server. )e following security definition of perfectly secure
ORAM is taken from Raskin and Simkin [38].

Definition 1. (security definition of perfectly secure
ORAM). Let U

→
� (Y1, Y2, Y3, . . .) indicate a request sequence

of ORAM. In U
→
, Yi is an access of Read (IDi) or Write (IDi,

Datai∗), where IDi means the unique block identifier and
Datai∗ refer to the new content of block IDi to be written. It is
noted that each real block has a unique identifier. Let DAP
(U
→
) represent the data access pattern when U

→
is the input of

the ORAM algorithm. In reality, the data access pattern is
viewed as a distribution. )e ORAM solution is statistically/
computationally secure for the honest-but-curious server, if
and only if DAP (U

→
) and DAP (V

→
) are statistically/com-

putationally indistinguishable for any two ORAM request
sequences U

→
and V

→
with the same length. )e ORAM

solution is perfectly correct if and only if it returns on input
U
→

that is consistent with U
→

with probability 1. We call an
ORAM perfectly secure if and only if the ORAM solution
can resist against an adversary with unlimited computing
power and is perfectly correct at the same time.

According to the above definition, the ORAM is per-
fectly secure if an ORAM is statistically secure and has a
failure probability of 0 at the same time.

2.2. An Overview of Path ORAM. We provide a simple
overview of Path ORAM (see [13] for more details). As
described in Figure 1, the Path ORAM solution consists of
two parts, one is the server storage, and the other is the client
storage. )e server storage is a complete binary tree with
about log N-level. )e red line is a target path that the
requested block is stored, which is from the remapped leaf
label of the position map (PosMap) on the client.

In the complete binary tree, each node is a bucket that
can accommodate at most Z-block where Z is a constant. Z-
block contains some real blocks, and the rest of the space is
populated with virtual blocks. )e difference between a real
block and a virtual block is that the content of the virtual
block is a random string, while the content of the real block
consists of real data. Each path in the complete binary tree is

Security and Communication Networks 3



a set of buckets from the root bucket to a leaf bucket. After
each access, every requested block is remapped to a random
and uniform leaf label, which means that the requested block
either resides somewhere on the path numbered by the leaf
label or in stash on the client side. In Path ORAM, to execute
an ORAM request, the PosMap is queried first by the client,
which is a list table on the client side that tracks the path to
which each real block is currently remapped, and then about
(Z ∗ log N) blocks on that path are retrieved to the local
stash. Subsequently, the requested block is remapped to a
new random and uniform leaf label and the PosMap is
updated accordingly. Finally, the eviction procedure is ex-
ecuted, the same path is populated with some real blocks,
and the rest of the space is populated with virtual blocks.)e
various symbols and their meanings are listed in Table 1.

)e bandwidth overhead of Path ORAM is about
2Z ∗ log N because a path is fetched and then it is written
back into the complete binary tree for each ORAM request.
To make Path ORAM fail with a negligible probability in N,
the value of Z must be at least 4 in reality or 5 in theory.

3. LPS-ORAM Solution

In this section, we present an extremely simple tree-based
perfectly secure ORAM protocol. As far as we know, Path
ORAM has an extremely simple algorithm and efficient
efficiency of O (log N)-block bandwidth overhead when the

block size is set to O (log2N)-bit. In our design, our perfectly
secure tree-based ORAM, called LPS-ORAM, will inherit the
benefits of Path ORAM. In addition, our works focus on
perfect security of ORAM, that is, we are committed to
achieving the goal of allowing the root bucket to never fill up
while maintaining its statistical security in tree-based
ORAM. )e various symbols used in this solution and their
meanings are also listed in Table 1.

3.1. Storage Structure. In our LPS-ORAM, there are N real
blocks, which are outsourced to the server storage. Each
block’s modality is (identifier, p; data). It represents that the
block numbered as identifier is either on the path numbered
by leaf label p or in the local stash. For each real block, it has a
unique identifier, identifier, and the content of the block
labeled as identifier contains data. For each virtual block,
both p and data are populated with random strings. In order
to obfuscate all the blocks with each other, they are set to a
constant size no matter whether the block is a real block or a
virtual block. To differentiate decrypted blocks retrieved
from the server storage, all virtual blocks have same block
identifiers. In addition, the purpose of adding virtual blocks
to the server storage is to confuse all blocks so that the server
cannot differentiate between any encrypted block being a
real block or a virtual block. Note that all blocks are
encrypted by the client before they are uploaded to the
server. )at is, all blocks in the server storage are in the state
of encryption. )erefore, adding virtual blocks to the server
storage is part of the security effort to hide the data access
pattern.

3.1.1. Server Storage. On the server side, there is a complete
binary tree. In it, there are L+ 1 levels in total. )ey are
marked as 0, 1, 2, . . ., and L, respectively. )eoretically, the
height of the complete binary tree is set to L� ⌈log N⌉+ 1.
For the sake of description, we let L� logN, resulting in a full
binary tree with N leaves and N− 1 non-leaves. In the
complete binary tree, the root node is at layer 0 and all the
leaf nodes are at layer L.

Each node of the complete binary tree is one bucket in
our LPS-ORAM solution. Z blocks at most in each bucket.
As a result, each bucket is Z-block in size. In our scheme, Z is
set to a constant. Each bucket can accommodate some real
blocks, and dummy blocks populate the rest of the space.

)e complete binary tree has about 2N nodes, so there
are about 2Z ∗ N blocks on the server side.)at is, the server
storage size is O (N) blocks.

Table 1: Symbols and meanings.

Symbol Meaning
N )e number of real blocks in total
L )e height of the full binary tree
Z )e bucket size in blocks
B )e block size in bits

p Path p refers to the set from the root
bucket to leaf bucket labeled p

P (j, i) )e bucket at level i along the path labeled j

Server

4 blocks per bucket

ab
ou

t (
lo

g 
N

) l
ev

els

0

3

2

1

0

1 2 3 4 5 6 7
path label:

level:

Client

PosMap Stash

Figure 1: )e structure of Path ORAM solution [13].

4 Security and Communication Networks



3.1.2. Client Storage. )ere are two structures on the client
side, PosMap and stash.

In our scheme, there are N real blocks, and each real
block is remapped to a leaf label, so there areN leaf labels. All
of the above N leaf labels are stored in the PosMap. )e
complete binary tree has N leaves, and each leaf is numbered
by a leaf label, which results in each leaf label having a size of
logN bits.)us, the size of the PosMap is (N ∗ logN) bits. In
the client-server environment, the client can entirely store
the PosMap, rather than the server storing the PosMap
recursively because storing the PosMap on the client is
virtually negligible when the block size is not set to very
small size of O (log N) bits. Moreover, if the server stores the
PosMap recursively, both the average time latency and the
number of interaction rounds increase significantly.

)e client has a stash to store temporary blocks retrieved
from the server storage. Why is it temporary storage? Be-
cause all blocks on the target path are retrieved to the local
stash, and then all the blocks are written back into the path of
the complete binary tree. In the previous tree-based ORAM
solutions, there might have been some stranded real blocks

on the stash because the root bucket might have been full. In
our perfectly secure tree-based ORAM solution, the stash
size is exactly the size of retrieved path because there are no
stranded real blocks on the stash.

3.2. Detailed Execution. In this section, the detailed exe-
cution procedures are described as follows. )ere are two
algorithms to implement our LPS-ORAM protocol, which
are retrieval algorithm and eviction algorithm, respectively.
A detailed description of the whole LPS-ORAM algorithm is
shown in Figure 2.

3.2.1. Retrieval. )e retrieval algorithm is to fetch all blocks
on the target path corresponding to the leaf label of the
requested block. All the fetched blocks are stored in the stash
locally. After the retrieval, all the fetched blocks are
decrypted and then the dummy blocks are discarded.)at is,
only the real blocks are stored in the stash on the client.
Subsequently, the requested block is assigned to a new leaf
label from random and uniform remapping. In order to

Figure 2: )e algorithm of our LPS-ORAM solution.

Security and Communication Networks 5



implement a failure probability of 0, that is, to allow the root
bucket to never fill up while maintaining its statistical se-
curity in tree-based ORAM, all remaining fetched real blocks
need to be remapped if necessary. However, instead of
applying a random and uniform remapping to them, a new
remapping is applied to them. Since the distribution of real
blocks on the path in which buckets is dynamic and the
server cannot know the distribution, we can take the step of
infiltrating the real block down the position of a bucket to
free up space of the upper bucket. )us, the root bucket will
not be full even if the remapping of the requested block is in
the worst case, where both the path corresponding to the leaf
label of the requested block and the eviction path at that time
are two branches of the binary tree. )e question is what
kind of remapping would allow fetched real blocks to move
down one bucket? At this point, the dynamic remapping
associated with a mutable scope is proposed.

Now we illustrate our proposed dynamic remapping
with a mutable scope, as shown in Figure 3.)e target path is
marked by read line and taken from the PosMap on the
client, and all real blocks in the target path are (a, 3), (b, 2),
(e, 1), (f, 2), (h, 3). It is noted that data of each real block is
ignored to descript simply. For example, block (a, 3, data) is
written as (a, 3). Among the fetched real blocks, block (a, 3)
is the requested block at that time. Since the root bucket is
not empty and block (f, 2) cannot be located in a bucket
lower than the original bucket, block (f, 2) has to be
remapped from a mutable scope [2, 3], which is the set from
the original leaf label to the leaf label corresponding to the
eviction path. In Figure 3, it is marked in yellow. Also, the
rest of the fetched real blocks (b, 2), (e, 1), (h, 3) need not be
remapped because they can be directly written back into a
lower bucket than the original bucket. )e requested block
(a, 3) is remapped to a new random and uniform leaf label
because of the obliviousness property of ORAM.

As shown in Figure 2, step 1 is the lookup procedure to
get the leaf label of the target path, which is the leaf label of
the requested block. From step 2 to step 4 is the retrieval
procedure to get all buckets of the target path in the binary
tree.)en, from step 5 to step 8 is the operation procedure of
the requested block during each access. If the operation is
“read,” data of the requested block are directly returned to
the client, as described in step 23. If the operation is “write,”
data are updated by data∗ . From step 9 to step 18 is the
remapping procedure to get a new leaf label for each fetched
real block. )e procedure is divided into two cases. One case
is for the requested block, and the other case is for all other
fetched real blocks from the target path. Due to the obliv-
iousness property of ORAM, after each access, the requested
block needs to be remapped to a new random and uniform
leaf label. Nevertheless, all other fetched real blocks can
avoid the random and uniform remapping because they are
dynamically distributed on each path and this distribution is
secret for the server. )us, it is secure to adjust the distri-
bution of them to achieve some certain goal. If the root
bucket is not empty, each real block in the path will be
written back into a lower bucket than the original bucket
through adjusting the corresponding leaf label. Note that a
lower bucket is closer to the corresponding leaf bucket in the

binary tree. If some real block of them can be directly written
back into a lower bucket than the original bucket, the block
need not be remapped. Else, the block is remapped to a new
leaf label from the above scope, until the real block can be
written back into a lower bucket than the original bucket,
this process takes almost no time.

3.2.2. Eviction. In this section, the dynamically balanced
eviction algorithm is proposed. )e proposed eviction al-
gorithm not only follows the greed strategy but also further
makes use of the space of the eviction path in the binary tree.
)e greed strategy in the eviction algorithm is that as many
fetched blocks as possible are written back from the stash
locally to the eviction path in the binary tree. )e above
dynamic remapping associated with a mutable scope can
make each real block locate into a lower bucket. )us, our
dynamically balanced eviction algorithm can be combined
with the above dynamic remapping associated with a mu-
table scope to make better use of the space of the eviction
path in the binary tree than a single greed strategy.

During the eviction algorithm, the requested block is
first arranged to the deepest bucket of the path according to
the new remapped leaf label, which is closest to the leaf
bucket. Because the new remapped leaf label of the requested
block is random and uniform after each access, according to
dynamic remapping with a mutable scope, if one path is
accessed multiple times, almost all of the real blocks in the
path will be squeezed to the buckets near the leaf bucket.)is
information is harmful because it is inferred easily by the
honest-but-curious server. )us, the dynamically balanced
eviction is utilized to remove the above harmful information.
Whether a real block in the path needs to be located into a
bucket lower than the original bucket, it depends on whether
the root bucket is empty. If the root bucket is not empty, the
above dynamic remapping needs to be executed. Otherwise,
it cannot be executed. )us, the proposed eviction is dy-
namically balanced. In our eviction algorithm, for each
access, the goal is that the requested block can be written
back into the path in the binary tree, rather than being
stranded in the stash locally. )is goal is the focus of our
scheme in the setting of tree-based ORAM. In tree-based
ORAM, the root bucket may be full because only the
requested block needs to be remapped to a random and
uniform leaf label, while other fetched real blocks do not
need to be remapped. If the requested block for each access is
in the worst case, with a small but non-negligible probability,
the root bucket will accumulate until it is full as the number
of different requested blocks increases. However, our evic-
tion algorithm can avoid this case.

As shown in Figure 2, from step 19 to step 22 is the
procedure of the eviction algorithm to write back all fetched
real blocks containing the requested block into the eviction
path in the binary tree. During this procedure, the path is
scheduled from the corresponding leaf bucket to the root
bucket. )en, each fetched real block is written back into
some lower bucket than the original bucket if the root bucket
is not empty. Finally, the eviction path is written back into
the binary tree on the server storage.

6 Security and Communication Networks



(c, 0) (g, 2) (h, 3)

(f, 2)

(a, 3) (d, 6)

(b, 2)
(e, 1)

3

2

1

0

0 1 2 3 4 5 6 7
path label:

Z-block per bucket
level:

ab
ou

t (
lo

g 
N

) l
ev

els

(a)

level:

Z-block per bucket

ab
ou

t (
lo

g 
N

) l
ev

els

0

1

2

3

path label:

0 1 2 3 4 5 6 7

(c, 0) (g, 2)

(b, 2)

(e, 1)

(d, 6)

(f, 3)

(a, 5)

(h, 3)

(b)

Figure 3: )e proposed dynamic remapping. (a))e state of the binary tree before the proposed dynamic remapping.)e red line is the target path.
)e block of bold lines is the requested block labeled a, namely, block (a, 3), where data is ignored to descript simply. (b))e state of the binary tree
after eviction. )e fetched real blocks that are not marked yellow need not to be remapped, such as blocks (b, 2), (e, 1), (h, 3), while the fetched real
blocksmarked yellow except the requested block need to follow the dynamic remapping with amutable scope, for example, block (f, 2) is modified to
(f, 3). )e requested block (a, 3) is remapped to a new random and uniform leaf label 5 because of the obliviousness property of ORAM.

Security and Communication Networks 7



3.3. Security Analysis. In this section, we will analyze the
perfect correctness and perfect security of our LPS-ORAM.
)e perfect correctness of ORAM means that the ORAM
scheme fails with the probability of 0, rather than a negligible
probability. )e perfect security of ORAM means that the
ORAM scheme can resist against an adversary with un-
limited computing power, and simultaneously the ORAM
scheme has perfect correctness.

3.3.1. Perfect Correctness

Claim 1. Our LPS-ORAM scheme has perfect correctness.

Proof. If the block can be directly written back into a lower
bucket than the original bucket, the fetched real block need not
be remapped. Else, each fetched real block is remapped to a new
leaf label from a mutable scope, until the real block can be
written back into a lower bucket than the original bucket. In a
word, each fetched real block from the target path needs to be
located in a lower bucket than the original bucket. However,
the requested block needs to follow the random and uniform
remapping because of the oblivious property of ORAM.When
the requested block is in the worst case, namely, both the path
corresponding to the new leaf label of the requested block and
the eviction path are two branches of the binary tree, the
requested block will have to be written back into the root
bucket. However, since each of all other real blocks can be
written back into a lower bucket than the original bucket, the
root bucket is filled with atmost one real block at any epoch. As
a result, as long as the size of the root bucket is larger than one
block, the root bucket cannot be full. )at is, our LPS-ORAM
scheme can fail with the probability of 0 as long as the bucket
size is longer than 1. )erefore, our LPS-ORAM scheme has
perfect correctness. □

3.3.2. Perfect Security

Claim 2. Our LPS-ORAM scheme is statistically secure for
the honest-but-curious server.

Proof. In our LPS-ORAM, each path fetched is random and
uniform for the honest-but-curious server. )at is, all blocks
of each bucket fetched from the binary tree are random and
uniform. As a result, for any two kinds of access, the two
paths retrieved are statistically indistinguishable for the
server. )erefore, our LPS-ORAM scheme is statistically
secure for the honest-but-curious server. □

Theorem 1. Our LPS-ORAM scheme is perfectly secure for
the honest-but-curious server.

Proof. According to Claim 2, our LPS-ORAM is statistically
secure for the honest-but-curious server. As a result, our
scheme can resist against an adversary with unlimited
computing power. In addition, according to Claim 1, our
LPS-ORAM scheme has perfect correctness. )erefore,
according to the security definition from Definition 1, our

LPS-ORAM scheme is perfectly secure for the honest-but-
curious server. □

4. Performance Analysis

In this section, we will analyze the asymptotic performance,
which is mainly in bandwidth overhead and storage over-
head. We proposed the measures of further optimization.
Our LPS-ORAM solution will be compared with all the
previous perfectly secure single-server ORAM solutions,
which are listed in Table 2.

4.1. Bandwidth Overhead. In our solution, for each access,
only one path is fetched and then is written back into the
binary tree. )us, to fetch a requested block, the number of
blocks transferred between the client and the server is O (log
N) blocks. As a result, the bandwidth overhead of our so-
lution is O (log N)-block.

4.2. Storage Overhead. In our solution, the bucket size Z is a
constant and the binary tree on the server storage has O (N)
buckets. As a result, the binary tree has O (N) blocks.)at is,
the server storage overhead of our solution is O (N)-block.
)e client storage consists of PosMap and stash. PosMap is
practically negligible in the setting of client-server, as
mentioned in S3ORAM [26]. )us, the stash size is the client
storage overhead, which is one path size. )erefore, the
client storage overhead of our solution is O (log N)-block.

4.3. Further Optimization. In our LPS-ORAM solution, if
the bucket size Z is set to 1, the asymptotic performance of
our solution can be further optimized. In this case, the
bandwidth overhead is (L+ 1)-block, the server storage
overhead is (2L+1 − 1)-block, and the client storage overhead
is one path size of (L+ 1)-block. So, these overheads are
determined by the value of L. In theory, the value of L is set to
⌈log N⌉+ 1. So, the number of buckets is about 4N. )ere is
enough space to percolate down for the real blocks to release
the root bucket. However, to release the root bucket more
likely, a larger number of buckets or a larger Z is needed.
)us, the value of L and Z is in a dynamic equilibrium to
achieve a trade-off.

5. Evaluation

To give the actual performance of our LPS-ORAM solution,
we implemented a prototype with a client-side position map
and evaluated it based on bandwidth overhead, temporary
storage overhead, and server storage overhead. Our solution
will be compared with all the previous perfectly secure
single-server ORAM solutions. So far, there are three such
solutions. )ey are proposed by Damgard et al. [36], Chan
et al. [37], and Raskin and Simkin [38], respectively. In
addition, Path ORAM solution [13] is also compared with
ours because it is a tree-based ORAMwith efficient efficiency
of logarithmic bandwidth overhead.

In comparison, for different values of N, we measure the
bandwidth overhead, namely, the total amount of data

8 Security and Communication Networks



transferred per access between the client and the server. In
addition, both the temporary storage size on the client and
the total storage size on the server are measured in our
experiments. In the respective works, the values in all the
compared ORAM schemes with our LPS-ORAM are cal-
culated based on the concrete formulas and constants that
are reported.

We make the following assumptions, as mentioned in
the evaluation of Lookahead ORAM solution [38]. )ere is
an additional encryption/MAC overhead of about 40 bytes
in each encrypted block because the random encryption is
applied to all blocks of all ORAM schemes. Within each
stash slot, there is an additional state header of about 20
bytes that contains location information and the state. Also,
4-byte words are used to indicate the ORAM request types.
During initialization procedure, the storage is populated
with random strings and they are directly uploaded to the
server. In all solutions, the block size is fixed to 1024 bytes.

We first analyze the concrete value of bandwidth
overhead, temporary storage overhead, and server storage
overhead in our LPS-ORAM solution. In it, L� ⌈logN⌉+ 1 in
theory and Z� 1. )us, when N real blocks of each size B-bit
are encrypted, the total server storage overhead of the
server is Z× (2L+1 − 1)× (B+ 40)-bit� (4N− 1)× (B+ 40)-
bit. )e corresponding position map is (N× log N)-bit. )e
stash size is (B+ 40)× (2 + logN)-bit, which is the temporary
storage overhead. For each access, (B+ 40)× (2 + log N) bits
need to be downloaded and then (B+ 40)× (2 + log N) bits
need to be uploaded, and thus the bandwidth overhead is
2× (B+ 40)× (2 + log N) bits.

Finally, for the sake of description in the following
figures, the solutions proposed by Damgard et al. [36] and
Chan et al. [37] are called ORAM1, ORAM2, and the solution
proposed by Raskin and Simkin [38] is called Lookahead
ORAM.

5.1. BandwidthOverhead. )e bandwidth overhead refers to
the number of blocks transferred between the client and the
server to obtain a requested block.)e bandwidth overheads
of the above compared solutions are listed in the following.

)e ORAM1 and ORAM2 solutions are based on a
hierarchical structure, which have no position map on the
client. )eir concrete bandwidth overheads are
(log2N) ∗ (1 + log N)/2 blocks, which are self-reported. As
a result, the value is (B + 40) × (log2N) × (1 + log N)/2 bits.
)e Lookahead ORAM is based on a matrix structure,
which also has a position map on the client. )e position
map is also O (N × log N)-bit. However, the recursion
technique is not considered to be applied to the position

map. )us, its concrete bandwidth overhead is
{40 + (B + 40) × (

��
N

√
+ 1)} + {80 + (B + 40) × (

��
N

√
+ 1)} �

120 + 2 × (B + 40) × (
��
N

√
+ 1) bits, which is self-reported.

In addition, the bandwidth overhead of Path ORAM is
also shown in Figure 4. In Path ORAM, the bandwidth
overhead � (B + 40) × 2 Z × log N � 10 × (B + 40) × log
N bits, as shown in the evaluation of Lookahead ORAM.

Finally, the results are shown in Figure 4. As expected,
our LPS-ORAM has the smallest bandwidth overhead of all
the compared solutions.

5.2. Temporary Storage Overhead. )e temporary storage
overhead on the client side refers to the number of blocks
stored on the client, which is temporary because after each
access, all fetched blocks stored in the stash locally are written
back into the server storage. )e temporary storage overheads
of the above compared solutions are listed in the following.

)e ORAM1 and ORAM2 solutions are based on a
hierarchical structure. )e temporary storage overheads
contain one block, which is self-reported. As a result, the
value is (B + 40) bits. )e Lookahead ORAM is based on a
matrix structure, which also has a position map on the
client. Its concrete temporary storage overhead on the
client is 80 + (B + 40) × (

��
N

√
+ 1) bits, which is self-re-

ported. Additionally, in Path ORAM, the temporary
storage overhead on the client is about 10N × (B + 40) bits,
which is self-reported.

We observed that the temporary storage overhead is
about half of the bandwidth overhead in Lookahead ORAM,
Path ORAM, and our solution, while the temporary storage
overheads in the ORAM1 and ORAM2 solutions are only
considered to be a small constant. )us, the figure of results
for Lookahead ORAM, Path ORAM, and our solution is
similar to that of Figure 4. As expected, our LPS-ORAM has
the smallest temporary storage overhead among the above
three solutions.

5.3. Server Storage Overhead. )e storage overhead on the
server side refers to the number of blocks stored on the
server, which not only contains real blocks but also dummy
blocks. )e storage overheads of the above compared so-
lutions are listed in the following.

)eORAM1 solution is based on a hierarchical structure.
Its concrete storage overhead of the server is (2N− 1)× logN
blocks, which is self-reported. As a result, the value is
(B+ 40)× (N− 1)× log N bits. )e ORAM2 solution is based
on the ORAM1 solution. Its concrete storage overhead of the
server is reduced to 2N blocks, which is self-reported. As a
result, the value is (B+ 40)× 2N bits. )e Lookahead ORAM

Table 2: Asymptotic performance comparison of all the perfectly secure single-server ORAM schemes.

Perfectly secure ORAM scheme Structure Amortized-case bandwidth Worst-case bandwidth Client storage Server storage
Damgard et al. [36] Layer O (log3N) O (N∗ log N) O (1) O (N∗ log N)
Chan et al. [37] Layer O (log3N) O (N∗ log N) O (1) O (N)
Raskin et al. [38] Matrix O (

��
N

√
) O (

��
N

√
) O (

��
N

√
) O (N)

Ours Tree O (log N) O (log N) O (log N) O (N)
Note. All asymptotic overheads are represented in blocks.

Security and Communication Networks 9



is based on a matrix structure, which also has a position map
on the client. )e position map is also O (N ∗ log N)-bit.
However, the recursion technique is also not considered to

be applied to the position map. )us, its concrete storage
overhead of the server is N× (B+ 40) bits, which is self-
reported. In addition, the serve storage overhead of Path

0

50

100

150

200

250

300

350

400

450

500

550

600

0 1000 2000 3000 4000 5000 6000 7000 8000

Ba
nd

w
id

th
 O

ve
rh

ea
d 

(K
B)

N

Ours
Lookahead ORAM

ORAM1/2
Path ORAM

Figure 4: Comparison of the bandwidth overheads of all the perfectly secure single-server ORAM solutions. )e X-axis shows different
values of N. )e Y-axis shows the total amount of data transferred per access in KB between the client and the server.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 0.5 1 1.5 2 2.5 3 3.5 4

Se
rv

er
 S

to
ra

ge
 O

ve
rh

ea
d 

(M
B)

N = X * 106

Ours
Lookahead ORAM
ORAM2

ORAM1
Path ORAM

Figure 5: Comparison of the server storage overheads of all the perfectly secure single-server ORAM solutions. In the X-axis, N�X ∗ 106.
)e Y-axis shows the total required storage on the server side in MB.

10 Security and Communication Networks



ORAM is also shown in Figure 5. In Path ORAM, the server
storage overhead is about 20N× (B+ 40) bits, as shown in
the evaluation of Lookahead ORAM.

Finally, the results are shown in Figure 5. As expected,
our LPS-ORAM is slightly larger than Lookahead ORAM in
terms of server storage overhead.

6. Conclusion

In this paper, we focus on perfect security of ORAM. Since
all existing perfectly secure single-server ORAM solutions
require at least sublinear worst-case bandwidth overhead, a
natural and open question is posed: can we construct a
perfectly secure single-server ORAM with logarithmic worst-
case bandwidth overhead? To affirmatively answer the
question, we propose the first tree-based perfectly secure
ORAM scheme with logarithmic worst-case bandwidth
overhead, called LPS-ORAM. To meet the requirements of
perfectly secure ORAM, two techniques are used. One
technique is dynamic remapping associated with a mutable
scope, and the other is dynamically balanced eviction. )eir
combined effect allows the root bucket to never fill up while
maintaining its statistical security in tree-based ORAM. In
terms of overhead for temporary storage on the client side,
compared with the latest perfectly secure ORAM solution,
our solution is reduced from sublinear to logarithmic, even if
the server storage overhead scales lightly, it is still at the same
level of quantity as the state of the art. Finally, the evaluation
results show that our LPS-ORAMhas a significant advantage
in terms of bandwidth overhead and overhead for temporary
storage on the client side.

Data Availability

)e data used to support the findings of this study are
available from the authors upon request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is study was supported by the National Key R&D
Program of China under grant no. 2020YFB1005900 and
National Natural Science Foundation of China under
grant no. 62072051.

References

[1] M. S. Islam, M. Kuzu, and M. Kantarcioglu, “Access pattern
disclosure on searchable encryption: ramification, attack and
mitigation,” in Proceedings of the 2012 Network and Dis-
tributed System Security Symposium, pp. 1–15, San Diego, CA,
USA, February 2012.

[2] J. L. Dautrich and C. V. Ravishankar, “Compromising privacy
in precise query protocols,” in Proceedings of the 16th In-
ternational Conference on Extending Database Technology -
EDBT ’13, pp. 155–166, Genoa Italy, March 2013.

[3] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart, “Leakage-
abuse attacks against searchable encryption,” in Proceedings of
the 22nd ACM SIGSAC Conference on Computer and Com-
munications Security - CCS ’15, pp. 668–679, Denver, CO,
USA, October 2015.

[4] O. Goldreich, “Towards a theory of software protection and
simulation by oblivious RAMs,” in Proceedings of the nine-
teenth annual ACM conference onAeory of computing - STOC
’87, pp. 182–194, New York, NY, USA, 1987.

[5] R. Ostrovsky, “Efficient computation on oblivious RAMs
(extended abstract),” in Proceedings of the STOC ’90 Pro-
ceedings of the twenty-second annual ACM symposium on
Aeory of Computing, pp. 514–523, Baltimore, MD, USA, May
1990.

[6] O. Goldreich and R. Ostrovsky, “Software protection and
simulation on oblivious RAMs,” Journal of the ACM, vol. 43,
no. 3, pp. 431–473, 1996.

[7] S. Y. Chiou and Y. X. He, “Generalized proxy oblivious
signature and its mobile application,” Security and Commu-
nication Networks, vol. 2021, Article ID 5531505, 16 pages,
2021.

[8] B. Pinkas and T. Reinman, “Oblivious RAM revisited,” in
Advances in Cryptology – CRYPTO 2010, vol. 6223,
pp. 502–519, Springer, Berlin, Heidelberg, 2010.

[9] E. Shi, T.-H. H. Chan, E. Stefanov, andM. Li, “Oblivious RAM
with O((log N)3) worst-case cost,” in Advances in Cryptology
– ASIACRYPT 2011, vol. 7073, pp. 197–214, Springer, Berlin,
Heidelberg, 2011.

[10] Z. Li, C. Xiang, and C. Wang, “Oblivious transfer via lossy
encryption from lattice-based cryptography,” Wireless Com-
munications and Mobile Computing, vol. 2018, Article ID
5973285, 11 pages, 2018.

[11] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious
RAM,” in Proceedings of the 2012 Network and Distributed
System Security Symposium, pp. 1–40, San Diego, CA, USA,
February 2012.

[12] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (In)security of
hash-based oblivious RAM and a new balancing scheme,” in
Proceedings of the Twenty-Aird Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pp. 143–156, San Francisco,
CA, USA, January 2012.

[13] E. Stefanov, M. Van Dijk, E. Shi et al., “Path ORAM: an
extremely simple oblivious RAM protocol,” in Proceedings of
the 2013 ACM SIGSAC conference on Computer & commu-
nications security - CCS ’13, pp. 299–310, Berlin, Germany,
November 2013.

[14] S. Zhao, X. Song, H. Jiang, M. Ma, Z. Zheng, and Q. Xu, “An
efficient outsourced oblivious transfer extension protocol and
its applications,” Security and Communication Networks,
vol. 2020, Article ID 8847487, 12 pages, 2020.

[15] S. Gordon, X. Huang, A. Miyaji, C. Su, K. Sumongkayothin,
and K. Wipusitwarakun, “Recursive matrix oblivious RAM:
an ORAM construction for constrained storage devices,” IEEE
Transactions on Information Forensics and Security, vol. 12,
no. 12, pp. 3024–3038, 2017.

[16] H. Ding, H. Jiang, and Q. Xu, “Postquantum cut-and-choose
oblivious transfer protocol based on LWE,” Security and
Communication Networks, vol. 2021, Article ID 9974604,
15 pages, 2021.

[17] X. Zhang, G. Sun, C. Zhang et al., “Fork path: improving
efficiency of ORAM by removing redundant memory ac-
cesses,” in Proceedings of the 48th International Symposium on
Microarchitecture - MICRO-48, pp. 102–114, Waikiki, Hl,
USA, December 2015.

Security and Communication Networks 11



[18] Z. Chang, D. Xie, and F. Li, “Oblivious RAM: a dissection and
experimental evaluation,” Proceedings of the VLDB Endow-
ment, vol. 9, no. 12, pp. 1113–1124, 2016.

[19] B. Li, Y. Huang, Z. Liu, J. Li, Z. Tian, and S.-M. Yiu,
“HybridORAM: practical oblivious cloud storage with con-
stant bandwidth,” Information Sciences, vol. 479, pp. 651–663,
2019.

[20] Z. Liu, Y. Huang, J. Li, X. Cheng, and C. Shen, “DivORAM:
towards a practical oblivious RAM with variable block size,”
Information Sciences, vol. 447, pp. 1–11, 2018.

[21] J. Sancho, J. Garćıa, and A. Alesanco, “Oblivious inspection:
on the confrontation between system security and data pri-
vacy at domain boundaries,” Security and Communication
Networks, vol. 2020, Article ID 8856379, 9 pages, 2020.

[22] X. Yu, S. K. Haider, L. Ren et al., “PrORAM: dynamic pre-
fetcher for oblivious RAM,” in Proceedings of the 42nd Annual
International Symposium on Computer Architecture - ISCA
’15, pp. 616–628, Portland, OR, USA, June 2015.

[23] H. Yang, J. Shen, J. Lu, T. Zhou, X. Xia, and S. Ji, “A privacy-
preserving data transmission scheme based on oblivious
transfer and blockchain technology in the smart healthcare,”
Security and Communication Networks, vol. 2021, Article ID
5781354, 12 pages, 2021.

[24] Y. Ishai, E. Kushilevitz, R. Ostrovsky, M. Prabhakaran, and
A. Sahai, “Efficient non-interactive secure computation,” in
Advances in Cryptology – EUROCRYPT 2011, vol. 6632,
pp. 406–425, Springer, Berlin, Heidelberg, 2011.

[25] L. Ren, C. Fletcher, A. Kwon et al., “Constants count: practical
improvements to oblivious RAM,” in Proceedings of the 24th
USENIX Security Symposium, pp. 415–430, Washington, D.C,
USA, August 2015.

[26] T. Hoang, C. D. Ozkaptan, A. A. Yavuz, J. Guajardo, and
T. Nguyen, “S3ORAM: a computation-efficient and constant
client bandwidth blowup ORAM with shamir secret sharing,”
in Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security - CCS ’17, pp. 491–
505, Dallas, TX, USA, November 2017.

[27] E. Boyle and M. Naor, “Is there an oblivious RAM lower
bound?” in Proceedings of the 2016 ACM Conference on In-
novations in Aeoretical Computer Science - ITCS ’16,
pp. 357–368, Cambridge, MA, USA, January 2016.

[28] K. G. Larsen and J. B. Nielsen, “Yes, there is an oblivious RAM
lower bound,” in Advances in Cryptology – CRYPTO 2018,
vol. 10992, pp. 523–542, Springer, Cham, 2018.

[29] X.Wang, H. Chan, and E. Shi, “Circuit ORAM: on tightness of
the goldreich-ostrovsky lower bound,” in Proceedings of the
22nd ACM SIGSAC Conference on Computer and Commu-
nications Security - CCS ’15, pp. 850–861, Denver, CO, USA,
October 2015.

[30] S. Patel, G. Persiano, M. Raykova, and K. Yeo, “PanORAMa:
oblivious RAM with logarithmic overhead,” in Proceedings of
the 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pp. 871–882, Paris, France, Oc-
tober. 2018.

[31] G. Asharov, I. Komargodski, W.-K. Lin, K. Nayak, E. Peserico,
and E. Shi, “OptORAMa: optimal oblivious RAM,” in Pro-
ceedings of the Advances in Cryptology – EUROCRYPT 2020,
pp. 403–432, Springer, Zagreb, Croatia, May 2020.

[32] K. G. Larsen, M. Simkin, and K. Yeo, “Lower bounds for
multi-server oblivious RAMs,” in Aeory of Cryptography
Conference, vol. 12550, pp. 486–503, Springer, Cham, 2020.

[33] I. Abraham, C. W. Fletcher, K. Nayak, B. Pinkas, and L. Ren,
“Asymptotically tight bounds for composing ORAM with

PIR,” in Public-Key Cryptography – PKC 2017, vol. 10174,
pp. 91–120, Springer, Berlin, Heidelberg, 2017.

[34] D. Cash, A. Drucker, and A. Hoover, “A lower bound for one-
round oblivious RAM,” inAeory of Cryptography Conference,
vol. 12550, pp. 457–485, Springer, Cham, 2020.

[35] I. Komargodski and W.-K. Lin, “A logarithmic lower bound
for oblivious RAM (for all parameters),” in Advances in
Cryptology – CRYPTO 2021, vol. 12828, pp. 579–609, Springer,
Cham, 2021.

[36] I. Damgård, S. Meldgaard, and J. B. Nielsen, “Perfectly secure
oblivious RAM without random oracles,” in Aeory of
Cryptography Conference, vol. 6597, pp. 144–163, Springer,
Berlin, Heidelberg, 2011.

[37] T.-H. H. Chan, K. Nayak, and E. Shi, “Perfectly secure
oblivious parallel RAM,” in Aeory of Cryptography Confer-
ence, vol. 11240, pp. 636–668, Springer, Cham, 2018.

[38] M. Raskin and M. Simkin, “Perfectly secure oblivious RAM
with sublinear bandwidth overhead,” in Proceedings of the
Advances in Cryptology – ASIACRYPT 2019, p. 27, Kobe,
Japan, December 2019.

[39] T. Mayberry, E.-O. Blass, and A. H. Chan, “Efficient private
file retrieval by combining ORAM and PIR,” in Proceedings of
the ISOC Network and Distributed System Security
Symposium, San Diego, CA, USA, February 2014.

[40] D. Apon, J. Katz, E. Shi, and A. )iruvengadam, “Verifiable
oblivious storage,” in Public-Key Cryptography – PKC 2014,
vol. 8383, pp. 131–148, Springer, Berlin, Heidelberg, 2014.

[41] S. Devadas, M. van Dijk, C. W. Fletcher, L. Ren, E. Shi, and
D. Wichs, “Onion ORAM: a constant bandwidth blowup
oblivious ram,” in Aeory of Cryptography Conference,
vol. 9563, pp. 145–174, Springer, Berlin, Heidelberg, 2016.

[42] I. Demertzis, D. Papadopoulos, and C. Papamanthou,
“Searchable encryption with optimal locality: achieving
sublogarithmic read efficiency,” in Advances in Cryptology
– CRYPTO 2018, vol. 10991, pp. 371–406, Springer, Cham,
2018.

12 Security and Communication Networks


