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+e potential privacy risks in certain situations are of concern because of the frequent sharing of data during skyline queries,
leading to leakage of users’ private information. +e most common privacy-preserving technique is to anonymize data by
removing or changing certain information, for which an attack with specific background knowledge would render the privacy
protection ineffective. To overcome these difficulties, this study proposes a personalized weighted local differential privacy method
(PWLDP) to protect data privacy during skyline querying. Compared with existing studies of skyline queries under privacy
protection, the degree of privacy protection can be quantitatively analyzed, and the processing of data privacy lies with the user,
who quantitatively perturbs the processing according to the sensitivity of the weights of different attributes to avoid substantial
information loss. +e performance of the proposed PWLDP is verified by comparing PWLDP and LDP on different datasets, the
average privacy leakage reduction of 62.22% and 51.67% is obtained for experiments conducted on different datasets relative to the
iDP-SC algorithm, and the experimental results demonstrate the efficiency and advantages of the proposed method.

1. Introduction

In the era of IoT, the amount of data generated is growing
geometrically, and data have become an essential strategic
resource. However, with the massive use of data, the privacy
of data owners has become the most significant issue, and
with the increasing number of data privacy protection
regulations, for example, with the introduction of the EU’s
“general data protection regulation (GDPR) [1]” in 2016,
companies are no longer able to exchange or share data
containing user privacy as freely as before, even if they
subjectively wish to do so; China’s “Data Security Law”
clearly states that data processing, including the collection,
storage, use, processing, and transmission of data, the de-
partments dealing with data need to take the necessary
measures to ensure that the data are in a state of adequate
protection and legitimate use; and privacy protection has
become an urgent issue at present.

How to dig out the data of interest to users from the huge
amount of data and make decisions that satisfy their pref-
erences has led many researchers to pay attention to skyline
queries [2]. Skyline queries refer to the discovery of the set of
all tuples from a dataset that is not dominated by any other
tuples. Liu et al. [3] proposed a new structure, namely, the
skyline diagram, to implement precomputation for skyline
queries. +e skyline diagram consists of skyline regions,
called skyline polyominoes, each corresponding to the same
set of skyline results, and the final result shows that the
proposed algorithm is effective and extensible for both the
exact skyline diagram and the approximate skyline diagram.
Saad et al. [4] proposed the SkyQUD algorithm to answer
skyline queries for data with uncertain dimensions, but
many organizational databases may contain various sensi-
tive data, such as personal case data or financial data, the
disclosure of which can seriously violate individual privacy
and may lead to significant reputational damage and PR
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crises for these organizations, and the increasing frequency
of data sharing and querying will result in skyline queries
that can reveal private user information. Differential privacy
[5] (DP), as the mainstream privacy protection technique
today, requires particular attack assumptions and back-
ground knowledge for K-anonymity, L-diversity, and
T-closeness anonymization [6] approaches. In contrast,
differential privacy can resist various forms of attacks under
the condition that the attacker has maximum background
knowledge, and thus, it is robust and reliable. Considering
the privacy treatment of local differential privacy [7] (LDP),
it has been used and performed well in practice, e.g., Apple
[8], Microsoft [9], and other companies have accomplished
specific user behavior information statistics with the help of
this technique, so skyline queries are performed under local
differential privacy protection, but this technique is limited
to providing the same level of privacy protection for all
individuals. However, not all attributes of users need the
same level of privacy, and personalized privacy protection
needs to be implemented to avoid providing too much
privacy protection for those attributes that do not need too
high a privacy level. In this study, a skyline query with
personalized weights under local differential privacy is
proposed, where each organization assigns subjective and
objective weights to the dataset attributes, and both weights
are used to calculate new weights, where each data owner has
their privacy requirements for each dimension of the data,
and the newly calculated weights represent the privacy
budgets of the data owner for different dimensions; then, the
data owner’s data in different dimensions will be subject to
different privacy budgets. +e data owner does not have to
report its privacy allocation to the server, i.e., the server
retains only the data that the data owner perturbs to the
process. +e specific contributions are summarized as
follows:

(1) We propose a new privacy method called person-
alized weighted local differential privacy (PWLDP),
which primarily protects users’ privacy and allows
data owners to add noise to attributes according to
different privacy needs, realizing personalized pri-
vacy protection.

(2) We propose a skyline query based on personalized
weighted local differential privacy, under which each
organization performs skyline queries locally and
then perturbs them and sends them to the data
publisher for integration and final skyline query
statistics. +e degree of privacy protection can be
quantitatively analyzed to make up for the short-
comings of existing studies.

(3) Experiments on different datasets validate that the
PWLDP algorithm with a personalized privacy
policy has higher privacy and accuracy of its skyline
query results compared to the LDP algorithm, and
the PWLDP algorithm yields more minor errors in
the results compared to the LDP algorithm.

2. Related Work

Skyline query research is divided into two areas: optimization
of skyline query algorithm and application of skyline query
algorithm to related research areas [10]. Skyline query al-
gorithm mainly includes block nested-loop algorithm,
nearest-neighbor algorithm, branch-and-bound algorithm,
etc. Yang et al. [11] extended for skyline single-point queries
and proposed a top-k group skyline query method based on
skyline layers to optimize and speed up by pruning the points
on high skyline layers. It is verified that when the k value is
small, the skyline group can be quickly found, and the query
efficiency is improved.+e effectiveness of naive skyline query
decreases overall due to the expansion of data volume or the
rise in dimensionality, which will lead to the increase in cost
for comparison between data, so Choi et al. [12] proposed HI-
Sky. +is method can perform fast skyline computation by
using hash indexes, which exploits the fact that grid location
address (GLAD) has column priority ordering and data
spatial location information, and HI-Sky can efficiently
manage data by hash indexing and can be good at cleaning up
unnecessary comparisons during the comparison process.

At this stage, the research work on data privacy handling
in the skyline query process is mainly focused on homo-
morphic encryption techniques [13, 14], but the encrypted
keys are brute force broke, which still leaks privacy during
skyline queries, and the level of privacy protection cannot be
quantitatively analyzed [15]. Zaman et al. [16] proposed a
new method for computing skyline in a multiparty com-
puting environment in the MapReduceHadoop framework
without revealing an object’s value to another party, dem-
onstrating the validity and extensibility of the proposed
secure skyline computation. Liu et al. [17] proposed a new
framework, PUSC, which introduces a user-defined vector-
dominated secure protocol that compares the vector-
dominated relationship between two cryptographic vectors
based on the user’s preferences, which is not efficient enough
due to the complexity of the different protocols and the
complexity of the computational process, which takes a lot of
time to execute. Hua et al. [18] proposed an efficient and
privacy-preserving online medical primary diagnosis
(CINEMA) framework. Within the CINEMA framework,
maintaining the privacy of users’ dynamic skyline queries is
considered, and users can accurately access online medical
primary diagnosis services without revealing medical data.
Qaosar et al. [19] proposed to compute skyline in a secure
multiparty computing environment using the Paillier
cryptosystem [20] to transform object attribute values
without changing the order of objects on each attribute; each
participant collaborates with the other participants to se-
curely prepare the encrypted order of objects on each fea-
ture. +e skyline is then computed based on the order of the
object attribute values on each dimension, without obtaining
the original attribute values of the objects. Qaosar et al. [21]
proposed a new privacy-preserving multiparty skyline query
framework that utilizes additive homomorphic encryption
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and data anonymization, perturbation, and randomization
techniques that do not reveal data to others during multi-
party skyline queries.

Differential privacy (DP) has been widely used in data
publishing as a privacy-preserving method with solid pri-
vacy guarantees [22]. Differential privacy can be achieved by
using privacy metrics and utility metrics to achieve a trade-
off between privacy and utility. However, third-party servers
are assumed to be trusted in the DP model. +e local dif-
ferential privacy model sets a stricter notion of privacy, and
the application of LDP to data is of increasing concern. Sun
et al. [23] applied random response techniques to the fre-
quent itemset mining for personalized privacy requirements.
Ouyang et al. [24] introduced a set-valued data collection
approach (SetLDP) based on a category hierarchy under a
local differential privacy model, whose central concept is to
first to provide a random response to the presence of a
category, and the results show that it can well protect the
privacy information in the set-valued data. Lan et al. [25]
proposed personalized differential privacy (iDP-SC) based
on a spectral clustering algorithm to reduce the local sen-
sitivity by the introduction of the spectral clustering algo-
rithm, and the noise reduction generated by spectral
clustering compensates for the information distortion error
introduced by itself. Xiong et al. [26] proposed a new
(ε, δ)-LDP concept for capturing users’ privacy needs by
accounting for the temporal relevance of spatiotemporal
data at the same time as guaranteeing sensible utility,
demonstrating its superiority in achieving a better trade-off
between privacy and utility for real-time spatiotemporal data
integration and rigorous privacy protection.

3. Basic Theory

3.1. Local Differential Privacy. If the output of any input after
random encoding M as the same result is similar, then the
observer cannot infer the original data from the production, so
the privacy of the data is protected, and based on such an idea,
the definition of local differential privacy is described as follows.

Definition 1 (ε-LDP [7]). For a given privacy budget ε ∈ R+,
if the random perturbation mechanism M satisfying ε-LDP,
when and only when any inputs x, x′, and output
y ∈ Range(M) satisfy the following conditions:

Pr(M(x) � y)≤ expε ∗ Pr M x′( 􏼁 � y( 􏼁. (1)

ε in equation (1) is a parameter that controls the strength
of privacy protection, and the closer the value is to 0, the
higher the degree of privacy protection of the algorithm M.

Differential privacy has essential properties such as se-
quential composition and parallel composition, and the
compositional nature of differential privacy can help de-
signers partition the privacy budget ε.

Property 1. Sequence combinatoriality [27]. Suppose that
given a dataset U with n random response algorithms M

such that Mi � M1, M2, . . . , Mn􏼈 􏼉, algorithm Mi satisfies

local differential privacy, and then, the sequence consisting
of nMi(U) algorithms also satisfies 􏽐 εi -local differential
privacy.

Property 2. Parallel combinatoriality [27]. Suppose that
given a dataset U � U1 ∪U2 ∪ · · · ∪Un􏼈 􏼉, where the datasets
Ui(1≤ i≤ n) and Uj(1≤ j≤ n, i≠ j) are disjoint subsets, al-
gorithm Mi satisfies εi -local differential privacy, and then,
the sequence consisting of n Mi(Ui) algorithms also satisfies
max εi􏼈 􏼉 -local differential privacy.

3.2. Skyline Query Calculation. With the booming devel-
opment of internet technology, a large amount of data is
generated all the time. Skyline query can effectively analyze
and find accurate results from this high-value, colossal
amount of data, which can make appropriate decisions
according to user needs. It plays an important role in
multitarget decision-making, data mining, and other needed
fields.

Definition 2 (Skyline calculation [2]). For a d-dimensional
dataset U, i.e., U � X1, X2, . . . , Xn􏼈 􏼉, the attribute of the
dataset U is denoted by xij(1≤ i≤ n, 1≤ j≤d), and suppose
any two data records Xa and Xb are said to be dominated by
Xa if they satisfy the following condition, then Xa≺Xb is
denoted.

(1) ∀Xij ∈ Xi, Xaj ≤Xbj;
(2) ∃Xij ∈ Xi, Xaj <Xbj;

For any set of data recordsXa,Xb, if Xa≺Xb, andXb≺Xa,
the data records Xa and Xb are said not to have any
dominance relationship.

Definition 3 (Skyline points). For a d-dimensional dataset
U, if there is a data record Xi and Xi ∈ U, for any one data
record, Xi

′ ∈ U other than Xi, there is no Xi
′≺Xi, then the

data record Xi is the Skyline point of the dataset U.

Definition 4 (Skyline query), it refers to the process of fil-
tering a set of data records that are relatively better in all
attribute dimensions from a known dataset, and the result of
the above query process is the skyline result set. In addition,
any data record in the result set is a skyline point, and the
result set is denoted as SKY, which is formally represented as
follows.

SKY � Xa ∈ U|∀Xi ∈ U, Xi⊀Xa􏼈 􏼉, (2)

Definition 5 (Skyline query additivity [28]). We assume n
dataset U � U1, U2, . . . , Un􏼈 􏼉, if the dataset satisfies
U � U1 ∪U2 ∪ · · · ∪Un􏼈 􏼉, then

SKY(U) � SKY U1 ∪U2 ∪ · · · ∪Un( 􏼁

� SKY SKY U1( 􏼁∪ · · · ∪ SKY Un( 􏼁( 􏼁.
(3)
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In skyline query, local skyline query (LSQ) represents
the set of nonexisting dominance relation objects in Ui, i.e.,
SKY(Ui). +e global skyline query (GSQ) represents the set
of objects in U that do not exist in the dominance relation,
i.e., SKY(U).

4. Privacy-Protected Skyline Queries

4.1. ProblemDescription. +e scenario is shown in Figure 1,
with S organizations, a central server, i.e., a data publisher.
+e organization’s data usually affect the publisher’s skyline
query of the data. Given that the data publisher shares data
with multiple organizations, the publisher needs to com-
prehensively evaluate the organization’s data situation from
multiple perspectives so that the organization can better
assess the situation of its data and develop corresponding
measures, and the data publisher assumes the role of the
central server in the scenario. Let U ∈ Rn×d be the dataset of
all institutions, we divide the dataset U horizontally into
datasets U1, U2, . . . , US, where the i − th institution has the
dataset Ui � Xi1, Xi2, . . . , Xini

􏽮 􏽯 ∈ Rni×d, where d is the
number of data dimensions.+e number of data dimensions
is the same for each organization, ni is the amount of data
owned by the i − th organization, and n � 􏽐

s
i�1 ni is the total

number of data. Organizations do not want to send their
local data to the central server, which would cause the server
to leak the data. To solve the problem, each organization can
perform a local skyline query on its data by preference
relation to get the LSQ. +en, it will only send the perturbed
LSQ to the data publisher. +is process avoids unnecessary
data wastage and data leakage and also avoids excessive
leakage of raw data to the server.

In this scenario, it is set up that there is no collusion
among organizations and between organizations and

publishers, i.e., each organization and publisher are honest
and curious, and the calculations are performed strictly
according to the regulations.

4.2. Personalized Weighted Local Differential Privacy

4.2.1. Analytic Hierarchy Process. +e analytic hierarchy
process (AHP) is a widely used and effective method to
determine the weights. It is a method that simulates the way
of thinking of people’s decision-making process and
mathematizes the thinking process of decision-making by
using less quantitative information based on in-depth re-
search on the nature of complex decision-making problems,
influencing factors, and their internal relationships Table 2 .

(1) Constructing judgment matrix
Each attribute of user Xi is selected as the index, and
the judgment matrix Q is established by pairwise
comparison between attribute indexes. +e
comparison influence degree assignment between
attributes needs the help of “scale,” as shown in
Table 1.

Q �

a11 a12 . . . a1 d

a21 . . . . . . a2 d

. . . . . . . . . . . .

ad1 ad2 . . . ad d

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

(2) Consistency check
First, the eigenvector ω � (ω1,ω2, . . . ,ωd) of the
maximum eigenvalue λmax of the judgment matrix Q

is calculated, and the vectorω is normalized to obtain
ω′. +e sum of the elements in the vector is 1. We
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Figure 1: Skyline query scenario between different organizations and publishers.
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calculate the consistency index CI and consistency
ratio CR.

CI �
λmax − d

d − 1
, (5)

CR �
CI
RI

. (6)

+e d in equation (5) denotes the order of the
judgment matrix Q. +e RI value in equation (6) is
known from Table 2.
When CR < 0.1, it means that the consistency test is
passed and the judgment matrix is reasonably
constructed, and the larger the CI is, the more se-
rious the degree of inconsistency of the judgment
matrix is. +e judgment matrix is modified and
adjusted until CR< 0.1, so that it has a good
consistency.

(3) Determining weights
+e judgment matrix Q passes the consistency test.
+e elements of vector ω′ generated after the nor-
malization process are the weights of each attribute.

4.2.2. Entropy Weight Method. +e entropy weight method
is an objective method of attribute weight assignment. By
calculating the information entropy of each attribute, the
weight of the attribute is determined according to the impact
of the degree of variation of the attribute on the dataset as a
whole, and the attribute with a higher degree of variation
receives a more considerable weight so that the attribute
receives a more objective attribute weight.

(1) Data processing
Suppose the dataset has d attributes, U � X1, X2,􏼈

. . . , Xn}, where Xi � xi1, xi2, . . . , xij􏽮 􏽯, the value xij
′

after processing the attributes of the dataset.

xij
′ �

xij − xmin

xmax − xmin
. (7)

where xij is the j − th attribute of the i − th user, xmax
is the maximum value of the j − th attribute, and
xmin is the minimum value of the j − th attribute.

(2) Calculating the information entropy of an attribute

ej � −
1
ln n

􏽘

n

i

ρij ∗ ln ρij. (8)

In equation (8), ρij � xij
′/􏽐

n
i xij
′ , 0≤ ρij ≤ 1.

(3) Determining weights

ω″ �
1 − ej

􏽐
d
j�1 1 − ej

. (9)

4.2.3. Personalized Privacy Budget Allocation. +e analytic
hierarchy process has an advantage over the entropy weight
method in determining the weights according to the deci-
sion-maker’s wishes but is less objective and more subjec-
tive. +e entropy weight method has objective advantages,
but it cannot reflect the importance of decision-makers to
different attributes, and there will be a certain weight and
degree opposite to the actual attribute. Given the strengths
and weaknesses of the two alternative weighting methods,
we hope to control the subjective randomness within a
certain range and achieve a neutral weighting between
subjective and objective. +erefore, when assigning weights
to each attribute, the inherent statistical laws and authori-
tative value among the feature data should be considered. To
make up for the shortcomings of a single method, a rea-
sonable attribute assignment method is proposed, i.e., a
combined assignment approach combining the hierarchical
analytic hierarchy process and entropy weight method. +e
weight 􏽥ω of the attribute of each data record is as follows.

􏽥ω � η∗ω′ +(1 − η)ω″. (10)

Table 1: Scale.

Scale Implication
1 +is indicates that two attributes have the same importance compared to each other
3 +is indicates that one attribute is slightly more important than the other when compared to the other attribute
5 +is indicates that one attribute is significantly more important than the other when compared to the two attributes
7 +is indicates that one attribute is extremely more important than the other when compared to the other attribute
9 +is indicates that one attribute is strongly more important than the other when compared to the two attributes
2, 4, 6, 8 +e median of the above two adjacent judgments
Reciprocal Judgment aij � 1/aij or comparing attribute j with i

aij Judgment aij, aij > 0(1≤ i, j≤d) for comparison of attributes i and j

Table 2: Random consistency index RI values.

n RI values
1 0
2 0
3 0.58
4 0.90
5 1.12
6 1.24
7 1.32
8 1.41
9 1.45
10 1.49
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+e η in equation (10) is the weighting factor, which is
used to balance the parameters of the two weights, and the
value of η is temporarily taken as 0.5 in this study.

+erefore, we propose a new LDP concept called per-
sonalized weighted local differential privacy (PWLDP), in
which the user sets the privacy budget for different features
based on attribute weights as described in Algorithm 1.

4.2.4. Comparison of PWLDP and LDP. Most of the tra-
ditional LDP approaches are to assign an even privacy
budget to all attributes of the data owner; however, not all
attributes of the user need the same privacy level, for ex-
ample, when comparing the user’s age and identity ID, the
ID is more sensitive than the age, so the two should not have
the same degree of noise addition, so PWLDP can avoid
providing too much privacy protection to those attributes
that do not need too high a privacy level. In a multidi-
mensional data scenario, PWLDP and LDP privacy
budget allocation are related as follows: εAll � ε1 + ε2+
· · · + εd � d∗ εAvg. +us, when PWLDP provides an aver-
aging privacy budget for the attributes of user-owners, then
it becomes LDP, so PWLDP is a generalization of LDP, and
the relation between the two is stated by the following
theorem.

Theorem 1. For any d-dimensional user record Xa, Xb, if a
perturbation mechanism M satisfies ε − LDP, then it also
satisfies εAll − PWLDP, where ε � εAll.

4.3. Skyline Query Based on PWLDP

4.3.1. <e Perturbation Mechanism of PWLDP

Definition 6. (ε-PWLDP), given a privacy budget ε ∈ R+, the
data owner assigns different privacy budgets εj to different
features according to the feature weights, i.e., the privacy
budget εj for each attribute is 􏽥ωmm ∗ ε(1≤m≤ d), and a
random perturbation mechanism M satisfies ε -PWLDP
when and only when any input x, x′ and output
y ∈ Range(M) satisfy the following.

Pr(M(x) ∈ y)

Pr(M(x′) ∈ y)
≤ exp􏽥ω11 ∗ ε+􏽥ω22 ∗ ε∗ ...∗􏽥ωij ∗ ε � expε. (11)

+e RR mechanism [29] is the mainstream perturbation
mechanism of LDP, the main idea is to give stochastic
answers to the private data, to overcome the problem that
this method is for binary variables, and later, researchers
proposed a more generalized definition in the form of K-RR
[30, 31]. For any input x ∈ R, the output x′∈ R of its re-
sponse is given in the following way as shown in equation.

pr[kRR(x) � x′] �

e
ε

e
ε

+ k − 1
if , x′ � x,

1
e
ε

+ k − 1
if , x′ ≠x.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

In equation (12) k(k> 2) is the number of attributes
containing different candidate values, Pr is the probability in
different perturbation cases, the probability response of
expε/expε + k − 1 is the true value, and the probability re-
sponse of 1/expε + k − 1 is any one of k-1 outcomes except
the true value, and algorithm 2 is as follows.

4.3.2. Skyline Query Flow Based on PWLDP. +e skyline
query returns the object that cannot be dominated by any
other object given the dominance relationship in the dataset.
Suppose a two-dimensional dataset with a total of 16 points
and the dominance relationship as the value of each di-
mension is the smallest, as shown in Figure 2 the skyline
point a, b, e, h, k, m{ } is returned.

In a scenario where organizations and data publishers
share data with each other, the data publisher acts as the
central server, and each organization is responsible for
providing the data. +e publisher is not trusted by the
organization because the publisher is likely to disclose the
privacy of users in each organization. +erefore, each
organization first performs a subset of skyline queries
internally based on the preference relationships published
by the data publisher, and each organization is responsible
for uploading the scrambled skyline query results, avoiding
unnecessary data leakage. As can be seen from Definition 5,
the GSQ of the data publisher is based on the original data
query of all organizations, which is the same as the skyline
result that is computed based on the LSQ of each orga-
nization. +erefore, each organization can use the original
data to obtain the LSQ locally against the skyline query and
later perform the perturbation process, and it is only re-
sponsible for sending the perturbed LSQ to the data
publisher. +is process does not affect the accuracy of
skyline queries and prevents organizations from leaking
large amounts of original data to publishers. +e data
publisher shares the key results with each organization after
the global skyline query, and each organization only knows
its own key important data and the overall percentage of
data to make the corresponding measure plan, and cannot
get the details of other organizations from the data, and the
sharing of data in this process does not disclose user
privacy.

From algorithm 3 and Figure 3, it can be seen that
PWLDP first provides local privacy processing for users
to perform their own privacy perturbation processing of
data, so that privacy is guaranteed, and then provides the
allocation of a personalized privacy budget, considering
that data owners have personal privacy requirements for
each dimension of the data, providing different levels of
noise addition to achieve personalized privacy
protection.

4.3.3. Privacy Analysis. For the privacy of PWLDP, we prove
that it satisfies ε -LDP. +en, by extending this proof to
ε-PWLDP, we can prove that the probability that the query
result is indistinguishable on any two data records is not
greater than expε.
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Figure 2: Skyline query results.

Input: U � X1, X2, . . . , Xn􏼈 􏼉: each data record Xi(1≤ i≤ n) has d attributes; ε: denotes the overall privacy budget.
Output: ε′ � ε1, ε2, . . . , εd􏼈 􏼉: the privacy budget allocated to each attribute xj(1≤ j≤ d).

(1) Construct the judgment matrix Q of the data set according to equation (4)
(2) λmax←Q

(3) According to equation (5), we obtain the consistency index
(4) According to equation (6), we calculate CR
(5) if CR≥ 0.1 then
(6) Denotes a failure of the consistency checking
(7) else
(8) By passing the consistency check, the feature vector ω′ is calculated based on λmax
(9) end if
(10) ω′ � ω1,ω2, . . . ,ωd􏼈 􏼉: normalization
(11) Attributes of the standardized data record Xi, xij

′ � xij − xmin/xmax − xmin
(12) ρij � xij

′/􏽐
n
i xij
′, 0≤ ρij ≤ 1

(13) ej � − (1/ln n) 􏽐
n
i ρij ∗ ln ρij

(14) ω″ � 1 − ej/􏽐
d
j�1 1 − ej, ω″ � ω1,ω2, . . . ,ωd􏼈 􏼉

(15) According to equation (10), we can get 􏽥ω
(16) ε′ � ε∗ 􏽥ωj

(17) return ε′ � ε1, ε2, . . . , εd􏼈 􏼉;

ALGORITHM 1: Personalized privacy budget allocation.

Input: xij(1≤ i≤ n, 1≤ j≤d): attribute value; ε: privacy budget; kj(1≤ j≤ d): the maximum value in the value range of each
attribute.
Output: xij

′: property values after perturbation processing
(1) if pr1 � 1/(np.eε + kj − 1) then
(2) xij

′ � xi′j′
|i′ ≠ i, j′ ≠ j􏼚 􏼛

(3) else pr2 � np · eε/(np · eε + kj − 1)

(4) xij
′ � xij|i � i, j � j􏽮 􏽯

(5) end if
(6) return xij

′;

ALGORITHM 2: K-RR numerical perturbation mechanism.

Security and Communication Networks 7



Theorem 2. PWLDP algorithm satis�es ε -local di�erential
privacy.

Proof. Any two di�erent data records x, x′ and xi, xi′ rep-
resent the attributes of di�erent data records, y denotes the

possible output value after random perturbance, and yi
denotes the possible output value after perturbance of dif-
ferent attributes.

According to De�nition 1, the PWLDP algorithm sat-
is�es ε-local di�erential privacy.

d attribute values
for each data record

Key Results
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εAll= ε′ → ε′={ε1, ε2, ···εd}

Figure 3: Skyline query process based on PWLDP.

Input: U � LSQ1, LSQ2, . . . , LSQS{ }: local skyline query results for each organization; ε: privacy budget; ω̃j(1≤ j≤d): the
proportion of weights under each attribute.
Output: U � GSQ: global skyline query results.

(1) for local skyline query data set LSQS from 1 to S do
(2) for data record Xi from 1 to n do
(3) for each attribute xij from 1 to d do
(4) εj←ω̃j ∗ ε
(5) kj←Max att
(6) pr1 � 1/(np · eεj + kj − 1)
(7) pr2 � np · eεj /(np · eεj + kj − 1)
(8) pr′ �np.full(shape� kj, �ll_value�pr1)
(9) pr′[xij − 1] � pr2
(10) xij′�np.random.choice(a� range(1, kj + 1), p�pr′
(11) end for
(12) end for
(13) end for
(14) for each Xi in List do
(15) �ag�True
(16) for each Xj in List do
(17) if Xi ≠ Xj then
(18) if Compare (Xi, Xj) then
(19) return True or Flase
(20) �ag� Flase
(21) end if
(22) end if
(23) end for
(24) return Xi. Index
(25) end for
(26) GSQ←U′ � LSQ1′, LSQ2′, . . . , LSQS′{ }
(27) return GSQ to each organization

ALGORITHM 3: Skyline query based on PWLDP algorithm.
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pr[kRR(x) � y]

pr kRR x′( 􏼁 � y􏼂 􏼃
� 􏽙

d

i�1

pr kRR xi( 􏼁 � yi􏼂 􏼃

pr kRR xi
′( 􏼁 � yi􏼂 􏼃

≤􏽙
d

i�1

e
εi / k − 1 + e

εi( 􏼁

1/ k − 1 + e
εi( 􏼁

� 􏽙
d

i�1
e
εi

� e
ε
.

(13)

According to Definition 1, the PWLDP algorithm sat-
isfies ε-local differential privacy. □

5. Evaluation

To verify the performance of the PWLDP algorithm and its
effectiveness, and we design multiple sets of experiments to test
the PWLDP algorithm. We verify the effectiveness of the
PWLDP algorithm from two aspects. First, the difference be-
tween the original data skyline query results and the perturbed
skyline results is measured on different institutional datasets.
+e mean square error (MSE) is the average of the sum of
squares of the difference between the perturbed skyline results
and the corresponding real skyline results. +e square absolute
error (MAE) is the average of the sum of absolute values of the
difference between the perturbed skyline results and the cor-
responding real skyline results. +ese two measures have been
broadly applied to evaluate the utility of noisy results relative to
true query results. Finally, after the publisher performed the
final skyline query, the PWLDP algorithm was compared with
the LDP algorithm results by using the precision rate and
F-measure, and the degree of privacy protection of this study’s
algorithm relative to the iDP-SC [25] algorithm is measured by
the metric privacy leakage. To better avoid randomness, the
algorithm query performance final metrics were based on the
average of 1000 tests run in the same environment.

5.1. Experimental Setup

5.1.1. Experimental Environment

(1) Hardware environment: Intel(R) Core(TM) i5-7200U
CPU @ 2.50GHz Windows 10 PC with 8GB RAM.

(2) Programming environment: Python3, PyCharm
platform, and Jupyter platform.

5.1.2. Dataset Settings. +e mammographic mass dataset and
the breast cancer dataset were selected on the publicly available
UCI dataset to evaluate both algorithms. To better simulate the
scenarios in this study, we suppose that each dataset has three

organizations. For the breast cancer dataset, it has 32 features,
we selected 5 representative attributes by dimensionality re-
duction, and the dominant rule of skyline query is that if the
attribute values are equally smaller in all dimensions, the record
takes precedence over another record. +e mammographic
mass dataset selects five attributes, and again if the attribute
values are equally small in all dimensions, the record takes
precedence over another record.

5.1.3. Evaluation Metrics

(1) MAE (L1 loss)

MAE �
1
n

􏽘

n

i�1
Yi − �Yi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (14)

(2) MSE (L2 loss)

MSE �
1
n

􏽘

n

i�1
Yi − �Yi( 􏼁

2
. (15)

(3) F-measure

F �
(α + 1)∗P∗R

α(P + R)
, (16)

where α� 1, P is precision, and R is recall.
(4) Amount of privacy leakage (APL) [32].

APl � TPR − FPR, (17)

where TPR indicates true-positive rate, and FPR indicates
false-positive rate.

5.1.4. Parameter Setting

(1) Privacy parameters: the privacy budget ε is set to 0.1,
0.3, 0.5, 0.7, 0.9, and 1.

(2) Weight parameters.
+e different attribute weights for different datasets
are shown in Table 3.

Table 3: Different dataset weight parameters.

Different dataset weights Attribute 1 Attribute 2 Attribute 3 Attribute 4 Attribute 5
Cancer 0.124114385 0.385456285 0.090549575 0.178479455 0.221400305
Mass 0.056889285 0.10520268 0.284250805 0.492551555 0.061105175
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Figure 4: Comparison of MAE andMSE on mammographic mass dataset under different ε indicators. (a) Organization 1. (b) Organization
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Figure 5: Comparison of MSE and MAE on breast cancer dataset under different ε indicators. (a) Organization 1. (b) Organization 1. (c)
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(3) Comparison algorithms: the PWLDP algorithm,
LDP algorithm, and iDP-SC algorithm.

5.2. Experimental Analysis

5.2.1. Impact of Privacy Budget on MSE and MAE. +e
privacy budget ε is used as a parameter for privacy pro-
tection, determining the degree of privacy protection. From
Figures 4 and 5, it can be observed that the MSE and MAE
values of PWLDP and LDP decrease with increasing ε. From
Figures 4 and 5, the MSE and MAE values of the PWLDP
algorithm and LDP algorithm are close to each other for
ε� 0.1 with the increase of ε, the error values of both are
gradually separated, and the most tremendous variability in
the results of MSE and MAE values of the two algorithms is
observed when ε � 1, it is because when ε is too small, and
the probability of the perturbation being other values and
the actual value is infinitely close concerning the KRR

response mechanism. Under the same privacy budget ε, the
MSE and MAE values of PWLDP are smaller than those of
the LDP algorithm, which is because the personalized pri-
vacy allocation is provided. When the attribute value weight
of the PWLDP algorithm is large, the allocated privacy
budget is too large, the perturbance intensity decreases, and
the privacy protection decreases. When the attribute weight
is small, the budget is allocated too small, the perturbance
intensity increases, and the protection is enhanced. Because
the more extensive the weight is, the more important the
value is for users. +e PWLDP has higher security and lower
privacy budget consumption.

5.2.2. Impact of Privacy Budget on Precision Rate and
F-Measure. +e precision rate refers to the percentage of
skyline query results that are correct records in the dataset
after perturbation, and as observed in Figures 6 and 7, the
precision rate gradually increases with the increase in the
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Figure 6: Comparison of precision rates on the mammographic
mass dataset at different ε indicators.
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Figure 7: Comparison of precision rates on the breast cancer
dataset at different ε indicators.
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privacy budget ε. In Figure 6, it can be seen that for ε � 0.1,
the precision rate of PWLDP is 0.573 and that of LDP is
0.571, with an improvement of 0.3%, and for ε � 1, the
precision rate of PWLDP is 0.591 and that of LDP is 0.581,
with an improvement of 1.7%.+e improvement of PWLDP
can also be observed in Figure 7. +e F-value measures the
effectiveness of the experimental method and also indicates
the availability of the data, as can be seen from Figures 8 and
9, as ε increases, the PWLDP algorithm F-value also grad-
ually increases and is higher than the LDP algorithm, be-
cause the degree of privacy protection decreases while the
amount of noise added also decreases, the PWLDP as the
privacy budget ε increases, the attribute values with higher
weights retain the information of the original data with a
higher probability and smaller probability perturbing for
other data information, it is possible to make important data
require light privacy protection, unimportant data attributes
use light privacy budget, which has less impact on data
availability and ensures that the availability of data is im-
proved, and therefore, the F-value is also improved. From
Figure 9, it can be seen that the F-value gradually approaches
1, and the effectiveness of the algorithm is greatly improved.
+e F-value in Figure 8 is relatively slow to improve because
of the significant difference in the value domains of different
attributes in the mammographic mass dataset because the
RR method has better performance when the attribute takes
a lower value domain.

5.2.3. Impact of Privacy Budget on Privacy Leakage. As can
be seen from Figure 10, the smaller the privacy budget ε, the
lower the privacy leakage, and the better the privacy pro-
tection, and as the privacy budget ε increases, the privacy
leakage gradually increases, the iDP-SC algorithm has the
most obvious privacy leakage, and the privacy protection

becomes worse. +ere is no significant difference in the
privacy leakage amount between the PWLDP and LDP al-
gorithms when the privacy budget ε is set low. In
Figures 10(a) and 10(b), the privacy leakage between the two
gradually differs when ε � 0.3, the PWLDP algorithm adds
noise based on the personalized weights of user attributes,
and when the privacy budget ε is small, the difference be-
tween this personalized weight allocation budget and the
uniform allocation budget is not very obvious, and as the
budget ε increases, the budget allocated to certain attributes
in PWLDP gradually increases and is larger than the budget
uniformly allocated to attributes in LDP, so it causes a small
difference between the two when the privacy budget in-
creases. When ε � 0.1, the privacy leakage of the PWLDP in
Figure 10(a) is reduced by 83.3% relative to the iDP-SC
algorithm, and the privacy leakage of the PWLDP in
Figure 10(b) is reduced by 56.6% relative to the iDP-SC
algorithm.When ε � 1, the privacy leakage of the PWLDP in
Figure 10(a) is reduced by 48.7% relative to the iDP-SC
algorithm, and the privacy leakage of the PWLDP in
Figure 10(b) is reduced by 36.1% relative to the iDP-SC
algorithm. As can be seen from Table 4, the average privacy
leakage for PWLDP on the mass dataset is 0.034 and 0.09 for
iDP-SC, with an average reduction of 62.22%, and the av-
erage privacy leakage for the PWLDP on the cancer dataset is
0.029 and 0.06 for iDP-SC, with an average reduction of
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Figure 10: Comparison of privacy leakage (APL) for different datasets with different εmetrics. (a) Mammographic mass dataset. (b) Breast
cancer dataset.

Table 4: Comparison of the average privacy leakage of different
algorithms on different datasets.

Dataset
Algorithm

Mean-PWLDP Mean-iDP-SC Mean-LDP
Mass 0.033569449 0.090055232 0.018901954
Cancer 0.028515301 0.060279844 0.023127942
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51.67%. +is shows that the PWLDP has higher privacy,
lower privacy leakage, and personalized privacy protection
as the privacy budget ε increases.

6. Conclusions

In this study, we consider the data privacy of skyline query
under the data sharing scenario based on local differential
privacy. It is worth exploring how to solve the data leakage
problem in skyline query, and most of the current privacy
protection methods about skyline query focus on encryption
and anonymization, and the privacy is still hidden and
cannot be quantitatively analyzed under the premise that
data availability is improved. A personality weight assign-
ment for local differential privacy (PWLDP) is proposed,
first the privacy treatment of data lies in the hands of users,
quantitative privacy protection is provided for different
attributes according to individual privacy requirements, and
experiments based on real datasets verify the effectiveness of
the scheme in this study. +e following two aspects are
investigated in future work: (1) to study the appropriate
weighting parameters to achieve a balanced and efficient
personalization weighting; (2) to consider the user’s privacy
needs and data sensitivity from multiple perspectives so that
the personalization mechanism can be more widely ex-
panded and applied.
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