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0e clouds and snow in optical remote sensing images always interfere with the interpretation of remote sensing images, which
even makes an entire image unavailable. In general, the proportion of cloud/snow cover in remote sensing images needs to be
clarified to improve the utilization of remote sensing images. 0e metadata of remote sensing image products contains prior
knowledge of spatiotemporal information, such as imaging time, latitude and longitude, and altitude. 0is paper proposes a
remote sensing image cloud/snow detection method that fuses spatial and temporal information. 0e proposed method can
combine spatiotemporal information for feature extraction and stitching, thus improving the accuracy of remote sensing image
cloud/snow detection. In this study, the proposed method is trained and tested with a large-scale cloud/snow image dataset. 0e
experimental results show that both the temporal or spatial information alone and the fused temporal and spatial information can
improve the cloud/snow detection accuracy in remote sensing images. 0e easy-to-obtain imaging time information can also
significantly improve the detection accuracy for cloud/snow. 0e proposed method can be used to improve the cloud/snow
detection effect of any remote sensing image product containing prior knowledge of spatiotemporal information and has a good
application prospect.

1. Introduction

Optical remote sensing images have been widely used for
their advantages, such as large information capacity and
stable geometric properties. However, the optical imaging
process is susceptible to interference from clouds and snow.
In recent years, with the development of telemetry tech-
nology, such as the improvement of UAV endurance in [1],
a large number of remote sensing images have been put into
use. On the one hand, clouds form an occlusion of the
ground cover, with about 1/3 of the ground surface covered
by clouds [2], and the occlusion of clouds greatly limits the
application of optical images. On the other hand, the
spectral characteristics of clouds and snow have many
similarities, which makes them prone to misclassification
in the image classification process. 0e above-given two
factors will greatly hamper the use and analysis of remote
sensing images. In addition, the detection of clouds and

snow still has deep-seated requirements; for example, the
accurate detection of clouds and snow can serve the in-
version of atmospheric aerosols [3, 4] and reconstruct
missing image information [5, 6]. 0erefore, accurately and
automatically detecting clouds and snow from remote
sensing images is of great importance. For example,
achieving high-precision cloud detection before satellite
image transmission can discover and eliminate high-cloud
images in time, thus saving storage space and improving
time efficiency.

To reject high-cloudiness images with low information
density and improve the efficiency of image utilization,
accurate identification of clouds/snow in remote sensing
images has been a basic and important research topic. 0e
current cloud/snow automatic detection algorithms include
three main types: (1) physical model-based methods, (2)
statistical model-based methods, and (3) deep learning-
based methods.
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Traditional cloud/snow detection methods are mainly
based on physical models. 0e methods are to use the re-
flectance of a particular image band or calculation of the
ratio between bands to identify cloud/snow. One of the most
typical methods is the automatic cloud coverage assessment
[7, 8], which performs the calculation based on bands 2 to 6
of Landsat-7 ETM+ imagery by using the spectral differ-
ences that exist between clouds and snow in different
geographical environments to distinguish them. 0e nor-
malized difference snow index [9], which separates cloud/
snow image elements by calculating the ratio of the dif-
ference between the green band G and the short IR band IR
to the sum, has also been proposed. In addition, an enhanced
multitemporal cloud detection algorithm [10] was designed
to solve the problem of the overdetection of cloud in snow-
covered regions. 0e physical model-based approach, while
effective in obtaining cloud/snow masks of images without
relying on pixel-level labels for training, is strongly influ-
enced by the reflectance of the image bands and predefined
thresholds.

In recent years, big data has driven the development of
statistical models [11]. 0e statistical model-based ap-
proaches typically handle cloud/snow detection tasks in a
classification paradigm. Current popular classifiers, such
as support vector machines (SVMs) [12] and random
forests [13], are commonly used for such tasks. In [14],
Amato applied principal component analysis to remote
sensing image cloud detection based on statistical theory.
In [15], Merchant proposed a cloud detection algorithm
based on full probability Bayesian theory. In [16, 17], Bai
and Li performed SVM classification based on multiple
texture features. Methods based on statistical models can
utilize a priori knowledge, such as the spatial pattern
information and improve the utilization of remote sensing
image information via segmentation models. Moreover,
the use of image features greatly reduces the dependence of
traditional cloud/snow detection methods on the spectral
characteristics. In recent years, deep learning-based
methods have shown powerful capabilities in remote
sensing feature extraction and classification tasks [18]. 0e
methods treat the task of cloud/snow detection as an image
pixel-by-pixel classification process (the pixels are usually
divided into three categories: “cloud,” “snow,” and
“background”) [19]. In [20], Lei segmented an image into a
set of superpixels and then used a neural network to
classify these superpixels. In [21], Long and Shelhamer
introduced Fully convolutional networks (FCNs) for
cloud/snow detection. In [22], Nie and Xu, respectively,
introduced DeepLabV3+ for cloud/snow detection. All
these approaches implement cloud/snow detection
through a deep learning-based semantic segmentation
task. For the characteristics and difficulties of the cloud/
snow detection task itself, the multiscale convolutional
feature fusion method [23] and the multiscale fusion gated
cloud detection model MFGNet [24] have also been
proposed. 0ey couple the multiscale features of remote
sensing images, which effectively improve the cloud de-
tection accuracy. At present, methods based on deep
learning can mine the multidimensional and deep-level

features of clouds and snow, thereby enhancing the dis-
tinguishability of clouds and snow.

In addition to the spectral properties of the cloud/snow
itself, the spatiotemporal information carried in images also
helps in cloud/snow detection. In fact, geographic infor-
mation (such as elevation, latitude and longitude, and im-
aging time) is often present in remote sensing images as the
basic metarecords. In cloud/snow detection, elevation and
altitude are important a priori information. For example, in
some low altitude or low-latitude regions, snow is unlikely to
exist, and the visual appearance of clouds generated in
different geographic regions may also differ. To use spatial
information to guide the detection of clouds and snow in
remote sensing imagery, a geographic information-driven
method (GeoInfoNet) for remote sensing cloud/snow de-
tection was proposed in [25]. Unlike previous methods of
detection based solely on image data, this method encodes
the elevation, and spatial location of the image into a set of
geographic knowledge-aided maps and then integrates these
maps containing spatial information into the feature ex-
traction network to assist in cloud and snow detection. In
[26], Wu and Shi proposed the scene aggregation network,
which fuses scene information with remote sensing images
to perform scene classification while achieving cloud de-
tection. Although the above models confirm the effective-
ness of spatial prior knowledge to drive cloud/snow
detection, they ignore the effect of temporal prior knowledge
on the cloud/snow distribution. 0e imaging time, as the
time information carried by almost all remote sensing im-
ages, is able to synergize with the spatial information. For
example, snow at low altitudes occurs more often in winter
and rarely in summer; as latitude rises, snow occurs longer
each year at higher latitudes; clouds occur more often in the
rainy season. 0e temporal information should be fully
utilized to reduce false detection of cloud/snow effectively.
0erefore, the fusion of spatiotemporal information can
provide richer and more reliable a priori knowledge for
cloud/snow detection tasks.

In view of this, this study supervises the cloud/snow
detection by incorporating temporal information based on
existing studies. Specifically, this study constructs a cloud/
snow detection model integrating temporal and spatial in-
formation to provide a feasible solution for cloud/snow
detection in remote sensing image processing. We conduct
ablation experiments for different spatiotemporal infor-
mation combined into prior knowledge to verify the effects
of various types of spatiotemporal prior knowledge on
cloud/snow detection. In this paper, we will introduce the
specific structure of the model in Section 2; in Section 3, we
will introduce the data set and evaluation indicators, and
analyze and evaluate the results; in Section 4, we draw a
conclusion and look forward to the future research direction.

2. Methodology

0e model in this paper is a two-branch feature extraction
network, as shown in Figure 1. First, spatiotemporal in-
formation is encoded into a geographic knowledge-aided
map by using a geographic information encoder. 0en, the
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original image and the geographic knowledge-aided map are
fed into the two branches of the feature extraction network
to obtain hierarchical features. Finally, the cloud/snow de-
tection results are obtained by fusing the features of the two
branches through a double-feature splicing module.

2.1. Geographic Information Encoder. Specifically, to make
full use of the a priori geographic knowledge from satellite
remote sensing images, the spatial a priori knowledge is
encoded into a spatial knowledge-aided map by using a
geographic information encoder [25]. To investigate the
effect of temporal prior knowledge on cloud/snow distri-
bution, we improve the cloud/snow detection network by
incorporating spatiotemporal information by encoding and
integrating the imaging temporal information into the
geographic knowledge-aided map for feature extraction. In
this way, the imaging time can be integrated into the net-
work as a priori knowledge, enabling the model to couple the
spatiotemporal a priori knowledge to aid cloud/snow de-
tection from remote sensing images.

0e geographic information encoder can be considered
the preprocessing module of the model. It corresponds the
longitude and latitude information of the remote sensing
image to the spatial resolution of the image through affine
transformation and obtains a longitude and latitude map of
the same size as the image. 0en, the longitude and latitude
maps are combined with the DEM upsampled to a consistent
resolution to obtain a spatial knowledge-aided map of this
satellite remote sensing image. 0e time information is also
able to be converted into a global feature by the idea of
spatial information encoding. And finally, the imaging time
is normalized by dividing the total number of days in the

year, and the time information encoded by this method can
better represent the season imaged by the image. In this way,
we can integrate the temporal parameters as a channel with
the spatial knowledge-aided map to obtain a geographic
knowledge-aided map integrating spatiotemporal
information. Furthermore, the cloud/snow detection of
remote sensing images is assisted by mining the spatio-
temporal a priori knowledge of geographic knowledge-aided
maps.

Specifically, in each channel of the geographic knowl-
edge-aided map, for a pixel in row y and column x, the
corresponding elevation is, while the corresponding longi-
tude, latitude, and time are calculated as follows:

ALong(y, x) � ALong(0, 0) + y ∗ r1,1 + x∗ r1,2, (1)

ALat(y, x) � ALat(0, 0) + y ∗ r2,1 + x∗ r2,2, (2)

ATime(y, x) �
Amonth ∗ 30 + Aday􏼐 􏼑

360
. (3)

0e final coded auxiliary map A for each input satellite
remote sensing image is obtained by stitching the four
geographic knowledge auxiliaries in the channel dimension
as described above.

To exploit the spatiotemporal correlation knowledge
embedded in the geographic knowledge-aided map fused
with spatiotemporal information fully, we first use a two-
branch network with DenseNet121 [27] structure as the
backbone to extract scale-dense features from the input image
and the geographic knowledge-aidedmap separately and then
fuse the features extracted from both branches. 0e two basic
modules are “DenseNet-based feature extraction” and “dual-
feature concatenation.” 0e role of the former is to mine the
deep features of the original image and the geographic
knowledge-aidedmap, and the role of the latter is to stitch and
fuse the features of the two branches and generate a high-
precision cloud/snow mask segmentation result.

2.2. DenseNet-Based Feature Extraction. To exploit the
spatiotemporal correlation knowledge embedded in the
geographic knowledge-aided map that incorporates spa-
tiotemporal information fully, the original image and the
geographic knowledge-aided map encoding four spatio-
temporal prior knowledge are input to the dense feature
extraction module. 0e module is capable of mining deep
features of the image and spatiotemporal prior knowledge
and using them for the prediction of cloud/snow masks.

Considering the balance of computational efficiency and
GPUmemory cost, the dense feature extraction module uses
DenseNet121(structure is shown in Table 1) as the backbone
network for feature extraction, which consists of multiple
dense blocks. In each block, the feature maps from all
previous convolutional layers are concatenated. Formally,
the feature map Ml + 1 in the (l+ 1)th layer can be expressed
as (4), where (·) represents the nonlinear transformation on
the feature:
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Figure 1: Framework of the research model.
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Ml∗1 � δ concat Ml + Ml−1 + · · · + M1( 􏼁( . (4)

0e module receives an input feature map and first
performs feature extraction via an convolutional layer
(“Conv_0”) and an pooling layer (“Pool_0”) and then se-
quentially fed into the four dense blocks and three trans-
formation blocks for processing. In the above-given feature
extraction process, the number of output feature maps in-
creases as the number of layers deepens. 0e intensive
feature extraction module enables the full exploitation of
feature maps, i.e., spatiotemporal a priori knowledge.

2.3. Dual Feature Concatenation. 0e DenseNet-based fea-
ture extractionmodule enables the extraction of fine-grained
feature representations required for cloud/snow mask seg-
mentation. To apply the spatiotemporal a priori knowledge
extracted from the auxiliary map branch to the cloud/snow
detection task, the image features need to be fused with the
spatiotemporal a priori knowledge.0erefore, this module is
connected to the DenseNet-based feature extraction module
(as shown in Figure 2) and fuses spatiotemporal prior
knowledge with high-level features of cloud/snow by
merging feature maps from different blocks to obtain seg-
mentation results of high-precision cloud/snow masks.

Given that the image feature extraction branch and the
auxiliary map feature extraction branch use blue, green, red,
and infrared images and coded auxiliary maps as inputs,
respectively, the resolution of the feature maps extracted by
different blocks is not consistent. 0us, the spatial feature
maps of each block are upsampled to the size of the input
image through bilinear interpolation, which in turn connects
the upsampled feature maps along their channel dimensions.
Before stitching, 1× 1 convolution is used to adjust the
channel size of each block’s features so that they have the
same number of channels.

All blocks in both branches are concatenated to obtain
the concatenation feature M which can be expressed as
M� concat{Mimg0, . . . ,Mimg4,Maux0, . . . ,Maux4}. 0e sub-
scripts 0–4 are the upsampled features of the feature maps in
each dense feature extraction module, respectively, and the
spatiotemporal knowledge is fused through the stitching of
the feature maps. Finally, 0e feature maps incorporating
spatiotemporal information are fed into a convolutional
layer with a 1× 1 filter to generate a pixel-level fractional
map of three classes: background S1, cloud S2, and snow S3.

2.4. Loss Settings. 0e output score maps are normalized
by using a softmax function and convert the pixel scores
to probabilities [0, 1]. 0e probability map Pt of each
class t = {1, 2, 3} can be expressed as follows:

Pt �
exp St( 􏼁

􏽐
3
m�1 exp Sm( 􏼁

. (5)

Finally, the cross-entropy loss is used as the loss function
of the network. Suppose ym∈{0, 1}represents the ground
truth label of the class m. 0e loss function is expressed as
follows:

L � − 􏽘
3

m�1
ymlog Pm( 􏼁. (6)

3. Results and Analysis

3.1. ExperimentalDesign andDataset. To investigate the role
of spatiotemporal prior knowledge in remote sensing image
cloud/snow detection, this study conducts experiments on
how the model affects the cloud/snow mask extraction ac-
curacy when different spatiotemporal information is added.
0e effect of cloud/snow mask extraction on remote sensing
images assisted by spatiotemporal a priori knowledge is
verified through comparative experiments.

In this study, we use the large-scale cloud/snow detection
dataset “Levir_CS” [25] for model training, which contains a
total of 4168 GF-1 WFV scenes. 0e scenarios in the dataset
are distributed across the globe, as shown in Figure 3.
Various types of topographical features are taken into ac-
count, such as plains, plateaus, bodies, deserts, and glaciers.
Complex landforms formed by different combinations of
landforms also exist. Figure 4 shows example scenarios.
Given that these scenarios are globally distributed, they may
include multiple types of climatic conditions, such as desert
climate or ocean climate. All scenes were imaged from May
2013 to February 2019 and are available for download at
http://www.cresda.com/.

In this dataset, level-1A product data that are radio-
metrically calibrated but not geometrically corrected by the
system are used for each scenario to improve time efficiency,
as needed for cloud/snow detection in real-world situations.
0e pixel-level label masks of all images in the dataset are
divided into three categories: “background” (labeled 0),
“cloud” (labeled 128), and “snow” (labeled 255).0e number
of pixels of the three types is as follows: the background
occupies the largest number of pixels (79.2%), and the snow
occupies the smallest number of pixels (2.2%). Cloud pixels
account for 18.6% of the total number of pixels. 0ere were
3068 images for training and 1100 for testing. 0e following
observations can be obtained through visual interpretation:

(1) 0e three types of pixels are remarkably different in
various locations. In particular, the background
varies a lot.

(2) Clouds are common in different geographical
locations.

Table 1: 0e configuration of the dense-base feature extraction
module.

Layers Layer setting
Conv_0 7× 7 conv, stride� 1
Pool_0 3× 3 max_pool, stride� 2
Dense_block_1 6 bottlenecks
Transition_1 1× 1 conv, 2× 2 avg_pool, stride� 2
Dense_block_2 12 bottlenecks
Transition_2 1× 1 conv, 2× 2 avg_pool, stride� 2
Dense_block_3 24 bottlenecks
Transition_3 1× 1 conv, 2× 2 avg_pool, stride� 2
Dense_block_4 16 bottlenecks
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(3) In terms of latitude, most of the snow is concentrated
in high latitudes (see Figure 4(f ) for an example).
0ere is almost no snow in the equatorial regions
(see Figures 4(a),4(c), 4(e)) for examples).

(4) In terms of altitude, the cloud amount is higher in
the region below 500m (see Figures 4(a), 4(b), 4(e))
for example), and the snow accumulation gradually
increases with increasing altitude (see Figures 4(d),

Figure 3: Distribution of data sets.

Long: 107.5 °E
Lat: 33.3 °N
Alt: 1187.6 m
Time: Jul.1 st, 2016

(a)

Long: 0.0 °E
Lat: 54.6 °N
Alt: 28.6 m
Time: Dec.31 st, 2017

(b)

Long: 1.6 °E
Lat:18.6 °N
Alt: 466.1 m
Time: Aug.20 th, 2017

(c)

Long: 102.3 °E
Lat: 31.3 °N
Alt: 3350.3 m
Time: Dec.29 th, 2017

(d)

Long: 1.3 °E
Lat: 6.1 °N
Alt: 53.0 m
Time: Dec.26 th, 2014

(e)

Long: 108.6 °E
Lat: 56.3 °N
Alt: 817.8 m
Time: Feb.25 th, 2018

(f )

Figure 4: Different landscapes in the dataset. (a) Plain. (b) Water. (c) Dessert. (d) Plateau. (e) Plain&Water. (f ) Ice&Water.
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4(f)) for example). High-altitude areas are usually
mountainous, while the snow accumulation varies
regularly with the seasons. From the above statistics.

(5) In terms of imaging time, snow at low altitudes and
low latitudes often occur in winter (see Figure 4(f)
for an example), but rarely in summer (see
Figure 4(c) for an example), the use of spatial and
temporal information is necessary for cloud/snow
detection.

3.2. Parameters and Evaluation Indexes. In the experiments,
different prior knowledge is encoded, combined and input to
the auxiliary branch for training to explore the role of
spatiotemporal prior knowledge in remote sensing image
cloud/snow detection.0emodel is trained for 200 epochs to
reach convergence.

0e scenes in the above-given dataset are randomly
divided into two datasets: 3068 scenes for a training set and
1100 scenes for a test set.

In this study, the prediction results are evaluated
quantitatively by using recall, precision, F1-score, accuracy
and IoU. 0e definition and calculation formula of each
parameter are as follows:

True positives (TP): the number of samples that are
actually positive and correctly classified as positive by
the classifier
False positives (FP): the number of samples that are
actually negative but are incorrectly classified as pos-
itive by the classifier
False negatives (FN): the number of samples that are
actually positive cases but are incorrectly classified as
negative cases by the classifier
True-negatives (TN): the number of samples that are
actually negative and correctly classified as negative by
the classifier

IoU defines the overlap between the labeled and pre-
dicted regions.

recall �
TP

TP + FN
, (7)

precision �
TP

TP + FP
. (8)

F1score � ((2∗ recall∗ precision)/(recall + precision)),

(9)

accuracy � (TP + TN)/(TP + TN + FP + FN), (10)

3.3. Results Evaluation. 0e results show that the inclusion
of different auxiliary information in the cloud/snow de-
tection task is effective. Compared with the advanced cloud/
snow detectionmethods, our method also shows excellent
performance and achieves thebest accuracy and IoU, and the
time cost is acceptable as shown in Table 2.

Tables 3–5 show the accuracy of cloud/snow detection
using different spatiotemporal a priori knowledge-aided
remote sensing images. 0e background occupies most of
the area in the remote sensing images, and there is a large
gap between the background and the clouds and snow.0us,
the background has achieved a high detection accuracy
without introducing prior knowledge. 0e introduction of
prior knowledge can slightly improve the IoU of background
detection, in which the model incorporating spatiotemporal
information can achieve the highest detection accuracy, as
shown in Table 3.

For the detection of clouds in images, temporal or spatial
information alone is of limited use to improve the accuracy
of cloud detection. 0e model that introduces DEM as a
priori knowledge has the highest accuracy improvement,
with an IoU improvement of 0.55%. Meanwhile, the model
incorporating spatiotemporal information improves IoU by
1.16%. Table 3 is the detection accuracy of clouds in images.
0e results in Table 4 demonstrate that the joint spatio-
temporal information can effectively improve the detection
accuracy for clouds in remote sensing images.

Given that snow accounts for the least amount of the
image, introducing any separate spatiotemporal prior
knowledge can effectively improve the snow detection ac-
curacy. 0at is, a strong correlation exists between snow
distribution and both spatial and temporal properties, which
is in line with the perception. 0e model incorporating
spatiotemporal information obtains the highest accuracy,
with an 11-point improvement in IoU (from 60% to 71%).
As shown in Table 5, this finding further confirms the ef-
fectiveness of the fusion of spatiotemporal information to
improve the accuracy of cloud/snow detection.

Based on the above-given quantitative analysis of the
experimental results, training with a single spatiotemporal
information-aided map can improve cloud/snow detection
compared with using images alone. 0e use of the deep
convolutional neural networks can mine the knowledge of
correlation between spatiotemporal a priori information and
the distribution of surface clouds and snow. From Table 4,
the use of temporal information alone is less effective for
cloud detection, although some improvement is realized. By
contrast, the addition of temporal information alone can
improve the snow IoU by 7 points (from 60% to 67%),
allowing for a very significant improvement. 0e extent of
using some single spatial information to improve the de-
tection accuracy for the cloud is similar to the effect when
using temporal information alone.0e reasonmay be that the
accuracy of the IoU for cloud detection is already high enough

Table 2: Quantitative comparisons of different methods.

method Accuracy IoU Time
DeepLapV3+ 0.9665 0.6259 5.76 s
CDnetV1 [28] 0.9506 0.7883 0.48 s
CDnetV2 [29] 0.9462 0.7523 0.42 s
GeoinfoNet [25] 0.9758 0.8598 2.50 s
ST+(ours) 0.9812 0.8653 2.86 s
0e bold values represents the proposed method which achieve the best
accuracy.
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and stable at around 90%, with limited room for improve-
ment. However, Table 4 indicates that the addition of any of
the spatiotemporal information components improves the
accuracy of snow detection by about 7 points. Specifically,
simply adding latitude and longitude information can even
boost 10 points. Accordingly, the occurrence of snow shows a
strong correlation with the latitude and longitude where it is
located, and it can be speculated that the climatic zones of
different latitudes cause this difference.

From the comparison experiments with different com-
binations of spatiotemporal information-aided components,
the model with fused spatiotemporal information obtains
the highest precision for cloud/snow detection. 0is result
shows that we can further improve the results of cloud/snow
detection by introducing inexpensive and easily accessible
temporal information into the results with only spatial in-
formation. In summary, our proposed remote sensing image
cloud/snow detection method incorporating spatiotemporal
information achieves the highest accuracy in cloud/snow
detection, with IoU reaching 91% for cloud and 71% for

snow, which is a stable performance improvement com-
pared with the method incorporating only spatial infor-
mation knowledge in Literature [25].

0e results presented in Figure 5 further corroborate the
conclusions of the quantitative analysis. On the one hand,
individual temporal or spatial information can be useful for
cloud/snow detection. 0e most accessible temporal infor-
mation can effectively improve cloud detection, while the
spatial information contributes most to the improvement of
snow detection accuracy. On the other hand, the models
incorporating spatiotemporal prior knowledge have the best
results for cloud/snow detection. In particular, the intro-
duction of temporal information can effectively improve the
detection of clouds in images, as shown in the red box in
Figure 5. In the high-altitude region shown in the blue box,
the clouds have a high probability of being misdetected as
snow by introducing a temporal prior or a spatial prior
alone. 0e fusion of temporal and geographical can form a
complementary effect and effectively alleviate the problem of
cloud/snow false detection.

Table 3: Detection accuracy of background in images.

Knowledges Recall Precision IoU F1-score
Null 0.9746 0.9944 0.9693 0.9844
DEM+Spatial + Time 0.9843 0.9893 0.9739 0.9868
DEM+Spatial [25] 0.9805 0.9912 0.9721 0.9858
DEM 0.9788 0.9927 0.9719 0.9857
Spatial 0.9780 0.9945 0.9728 0.9862
Time 0.9853 0.9868 0.9725 0.9860
0e bold values represents the proposed method which achieve the best accuracy.

Table 4: Detection accuracy of clouds in images.

Knowledges Recall Precision IoU F1-score
Null 0.9711 0.9233 0.8986 0.9466
DEM+Spatial + Time 0.9523 0.9537 0.9102 0.9530
DEM+Spatial [25] 0.9625 0.9384 0.9054 0.9503
DEM 0.9662 0.9336 0.9041 0.9496
Spatial 0.9723 0.9258 0.9019 0.9485
Time 0.9410 0.9557 0.9017 0.9482
0e bold values represents the proposed method which achieve the best accuracy.

Table 5: Detection accuracy of snow in images.

Knowledges Recall Precision IoU F1-score
Null 0.9672 0.6149 0.6024 0.7518
DEM+Spatial + Time 0.9494 0.7399 0.7118 0.8317
DEM+Spatial [25] 0.9363 0.7371 0.7020 0.8248
DEM 0.9512 0.7025 0.6781 0.8081
Spatial 0.9471 0.7269 0.6986 0.8225
Time 0.9058 0.7199 0.6698 0.8022
0e bold values represents the proposed method which achieve the best accuracy.
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4. Conclusion

Inspired by the fact that cloud/snow has a strong seasonal a
priori, this paper proposes a cloud/snow detection model
integrating temporal and geographical information based on
existing research on geographic knowledge-driven cloud/
snow detection. Among all the a priori knowledge, temporal
information contributes the most to improving cloud de-
tection accuracy, while latitude and longitude information
contributes the most to improving snow detection accuracy,
and fusing temporal and spatial information at the same
time can obtain the highest accuracy. �is research can
e�ectively complement the existing algorithms that do not
fully utilize the a priori knowledge of imaging time. �is
method is expected to be used for the fast detection of high
cloud cover images driven by temporal information and the
detection of cloud snow essence fused with spatiotemporal
information. Our method also has some limitations, for
example, it only performs simple coupling splicing of spa-
tiotemporal features, and does not dig into their
correlations.

In the future, research can be further improved from
several perspectives, including incorporating richer a priori

knowledge, such as scene information, to assist remote
sensing images for cloud/snow detection, as well as intro-
ducing an attentionmechanism to explore themore essential
and deeper relationship between cloud/snow and a priori
knowledge in remote sensing images.

Data Availability
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can be downloaded from https://github.com/permanentCH5/
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