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Face forgery by DeepFake has caused widespread concern in community because of the synthesized media’s risks to the society.
However, advances in recent years have been able to produce synthetic images indistinguishable from real images in the RGB
space. Extracting midfrequency facial geometry details, including person-specific details and dynamic expression-dependent ones
on facial geometry surfaces, is a promising way to highlight forgery clues during face forgery detection. In this paper, we use 3D
face reconstruction to generate the displacement map from a single input face image, which is able to represent middle and fine
scale details by indicating signed distance from the point in UV space. )e cropped face images can also provide eyes and mouse
information, so we use face image and its displacement map to extract the image features. Besides, we save the computation cost
andmaintain competitive performance using a universal transformer architecture and introduce amanifold distillation strategy to
train our model from amore complex transformer backbone. Extensive experiments on various public DeepFake datasets indicate
the effectiveness of the extracted facial geometry details, and proposed method achieves competitive performance.

1. Introduction

)e development of deep learning and the availability of
large-scale datasets have led to powerful deep generative
models, which enables the facial manipulation and images
generation. Deep generative models can promote the
emerging development of entertainment and cultural in-
dustry but can also be used for malicious purposes. One such
application of the generative models is DeepFake [1].
DeepFake (e.g., fake images, audios, and videos) has become
a real threat to our society due to its realism and impact
scopes. It can be used to mislead public opinion, disrupt
social order, and even threaten face recognition system [2],
intervene in government elections [3], and subvert state
power [4]. It has become the most advanced new form of
cyberattacks.

In this work, we are committed to detecting the facial
manipulation, related to the dataset of FaceForensics++ [5],

Celeb-DF [6], and DFDC [7], which is difficult to discover
the complex artifacts from facial appearance only. At the
same time, lots of researchers have been driven to focus on
extracting manipulation artifacts from other perspectives
besides the RGB space.

Some researches [8, 9] extract forgery artifacts using
both different low-level local parts and high-level semantic
features. )e assumption is that the object details should
include rapidly changing motion part and subject identities.
For example, Feichtenhofer et al. [8] used a two-pathway
SlowFast model for video recognition. One pathway is
designed to capture semantic information that can be given
by images or a few sparse frames. )e other pathway is
responsible for capturing rapidly changing motion. Zhao
et al. [9] believe the difference between the real and fake
images in face forgery detection is often subtle and local. So,
they use multiple spatial attention heads to make the net-
work attend to different local parts and use textural feature
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enhancement block to zoom in the subtle artifacts in shallow
features.)ey further use the attentionmaps to aggregate the
low-level textural feature and high-level semantic features.
However, these details need to be extracted in multiframes,
and we do not know how these details effect the faces from
which extracted.

In our work, for face forgery detection, we try to
extract facial geometry details that are often connected
with high frequency including person-specific details and
dynamic expression-dependent ones (e.g. deeper skin
wrinkles and creases) through 3D faces reconstruction
[10]. First, a tentative 3D face reconstruction is conducted
with the help of FLAME [11]. 2D image is encoded into a
latent code, which consist of albedo parameters α, ge-
ometry parameter θ, ψ, β lighting coefficient l, and camera
parameters c. A coarse geometry reconstruction can be
achieved with the help of above latent code. For the
supplement of identity shape details, we then embed
another coefficient δ with dimension of 128, representing
identity-specific information, to extract geometry details.
With the help of a neural network, a displacement map is
produced using expression ψ and subject-specific details
δ, to augment FLAME mesh with facial geometry infor-
mation, which refines the low-frequency geometry with
higher frequency information. )ough the detail recon-
struction image lost some high-frequency clues, differing
it a little bit from the original face. Displacement map still
captures person-specific and dynamic expression-de-
pendent details that often lost in DeepFakes, so we call it
“midfrequency” geometry details to help us with the
detection.

When detecting forgery details with neural networks, we
consider using transformer [12] architecture with low
computation cost and high efficiency. Good balance of
computation cost and high efficiency is often tough to
achieve. Some architectures require extremely high com-
putational resources, such as the popular ViTs are heavy-
weight, harder to optimize [13], and need L2 regularization
to prevent overfitting [14, 15]. So, we use the “MetaFormer”
[16] structure with pooling operation for transformer ar-
chitecture and propose a Forgery-Detection-with-Facial-
Detail Transformer (FD2Foremer). To bring the light
FD2Foremer with good performance, we introduce the
manifold learning during training. We first pretrained swin
transformer architecture with forgery details and face images
as inputs. )en, the simplified patch embedding manifold
loss [17] is used to provide the appropriate constraints on
params of the light FD2Foremer with pretrained netw4ork as
teacher network.

(i) In summary, our contributions can be summarized
in three-fold:

(ii) We start with 3D face reconstruction during forgery
detection and output facial geometry details for
subtle artifacts capture.

(iii) We introduce the “MetaFormer” architecture into
our network and propose a light transformer
FD2Foremer with face displacement maps for
DeepFake detection.

(iv) We introduce the manifold learning during the light
network training. )e experimental results on three
different public datasets show that our method
achieves competitive performance.

2. Related Work

Forgery creation, of particular interest in faces, has recently
received a lot of attention given its widespread use. To
eliminate the risks of misleading forged faces, face forgery
detection becomes an increasingly emerging field of re-
search. In this section, we provide a brief overview of several
studies have been proposed relevant to our work.

2.1. Conventional Image Forgery Detection. )ough several
techniques have been proposed in the past decades to detect
forgery in digital images, those conventional techniques
cannot handle the detection of artifacts produced by neural
networks well [18–23]. First, forgery is assumed to be done
using linear or cubic interpolation by conventional tech-
niques in most cases. Besides, recent advanced forgery
techniques leave almost no visible artifacts on tampered
faces, which can easily fool sensitive conventional detectors.
Furthermore, face forgeries are much smaller and have
typical shape, which requires specialized treatments.

2.2. Image Forgery Detection with Neural Networks.
Nataraj et al. [24] used cooccurrence matrices to exhibit
discriminative features of manipulated regions in bound-
aries shared with neighboring non-manipulated pixels.)eir
method passed the cooccurrence matrices through a CNN-
LSTM model, allowing the network to learn important
cooccurrence matrices essential features. Qian et al. found
the awareness of frequency, especially under the compres-
sion condition, could be a cure. So, they applied frequency-
aware decomposition and local frequency statistics on
DeepFake detections, finally achieved outstanding perfor-
mance on low quality media. Zhao et al. [9] used a multi-
attentional DeepFake detection network to treat face forgery
detection as a fine-grained classification problem, mainly
focused on different local parts and the subtle artifacts in
shallow features. Zhou et al. [25] extracted tampering ar-
tifacts and local noise residual features by exploring steg-
analysis features. However, these methods extract artifacts
from pixel levels or image features, i.e., only considering
exploring the synthesis clues from the facial appearance.

)ere is also research considering exploring forgery clues
among the shape, pose, and the lighting condition of the
head. Yang et al. [26] confirmed the significant difference in
the estimated head poses in DeepFakes, by comparing head
poses estimated from 2D landmarks in the real and faked
parts of the face. De Carvalho et al. [27] proposed to explore
forgery clues from the 2D illuminant maps of the image
segments considering the inconsistency. Zhu et al. [28]
disentangled the face image into common texture, identity
texture, 3D shape, ambient light, and direct light roughly.
And the identity texture and direct light are combined as the
facial detail to be fed into a neural network. However, these
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methods are difficult in recovering small facial details from
the input image due to the limited representation power and
the extensive calculation.

2.3. Transformer Architecture. Transformers are first pro-
posed to learn long-range sequential dependence for trans-
lation tasks [12] and then get widely used in numerous natural
NLP tasks. With large-scale unlabeled text corpus, trans-
formers achieve amazing performance in language pre-
training tasks [29, 30]. Motivated by the success of
transformers in NLP, the attention mechanism and trans-
formers are applied to deal with vision tasks, such as image
classification [31], object detection [32], image segmentation
[14], and image captioning [33]. Notably, Chen et al. intro-
duced iGPT [34], where a transformer is applied to image
pixels after reducing image resolution and color space for self-
supervised learning. Google proposed a visual transformer
(ViT) that achieved state-of-the-art performance on Image-
Net classification [31]. )ey show that ViT need pretraining
on large datasets, such as ImageNet-22k and JFT-300M, and
huge computation resources to achieve excellent performance
in supervised image classification tasks. In 2020, Touvron
et al. [14] proposed DeiT with adjusted network architecture,
trying to tackle the data-inefficiency problem through data
augmentation and knowledge distillation. However, the good
performance comes at a high computational cost. To save the
computational cost, we shift our attention to the architecture
of transformers and what is responsible for the success of the
transformers.

3. Extract Facial Geometry Detail though
3D Reconstruction

We regard the face forgery detection problem as a binary
end-to-end classification task about extracted features. )e
motivation of our work lies in the fact that geometry details
(i.e. wrinkles) of individual faces are related with some
unchanged identity details, whereas individual expressions
affect details either, which contributes to the face forgery
detection. Consequently, we extract geometry details in a
trial-and-error way during 3D face reconstruction, which
consist of expression-related dynamic information, such as
wrinkles [35] and identity-specific static information. Dy-
namic geometry information is often influenced by all kinds
of expressions that different for the same individuals,
whereas static identity information varies cross different
humans. By reconstructing 3D faces, a kind of facial ge-
ometry details called displacementmap is inferred from both
dynamic expressional domain and static identity-specified
domain for forgery detection (see Figure 1).

3.1. 3D Faces Reconstruction. With the help of FLAME, we
use an analysis-by-synthesis method to reconstruct 3D face
of the input image: a latent code is regressed using an input
image I. )en another image Ir is synthesized by encoding
the latent code. As shown in Figure 2, the fully connected
layer is connected with a ResNet50 [36] network as the
encoder Ec for the regression of the latent code. To

synthesize images later, the latent code is divided into 50
albedo parameters α, 100 shape coefficient β, 15 pose pa-
rameters θ, 50 expression parameters ψ, 21 lighting coeffi-
cients l , and camera parameters c. In total, Ec predicts a 236-
dimensional latent code.

)en, we use FLAME to reconstruct 3D mesh coarsely.
FLAME [11] is a 3D statistical face model that can construct
the mesh with number of 5023 vertices. Given the pose
parameters θ ∈ R15, shape coefficient β ∈ R|β|, and expres-
sion parameters ψ ∈ R|ψ|, we can express the mesh as

M(β, θ,ψ) � W J(β), TP(β, θ,ψ),W, θ( 􏼁, (1)

where W(J, T,W, θ) indicates the blend skinning function,
J ∈ R3k are joints and T ∈ R3n presents vertices that need
rotated, W ∈ Rk×n indicates the weights used for linear
smoothing. )en,

TP(θ, β,ψ) � BP(θ; P) + Bs(β;S) + BE(ψ;Ε) + T, (2)

indicates that we add pose correctives BP(θ; P):
R3k+3⟶ R3n, shape blendshapes Bs(β;S) : R|β|⟶
R3and expression blendshapesBE(ψ;E): R|ψ|⟶ R3n, to
the no-poses template T, controlled by the pose P, learned
identity S, and expression bases E. More details can be
found in [11].

To extract face texture, the Basel Face Model [37] is
adopted and converted into FLAME UV space for the
consistence with the FLAME mesh. Given the albedo co-
efficient α ∈ R|α|, the albedo int UV space A(α) ∈ Rd×d×3 are
output using Basel Face Model. As for the camera settings,
orthographic model is employed for the projection of
FLAME meshes based on the assumption that individual
faces are shot at a distance. )e projection of meshes can be
expressed as:

v � sΠ Mi( 􏼁 + t, (3)

where the vertex Mi⟶ R3 is among M, Π ∈ R2×3 are
weights that project 3D vertexes into 2D image space or-
thographically, t ∈ R2 indicates 2D translation and s ∈ R
denotes isotropic scale.

We use the most frequently-employed Spherical Har-
monics (SH) [38] as illumination model. Assuming the
Lambertian facial reflectance and distant light source, we
shade the face images as the equation below:

B α, Ι, Nuv( 􏼁i,j � A(α)i,j ⊙ 􏽘
9

k�1
ΙkHk Ni,j􏼐 􏼑, (4)

where shaded texture Bi,j ∈ R3, albedo Ai,j ∈ R3, and surface
normal Ni,j ∈ R3 corresponds to a specific pixel (i, j) of UV
images. )e SH coefficients are defined as Ι � [ΙT1 , . . . , ΙT9 ]T,
with ΙTk ∈ R

3, and Hk:R3⟶ Rmeans basis . ⊙ denotes the
Hadamard product. )e blue box in Figure 2 shows the
coarse reconstruction branch for input face image.

3.2. Facial Geometry Details Generation. )e analysis-by-
synthesis method utilizes the latent code of numerous ex-
pressions, poses, and shapes to reconstruct the face with the
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help of FLAME model. But the small number of FLAM
vertices and faces limits the representational power of the
model, and therefore, FLAME mesh surface almost ignores

the middle and fine scale details (see Figure 2). Managing to
present dynamic expression-related information and static
identity-specific person-specific details and expression-

c: camera code
: albedo code
l: light code
: shape code

: pose code
: expression code
: detail code

Ed
Fd

Ir'

Ir

Detail reconstruction
Detail ShapeDisplacement Map

Coarse Shape

FLAME

Albedo Map

DA

LSH

Coarse reconstruction

Differentiable
Renderer

c


l







Ec
Ed

Figure 2: Extracting facial geometry details during 3D faces reconstruction. During coarse reconstruction, FLAME is used to reconstruct
coarse geometry, whose representational power is limited by the lowmesh resolution.)en, the convolutional networks are used to produce
the displacement map with dynamic expression-related information and static identity-specific information as inputs. )e displacement
map augments 3D faces reconstruction, which refines the low-frequency geometry with higher frequency information, regarded as clues for
face forgery detection.

(a) (b)

Figure 1: Midfrequency geometry details on facial surfaces during face reconstruction. )e uniformity of gray scale in green line area is
greater than the same area in real images, which indicates that displacement map extracts less geometry details from fake images. And the
unnatural concentration of gray scale in red line circles different themselves from the displacement map of real images. (a) Real images and
their midfrequency facial geometry details, (b) fake images and their midfrequency facial geometry details.
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dependent details for manipulation detection, we conduct
the detail reconstruction [39] to produce displacement maps
augmenting low-frequency geometry FLAME with higher
frequency details. )e pixel values of the displacement map
control the signed distance from the point on base mesh to
its corresponding point. We locate the surface points of

FLAME mesh corresponding to the pixels in the displace-
ment map, then inverse-project the points to the raw mesh
along normal direction to find its corresponding points. )e
detail shape in Figures 2 and 3 shows the effect of our
generated displacement maps. )ough not perfect and
lacking some high frequency information, displacement

Coarse Reconstruction Displacement Map Detail ReconstructionCoarse Shape Detail ShapeOriginal Image

Figure 3: )e midfrequency geometry details on FLAME’s surfaces with help of displacement maps.
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map representing person-specific and dynamic expression-
dependent details is still helpful. So, we regard the dis-
placement maps as “midfrequency” geometry details to help
with DeepFake detections.

)e displacement map in UV coordinate augments the
coarse FLAME mesh with facial geometry details by shifting
shape points of FLAME mesh. Similar to the coarse re-
construction, another 128-dimension detail code δ is
regressed from image I using an encoder Ed the same ar-
chitecture as Ec. We then concatenate the jaw pose pa-
rameters θjaw, FLAME’s expression parameters ψ with latent
code δ, and use detail decoder Fd to generate D:

D � Fd θjaw,ψ, δ􏼐 􏼑, (5)

where the jaw pose parameters θjaw ∈ R3 and FLAME ex-
pression ψ ∈ R50 indicate the dynamic expression-related
information, meanwhile δ ∈ R128 is the latent code repre-
senting the static identity-specific information. We then
convert the D into a normal map for rendering.

)e geometry displacement map makes it possible to
reconstruct 3D face with midfrequency information. Con-
verted into UV space, Muv ∈ Rd×d×3 and its surface normal
Nuv ∈ Rd×d×3 are combined with D to augment the mesh
with geometry details as

Muv
′ � Muv + D⊙Nuv. (6)

Applying normal map N′ from M′, the synthesis image
Ir
′ is rendered as

Ir
′ � R M, B α, Ι, N′( 􏼁, c( 􏼁. (7)

Comparing the rendered detailed image with the real
image, the decoder Fd is forced to model detailed geometric
information, with the help of the coarse reconstruction on
VGGFace2 [40], BUPT-Balancedface [41], and Vox-Celeb2
[42]. As shown in Figure 2, midfrequency details in rendered
images Ir

′, including both dynamic expression-related in-
formation and static identity-specific information, are
inferred mainly from the displacement map, which is exactly
what we need for forged faces detection. We call the encoder
Ec, encoder Ed and decoder Ed together as facial detail
generator Gd to produce midfrequency facial geometry
details.

4. Methodology

In the following sections, we propose the Forgery-Detection-
with-Facial-Detail Transformer (FD2Former), including
backbone to extract image features, the introduced trans-
former architecture and the fine-grained manifold distilla-
tion strategy.

4.1. Backbone. We employ face recognition [43] DL libraries
to detect and crop faces frame by frame. And the facial
geometry detail generator Gd is used to generate middle and
fine scale details for face images. )e existing methods using
an alignment only centralizes the face without considering
whether the face is frontolized, which easily leads to facial

information loss. With the facial detail displacement map
converted to UV space, the facial geometry details for all the
faces can be located in the same spatial space. Since the pixels
of UV displacement maps corresponding to full 3D face
mesh, there is no information loss. Aligned face images can
also provide pose, eyes blink and mouth movement infor-
mation that cannot be perceived in the detail displacement
map, so we use both face image and its detail displacement
map to extract the face manipulation clues. In order to learn
more facial movement information and facial geometry
details, we choose convert inputs into much more infor-
mative high level image features rather than image patches
directly. )e aligned face images and the displacement map
are concatenated and then fed into CNN backbone to extract
high level image features. We employ a ResNet as the high-
level image features extractor.

4.2. Forgery-Detection-with-Facial-Detail Transformer.
Figure 4 illustrates the architecture of the proposed Forgery-
Detection-with-Facial-Detail Transformer for DeepFake
detection. From the perspective of transformers introduc-
tion [12], many works have paid great attention to attention
and focused on designing various attention-based token
mixer components to achieve good performance. However,
the good performance comes at a high computational cost,
and these works pay little attention to the general
architecture.

Considering what makes it effect for the success of
transformers, we use “MetaFormer” concept for our work.
MetaFormer is a general architecture abstracted from nu-
merous transformers [12], where the most components
remain the same as transformers, but the token mixer is not
specified. MetaFormer first apply input embedding to the
input I, such as patch embedding for ViTs [31]:

X � InputEmb(I), (8)

where X ∈ RN×C denotes the embedding tokens with se-
quence length N and embedding dimension C.

)en, embedding tokens are fed into several Meta-
Former blocks, each of which consists of two residual
subblocks. Specifically, the first subblock with a token mixer
is usually designed to mix token information and can be
expressed as

Y � TokenMixer(Norm(X)) + X, (9)

where Norm(·) means the normalization such as Layer
Normalization [1]; TokenMixer(·) denotes a module mainly
working for communicating information among tokens. In
recently works, vision transformer models [31, 44, 45] and
spatial MLP in MLP-like models [46, 47] have implemented
various kinds of attention mechanism, which aims at mainly
propagating token information and some mixing channels,
like attention.

)e second subblock includes a two-layered MLP with
nonlinear activation function,

Z � σ Norm(Y)W1( 􏼁W2 + Y, (10)
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where W1 ∈ RC×rC and W2 ∈ RC×rC are learnable parame-
ters with MLP expansion ratio r; σ(·) is a nonlinear acti-
vation function, such as GELU [48] or ReLU [49].

We believe that such a general architecture contributes
mostly to the success of the recent transformer andMLP-like
models. To decrease the number of learnable parameters and
save computational costs, we employ the simple operator,
pooling, as the token mixer for Forgery-Detection-with-
Facial-Detail Transformer.

Assuming the input T is in channel-first format,
T ∈ RC×H×W, the pooling operator can be expressed as

T:,i,j
′ �

1
K × K

􏽘

K

p,q�1
T

:,i+p−
K + 1
2

, i + q −
K + 1
2

− T:,i,j, (11)

where K means the pooling size. For the consistency with the
residual connection in FD2Former block, subtraction of the
input itself is added in (11). )e PyTorch-like code of the
pooling is shown in Algorithm 1.

Unlike self-attention and spatial MLP that have com-
putational complexity quadratic to the number of tokens, the
pooling operation acquires a computational complexity linear
to the sequence length without any learnable parameters. )e
overall framework of the FD2Former transformer part has 4
stages with H/4 × W/4, H/8 × W/8, H/16 × W/16, and
H/32 × W/32 tokens, respectively, where H and W represent
the height and width of the image features. )e model has
embedding dimensions of 64, 128, 320, and 512 responding to
the four stages. And FD2Former has 24 blocks in total, where
stages 1, 2, 3, and 4 contain 4, 4, 12, and 4 FD2Former blocks,
respectively. )e MLP expansion ratio is set as 4. Not sur-
prisingly, the FD2Former of “MetaFormer” architecture with
24 blocks have fewer parameters (29M) than the same one of
“Swin-S” architecture [50] with 24 blocks.

import torch.nn as nn
class Pooling(nn.Module):
def __init__(self, pool_size� 3):

super().__init__()

“““
Padding size is set as half of pool size.
”””
self.pool� nn.AvgPool2d(
pool_size, stride� 1
padding� pool_size//2,
count_include_pad� False

)
def forward(self, x):

”””
[B, C, H, W]� x.shape
Subtraction of the input feature is added,

considering the residual connection of the transformer
blocks.

”””
return self.pool(x)− x

4.3. Fine-Grained Manifold Distillation. To fully excavate
the strong capacity, the fine-grained manifold distilla-
tion strategy is used to train the proposed FD2Former
with the pretrained same FD2Former but of swin
transformer block as the teacher. Since FD2Former of
pooling operation can get better limitation during
training, with a teacher network having more complex
structure (see Figure 5).

For an appropriate constraint during model training,
knowledge distillation should not only focus on distilling the
output logic [14] but also consider the intermediate features
images and their relationship. A natural thought about
transferring feature maps may be a workable way, but its
harsh conditions for the selection of teacher model cannot be
ignored, which requires student and teacher models to have
the same feature embedding dimension. Besides, it does not
make use of interpatch information.

We use the fine-grained manifold distillation to lift the
limitation about the number of heads and dimension of
embedding features during distillation. Specifically, given a

Norm

N
or

m

Norm

Channel
MLP

Pooling
24

+

+
Real

Fake

PoolFormer
blocks

Fully connected
layer

Ed Ec

Fd Gd



Figure 4: )e architecture of the proposed forgery-detection-with-facial-detail transformer, including the cropped face image and their
corresponding displacement map as input, convolutional networks as backbone for image feature extraction and 24 transformer blocks for
feature learning.
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batch of images that described as (x1, y1), . . ., (xn, yn), a
single image can be divided into p patches. cS and cT in-
dicates the patch embedding dimension for student and
teacher DF2Former. And feature maps between student or
teacher transformer blocks can be expressed as FT ∈ Rn×p×cT

and FS ∈ Rn×p×cS . For the student DF2Former, the patch-
level manifold of feature maps FS is produced through the
calculation of relative distance as:

M FS( 􏼁 � c FS
′( 􏼁c FS
′( 􏼁

T
, (12)

where c is the conversion which reshape Rn,p,c⟶ Rnp,c

and FS
′[i, j, :] � FS[i, j, :]/FS[i, j, :]2 means the embedding

normalization. But should not be ignored is the unbearable
load of computation for such a kind of calculation, if we
compute the patch-level manifold gap between teacher and
student as above. Since the batch size, number of patches and
the embedding dimension of each patch lead to a goodmany
calculations. )us, the patch embedding manifold should be
further simplified, which decomposed into two relations
sample terms and one random sample error correction term.
)e manifold loss is simplified as:

Lmanifol d−sp � αLcp + βLrs + Lci, (13)

where Lcp means cross-patch manifold loss, Lci indicates
cross-image loss and Lrs means random-selected loss. α and
β are weights that balance the contribution of these terms.
)ree terms are expressed as:

Lci � 􏽘

p

k�0

M FT[:, k, :]( 􏼁 − M FS[:, k, :]( 􏼁
2
F

p

Lcp � 􏽘
n

s�0

M FT[s, :, : ]( 􏼁 − M FS[s, :, : ]( 􏼁
2
F

n

Lrs � M F
r
T( 􏼁 − M F

r
S( 􏼁

2
F

, (14)

where Fr
T and Fr

S are random selection from FT and FS,
whose dimensions are (k, cS) and (k, cT). )e number of
randomly selected patches is controlled by k. Figure 6 il-
lustrates the meaning of terms Lci, Lcp and Lrs.

Considering the effectiveness of the hard-label distilla-
tion, the simplified patch embedding manifold loss is
combined with the former to properly limit the student
FD2Fomer during training:

Ltotal � 􏽘
l

Lmanifol d−sp +
1
2

H ψ fs(X)( 􏼁, y( 􏼁

+
1
2

H ψ fs(X)( 􏼁, yt( 􏼁,

(15)

where l means the selected blocks for the insertion of
simplified manifold loss.

5. Experiments

In this section, we first introduce benchmark datasets and
details about implementations. Also, we conduct a set of
ablation studies, and compare our method with previous
works. We will describe the datasets and implementation
details in Section 5.1.)e ablation studies and the analysis of
the manifold learning strategy are described in Section 5.2
and Section 5.3. We will analyze the experimental results
compared with the previous work in Section 5.4.

5.1. Datasets and Implementation Details

5.1.1. Training Dataset. Faceforensics++ (FF++) [5] is a
dataset released to standardize the evaluation of face forgery
detection methods, which includes 1000 original videos and
other 4000 manipulated videos. )e manipulated videos are
generated using four typical face swapping and reenactment
methods, i.e., DeepFakes (DF) [51], FaceSwap (FS) [52],
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Figure 5: )e schematic illustration of the distillation outline. )e manifold distillation loss is plugged in the selected blocks of student and
teacher DF2Former.
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Face2Face (F2F) [20], and NeuralTextures (NT) [53]. Be-
sides, there are three versions of FF++ in terms of com-
pression level, i.e., raw, lightly compressed (HQ), and heavily
compressed (LQ). Higher the compression level, the harder
it is to distinguish the forgery traces. Since the uploaded
manipulated videos always have a limited quality, we use the
LQ versions in most experiments. We sample 270 frames for
each train video and 100 frames for each test one.

5.1.2. Test Datasets. )e following datasets are adopted for
evaluation. (1) the testing set of FF++ as described. (2)
DeepFakes Detection Challenge (DFDC) dataset [7] con-
taining a total of 123,546 videos with the help of paid actors.
Each video lasts about 10 seconds and consists of 300 frames.
(3) )e Celeb-DF dataset [6] containing 408 real videos and
795 synthesized video sequences with reduced visual arti-
facts, released for the advance of research on manipulated
face detection. )e examples of data are shown in Figure 7.

5.1.3. Implementation Details. For the facial geometry detail
generation, we acquire the detail displacement map using
facial geometry detail generator Gd. For the neural network,
we train the FD2Former of swin transformer block rather
than pooling operation as the teacher. )en, we use the
simplified patch embedding manifold loss to teach
FD2Foremer of “MetaFormer” architecture with pretrained
network. )e Adamw optimizer is utilized for training with
the initial learning rate of 5 × 10− 4 and the warm-up
learning rate is 5 × 10− 7. )e batch size is set to 64 and
weight decay equals to 0.05, β1� 0.9, β2� 0.999. We use a
cosine decay learning rate scheduler and 5 epochs of linear
warm-up. In our implementation, the total epoch is 30.

5.2. Ablation Studies. For the analysis of the Forgery-De-
tection-with-Facial-Detail Transformer, facial geometry
details and face image are regarded as complementary inputs
and a transformer is utilized for the forged face detection. To
evaluate each input, we quantitatively evaluate FD2Former
with different inputs: a transformer with facial geometry
details as input only, a transformer with cropped face image

only, and a transformer with both original images and facial
geometry details as input. )e results are listed in Table 1.

First, the transformer only detects geometry details or
cropped face achieves similar results. However, the model
performs better with both face image and facial geometry
details as input. Besides, the “MetaFormer” architecture
achieves the similar and competitive results compared with
the swin transformer architecture, but it has less learnable
parameters, which saves training resources. Shown as Fig-
ure 8, FD2Former(swin) almost saves half learnable params
of CViT, while the accuracy only decreases by 0.53%.

We are also interested in the performance of the
manifold learning strategy, compared with the hard-label
distillation method. As shown in Table 1, the manifold
learning strategy is more efficient than the hard-label dis-
tillation strategy. )e distilled FD2Former using our method
outperform the model using hard-label distillation by 1.45%
on Celeb-DF. )e potential negative impact of the manifold
learning strategy may be the increased consumption of
computation resources and energy.

5.3. Analysis of the Fine-Grained Manifold Distillation.
Aimed at patch-level knowledge distillation, we can insert
the simplified manifold loss into any blocks under the
condition of same patch numbers at corresponding blocks.
As shown in Table 2, the experiments are conducted to find
the better insert location of the manifold loss. Results show
that applying manifold loss at both the last stage and first
stage improves the performance of student network better.
We think it is because such a kind of insertion constrains the
student network properly, while the student’s capacity could
be limited if losses inserted in middle of the model.

We test different values of hyper-parameters α and β,
and presents results in Tables 3 and 4.)e experiments show
that assigning 1 and 0.2 to α and β improves the performance
relatively. As Figures 9 and 10 shown, a small β could be
more efficient because Lrs may partially coincide with Lcp, Lci

terms, meanwhile the uncertainty of sample mechanism
should be controlled.

We also test the hyper-parameter k, which means the
number of randomly selected patches for calculation of the

1 image
4 patches

1 image
4 patches

(a) (b) (c) (d)

Figure 6: )e diagram for computing simplified manifold loss. For the convenience of display, three feature maps are involved and each
feature map is divided into four patches. (a) Cross-patch. (b) Cross-image. (c) Random-selected. (d) Patch embedding.
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sampling correction, random sampler loss Lrs. As Table 5
shows, five experiments are launched to search for an ap-
propriate value of k, and we finally assign 256 to k for a better
performance. As indicated in Figure 11, a bigger k usually
leads to a better performance.

5.4. Comparison with Other Methods. Some previous works
have shown the generalization performance problem if
confronted with the unseen manipulation methods. In this

section, the proposed method is compared with previous
ones, Xception [54] and Face X-ray [55], to explore the
performance during detecting unseen manipulation
methods or datasets.

Table 1: Test results (%) of the FD2Former and its variants on
FF++(LQ), DFDC and Celeb-DF. )e “image” indicates the model
with cropped face images as input only. )e “detail” indicates the
model with facial geometry details as input only. )e “swin” in-
dicates the FD2Former of the swin transformer backbone. )e
“meta” is the FD2Former of the MetaFormer backbone. )e
“manifold” and the “hard” mean the manifold distillation and the
hard-label distillation respectively. )e metric on FF++(LQ),
DFDC and Celeb-DF dataset is ACC.

Structure FF++(LQ) DFDC Celeb-DF
Xception 80.32 85.60 61.25
Image(swin) 81.14 86.32 78.13
Detail(swin) 78.06 80.68 76.94
Img + detail(swin) 83.23 87.97 83.51
Img + detail +manifold(meta) 82.73 86.72 81.36
Img + detail + hard(meta) 81.67 86.03 79.91
)e metric on FF++(LQ), DFDC and Celeb-DF dataset is ACC. Best results
are shown in bold.
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Following Luo et al. [56], the evaluations on different
unseen manipulation methods are conducted on the
FF++(HQ) [5] database, and we compare the performance

with previous methods. )e proposed method is trained on
F2F, DF, FS, and NT separately and tested on the remaining
methods, taking the AUC as the evaluation metric. Table 6

Table 2: Results (%) of distillation for different manifold computing location. All trained with the image and the displacement map as inputs
on low-quality FF++.

Teacher Student Teacher blocks extracted Student blocks extracted ACC
DF2Former(swin) DF2Former(meta) {11, 12} {23, 24} 82.31
DF2Former(swin) DF2Former(meta) {1, 2} {1, 2} 82.15
DF2Former(swin) DF2Former(meta) {1, 2, 11, 12} {1, 2, 23, 24} 82.73
DF2Former(swin) DF2Former(meta) {1, 2, 3, 4, 11, 12} {1, 2, 5, 6, 23, 24} 81.39
All trained with the image and the displacement map as inputs on low-quality FF++. Best results are shown in bold.

Table 3: Results (%) of distillation for a sequence of selected α. All trained with the image and the displacement map as inputs on low quality
FF++. )e metric is ACC.

Teacher Student α
Testing data (ACC)

FF++(LQ) DFDC
DF2Former(swin) DF2Former(meta) 0.5 81.76 86.17
DF2Former(swin) DF2Former(meta) 1 82.73 86.72
DF2Former(swin) DF2Former(meta) 1.5 82.42 86.47
DF2Former(swin) DF2Former(meta) 2 82.19 85.74
DF2Former(swin) DF2Former(meta) 2.5 81.71 85.86
)e metric is ACC. Best results are shown in bold.

Table 4: Results (%) of distillation for a sequence of selected β. All trained with the image and the displacement map as inputs on low-quality
FF++. )e metric is ACC.

Teacher Student β
Testing data (ACC)

FF++(LQ) DFDC
DF2Former(swin) DF2Former(meta) 0 81.85 85.43
DF2Former(swin) DF2Former(meta) 0.2 82.73 86.72
DF2Former(swin) DF2Former(meta) 0.4 82.86 85.77
DF2Former(swin) DF2Former(meta) 0.6 82.83 86.58
DF2Former(swin) DF2Former(meta) 0.8 82.51 86.27
DF2Former(swin) DF2Former(meta) 1 82.37 86.08
)e metric is ACC. Best results are shown in bold.
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presents the experimental results. Compared to the classic
method XceptionNet, the proposed FD2Former achieves a
significant improvement most of time, since the former
overly relies on the texture patterns in RGB space without
thinking unseen details. Face X-ray [55], achieves a better
generalization performance benefitting from the blending
evidence detection. )e FD2Former leverages both textures
and highlighted clues extracted from the facial geometry

details, which probably why it generalizes better from one
method to another.

Following [57] Khodabakhsh et al. [58], the general-
ization performance is analyzed quantitatively on unseen
data and compared with other methods, including the classic
Xception [54], the ensemble of EfficientNet’s variants [59],
and the Face X-ray [55]. )e models are trained on FF++
(HQ) [5] and evaluated on Celeb-DF [6], DFDC [7],

81

82

83

84

85

86

88

87

0 64 128 192 256

A
cc

ur
ac

y 
(%

)

k

FF++(LQ)
DFDC

Figure 11: Accuracy (%) of the DF2Former(meta) when the hyper-parameter k varies. “(LQ)” refers to the heavily compressed Face-
Forensics++ dataset.

Table 6: Generalization evaluation (%) with previous methods on HQ (c23) FF++. AUC is used as metric of performance on the unseen
manipulation technique. )e highlighted are best results.

Training data Model
Testing data (AUC)

DF F2F FS NT

DF
Xception [54] 99.3 73.6 49.0 73.6
Face X-ray [55] 98.7 63.3 60.0 69.8
FD2Former 98.94 69.17 59.58 77.39

F2F
Xception [54] 80.3 99.4 76.2 69.6
Face X-ray [55] 63.0 98.4 93.8 94.5
FD2Former 81.78 98.12 77.31 89.52

FS
Xception [54] 66.4 88.8 99.4 71.3
Face X-ray [55] 45.8 96.1 98.1 95.7
FD2Former 70.21 97.83 99.27 93.12

NT
Xception [54] 79.9 81.3 73.1 99.1
Face X-ray [55] 70.5 91.7 91.0 92.5
FD2Former 80.43 90.82 92.53 94.62

AUC is used as metric of performance on the unseen manipulation technique. Best results are shown in bold.

Table 5: Results (%) of distillation for a sequence of selected k. All trained with the image and the displacement map as inputs on low quality
FF++. )e metric is ACC.

Teacher Student k
Testing data (ACC)

FF++(LQ) DFDC
DF2Former(swin) DF2Former(meta) 0 81.85 85.43
DF2Former(swin) DF2Former(meta) 64 82.41 85.71
DF2Former(swin) DF2Former(meta) 128 82.27 86.54
DF2Former(swin) DF2Former(meta) 192 82.68 86.37
DF2Former(swin) DF2Former(meta) 256 82.73 86.72
)e metric is ACC. Best results are shown in bold.
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respectively. Such a generalization problem may confront
more challenges than the experiments within FF++. We can
see from Table 7 that our method achieves apparent im-
provements over EfficientNetB4 Ensemble [59] and Xcep-
tion [54], indicating that our model learns more robust
representations than the previous methods. Figure 12 dis-
plays the obtained result of some tested face images.

6. Conclusion

In this paper, we propose a novel approach for the detection
of face manipulation by reconstructing 3D face. We find the
facial geometry details through the 3D coarse reconstruction
and detail reconstruction. We use the displacement map to
amplify the complex artifact patterns. )e clues in the ge-
ometry details and the cropped face images are fed into
FD2Former to classify whether the input face is real or not.
Meanwhile, for the capabilities of many edge devices such as

smartphones and IoTs, we use MetaFormer architecture to
build a light neural network and introduce a manifold
learning strategy to improve the performance of ourmethod.
)e comprehensive experiments on FaceForencis++, Celeb-
DF, and DFDC exhibit the effectiveness and generalization
of our FD2Former. On the whole, our work presents a novel
direction to detect the face manipulation clues through 3D
face reconstruction.
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Figure 12: Obtained result of some tested face images for DeepFake detection with the estimated category and the probabilities of each one.
(a) FaceForensics++. (b) DFDC. (c) Celeb-DF.

Table 7: Generalization evaluation (%) on the unseen dataset, Celeb-DF, and DFDC. )e highlighted are best results.

Model Training
Testing AUC

Celeb-DF DFDC
EfficientNetB4Ensemble [59] FF++ 55.8 63.0
Xception [54] 59.4 67.9
Face X-ray [55] 74.2 70.0
FD2Former 79.2 73.6
Generalization evaluation (%) on the unseen dataset, Celeb-DF, and DFDC. Best results are shown in bold.
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