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Let A be a ring with identity, σ a ring endomorphism of A that maps the identity to itself, δ a σ-derivation of A, and consider the
skew-polynomial ring A[X; σ, δ]. When A is a finite field, a Galois ring, or a general ring, some fairly recent literature used
A[X; σ, δ] to construct new interesting codes (e.g., skew-cyclic and skew-constacyclic codes) that generalize their classical
counterparts over finite fields (e.g., cyclic and constacyclic linear codes). +is paper presents results concerning monic principal
skew codes, called herein monic principal(f, σ, δ)-codes, where f ∈ A[X; σ, δ] is monic. We provide recursive formulas that
compute the entries of both a generator matrix and a control matrix of such a codeC. WhenA is a finite commutative ring and σ is
a ring automorphism of A, we also give recursive formulas for the entries of a parity-check matrix of C. Also, in this case, with
δ � 0, we present a characterization of monic principal σ-codes whose dual codes are also monic principal σ-codes, and we deduce
a characterization of self-dual monic principal σ-codes. Some corollaries concerning monic principal σ-constacyclic codes are also
given, and a good number of highlighting examples is provided.

1. Introduction

1.1. State of the Art. Let A be a ring with identity, σ a ring
endomorphism of A that maps the identity to itself, and δ a
σ-derivation of A (i.e., δ(a + b) � δ(a) + δ(b) and δ(ab) �

σ(a)δ(b) + δ(a)b for all a, b ∈ A). Denote by Aσ,δ the skew-
polynomial ring

A[X; σ, δ] � 􏽘
n− 1

i�0
aiX

i
|n ∈ N, ai ∈ A

⎧⎨

⎩

⎫⎬

⎭. (1)

Recall that Aσ,δ has the same additive-group structure as
that of the usual ring of polynomials A[X] but has multi-
plication twisted based on the rule Xa � σ(a)X + δ(a) for
a ∈ A and extended associatively and distributively to all
elements of Aσ,δ. +is obviously makes Aσ,δ a noncom-
mutative ring unless δ � 0, σ is the identity, and A is

commutative (in which case Aσ,δ is nothing but A[X]). In
case δ � 0, we use the notation Aσ instead of Aσ,0.

For a finite field F and a ring automorphism σ of F ,
Boucher et al. [1] used F σ to introduce the notion of a skew-
cyclic code C over F of length n as a code satisfying
(σ(an− 1), σ(a0), σ(a1), . . . , σ(an− 2)) ∈ C for any
(a0, a1, . . . , an− 2, an− 1) ∈ C. +is is obviously a generaliza-
tion of the classical notion of cyclic codes over finite fields
(when σ is the identity). It is also shown therein that the class
of skew-cyclic codes over finite fields gives a supply of codes
with good coding and decoding properties (see also [2–5]).
When a monic f ∈ F σ generates a two-sided ideal in Fσ ,
then, Fσ/(f) is a (noncommutative) principal left-ideal ring.
In particular, when the order of σ divides n, then, (Xn − 1) is
a two-sided ideal in Fσ (see [1]). When, further, g ∈ Fσ is a
right divisor of Xn − 1, Boucher et al. [1] studied the skew-
cyclic code generated by g, which is associated with the
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principal left ideal (g)/(Xn − 1) of F σ/(Xn − 1). +e
structure of such an ideal puts some restrictions on the code
(for instance, (Xn − 1) must be a two-sided ideal, which is
ensured by some arithmetical condition on n).

To further generalize the notion of skew-cyclic codes,
Boucher and Ulmer [2] introduced codes defined as modules
over F σ . Among other things, this new construction has the
advantage of removing some of the constraints on the
lengths of skew-cyclic codes alluded to above. Boucher et al.
[6] relaxed the requirement on the field of coefficients by
considering skew-polynomial rings over Galois rings en-
abling further generalizations and improvements (see also
[7]). Boulagouaz and Leroy [8] took this generalization
further by letting the ring of coefficients be any ring A with σ
a ring endomorphism of A and δ a σ-derivation of A. A nice
recent generalization in a different directionmay be found in
[9]. For other references on skew codes over rings, see
[10, 11]; and for more references, see ([12], Chapter 6) and
([13], Chapter 11).

1.2. Contributions and Map of the Article

(i) For a ring A (not necessarily finite nor commuta-
tive), an endomorphism σ of A, and a σ-derivation δ
of A, the following is performed:

(1) In Section 2, we revisit the main definitions of
[8] and, particularly, make precise the notions of
monic principal (f, σ, δ)-codes, σ-codes,
(f, σ, δ)-constacyclic codes, and σ-constacyclic
codes over A.

(2) Section 3 aims mainly at improving ([8], +e-
orem 1) computationally by giving a generator
matrix of a monic principal (f, σ, δ)-code (resp.
a monic principal σ-code) over A using recur-
sive formulas introduced by means of a list of
lemmas; see +eorem 1 (resp. Corollary 5).

(3) In Section 4, we present precise and more
practical recursive formulas which yield, in
+eorem 2, the entries of a control matrix of a
monic principal (f, σ, δ)-code C over A whose
generating polynomial is both a right and left
divisor of f. +is gives +eorem 2 a practicality
advantage over ([8], Corollary 1). Furthermore,
for a monic principal σ-code (resp. a monic
principal σ-constacyclic code) over A, the
control matrix given in+eorem 2 takes a better
shape; see Corollary 6 (resp. Corollary 7).

(ii) For a finite commutative ring A and an automor-
phism σ of A, the following is performed:

(1) In Section 5, we characterize the monic prin-
cipal σ-codes over A whose dual codes are also
monic principal σ-codes, strengthening and
extending ([3], +eorem 1); see +eorem 3 and
the paragraph that precedes it. Consequently,
we give in Corollary 8 a generator matrix of the
dual of a monic principal σ-constacyclic code
over A, and we further introduce, in Corollary 9,

a characterization of self-dual monic principal
σ-codes over A in such a way that generalizes
and strengthens ([2], Corollary 4).

(2) In Section 6, we begin by introducing the notion
of a parity-check matrix of a free (f, σ, δ)-code
over a general ring with an endomorphism σ.
We then go back to the assumptions on the ring
A being finite and commutative and σ an au-
tomorphism of A, where we construct a parity-
check matrix of a monic principal (f, σ, δ)-code
C over A showing also how to extract such a
matrix from a control matrix ofC; see +eorem
4. Furthermore, for a monic principal σ-code
(resp. a monic principal σ-constacyclic code)
over A, the parity-check matrix given in +e-
orem 4 takes a better shape; see Corollary 10
(resp. Corollary 11). On the other hand, with the
crucial assumption that σ is an automorphism of
A, we show in Corollary 12 that the parity-check
matrix given in Corollary 11 can be obtained
without the assumption that themonic principal
σ-constacyclic code is generated by some monic
g ∈ Aσ that is also a left divisor of Xn − a.

(iii) +roughout the article, a good number of high-
lighting examples is given. An earlier preprint of this
article is in reference [14]. Some results from this
article were used in [15] to construct novel matrix-
product codes arising from (σ, δ)-codes. Other
applications of skew codes over rings can be found
in ([12], Chapter 6) and ([13], Chapter 11) and the
references therein.

2. Preliminaries

Let A be a ring with identity, σ a ring endomorphism of A

that maps the identity to itself, δ a σ-derivation of A, and
U(A) the multiplicative group of units of A. Fix a monic
skew-polynomial f(X) � 􏽐

n
i�0 aiX

i ∈ Aσ,δ of degree n. In
order to define the notion of a skew (f, σ, δ)-code, we begin
by using f to endow An with a structure of a left
Aσ,δ-module. Let Cf be the usual companion matrix of f;
that is,

Cf �

0 1 0 0 . . . 0 0

0 0 1 0 . . . 0 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 0 . . . 0 1

− a0 − a1 . . . . . . . . . − an− 2 − an− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (2)

+e map Tf: An⟶ An defined by

Tf x0, . . . , xn− 1( 􏼁 � σ x0( 􏼁, . . . , σ xn− 1( 􏼁( 􏼁Cf + δ x0( 􏼁, . . . , δ xn− 1( 􏼁( 􏼁,

(3)

is a (σ, δ)-pseudo-linear transformation (associated tof); that
is, considering An as a left A-module, we have Tf(ax) �

σ(a)Tf(x) + δ(a)x for all a ∈ A and x ∈ An. It can also be
easily checked that Tf is a group endomorphism of An (see
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[8] for more details and examples on this notion). For a
skew-polynomial P(X) � 􏽐

n− 1
i�0 biX

i ∈ Aσ,δ, the map P(Tf) �

􏽐
n− 1
i�0 biT

i
f is obviously a group endomorphism of An as well.

Now, the map (P(X), (c0, . . . , cn− 1))↦P (Tf)(c0, . . . , cn− 1)

defines a left action of Aσ,δ on An, which in turn endows An

with a left Aσ,δ-module structure as desired.
Let (f)l denote the principal left ideal of Aσ,δ generated

by f. With An and Aσ,δ/(f)l as left Aσ,δ-modules, the map
ϕf: An⟶ Aσ,δ/(f)l defined by (d0, . . . , dn− 1)↦􏽐

n− 1
i�0 diX

i+

(f)l is a left Aσ,δ-module isomorphism. +e coset
􏽐

n− 1
i�0 diX

i + (f)l is called the polynomial representation of
(d0, . . . , dn− 1) in Aσ,δ/(f)l. On the other hand, we know
that for each t(X) ∈ Aσ,δ, there exists a unique
p(X) � 􏽐

n− 1
i�0 diX

i ∈ Aσ,δ of degree at most n − 1 such that
t(X) + (f)l � p(X) + (f)l. +e n-tuple (d0, . . . , dn− 1) ∈ An

is called the coordinates of t(X) + (f)l (with respect to the
basis B � 1 + (f)l,􏼈 X + (f)l, . . . , Xn− 1 + (f)l}). Note that
(d0, . . . , dn− 1) � ϕ− 1

f (t(X) + (f)l).
A skew (f, σ, δ)-code (or an (f, σ, δ)-code for short) of

length n over A is a linear code C⊆An such that
(x0, . . . , xn− 1) ∈ C implies that Tf(x0, . . . , xn− 1) ∈ C (see
[8]). With the above notation, an (f, σ, δ)-code of length
noverA is a subset C of An consisting of the coordinates of a
left Aσ,δ-submodule M of Aσ,δ/(f)l with respect to B, i.e.,
C � ϕ− 1

f (M) for some left Aσ,δ-submodule M of Aσ,δ/(f)l.
Equivalently, C⊆An is an (f, σ, δ)-code if and only if the set
ϕf(C) of polynomial representations of elements of C is a
left Aσ,δ-submodule of Aσ,δ/(f)l. So, there is a one-to-one
correspondence between (f, σ, δ)-codes over A and left
Aσ,δ-submodules of Aσ,δ/(f)l. If δ � 0, an (f, σ, δ)-code may
be called an (f, σ)-code, or just a σ-code if f is irrelevant to
the context. A linear code C⊆An is called a (σ, δ)-code of
length n if there exists a monic skew-polynomial f ∈ Aσ,δ of
degree n such that C is an (f, σ, δ)-code.

A ring over which every two bases of any finitely gen-
erated free (right) module have the same (finite) number of
elements is said to have (right) Invariant Basis Number (IBN
for short). +is common number is defined to be the rank of
such a module. Examples of such rings include nonzero
commutative rings, nonzero finite rings, division rings, and
local rings. For more on IBN rings, see ([16], Chapter 1).
From now on, whenever we mention the finite rank of a free
module, we implicitly assume without mention that the
underlying ring has IBN.

As M is a left Aσ,δ-submodule of Aσ,δ/(f)l, C is a left
Aσ,δ-submodule of An. +en, note a priori thatM andC are
left A-modules, andM is free over A of rank r if and only if
C is free over A of rank r.

We call an (f, σ, δ)-code C � ϕ− 1
f (M) over A monic

principal if the left Aσ,δ-submodule M of Aσ,δ/(f)l is
generated by a right divisor g ∈ Aσ,δ of f whose leading
coefficient is a unit u; in which case M � (g)l/(f)l �

(u− 1g)l/(f)l, where u− 1g is obviously monic, and so we
can equivalently assume sometimes that M is generated
by a monic right divisor of f. Note that if g, h ∈ Aσ,δ are
such that f � hg with a unit leading coefficient of g, then,
the leading coefficient of h is a unit as well and deg(h) �

deg(f)− deg(g). On the other hand, a linear codeC⊆An is
called a monic principal (σ, δ)-code of length n if there

exists a monic skew-polynomial f ∈ Aσ,δ of degree n such
that C is a monic principal (f, σ, δ)-code. Rephrased
according to our terminology, ([8], +eorem 1) shows that
a monic principal (f, σ, δ)-code generated by a monic
skew-polynomial g is free over A of rank equal to
deg(f) − deg(g). It should be noted, however, that not all
(f, σ, δ)-codes are monic principal since not all left
Aσ,δ-submodules of Aσ,δ/(f)l are principal to begin with,
and even if a left Aσ,δ-submodule of Aσ,δ/(f)l happens to
be a principal submodule generated by a right divisor g of
f, g may have a non-unit leading coefficient (unless A has
no zero divisors). Being free codes has played an im-
portant factor on our choice of working with monic
principal (f, σ, δ)-codes in this article. As such, we could
deal with their related notions of generator matrices
(Section 3), control matrices (Section 4), and under
certain extra conditions, their free dual codes (Section 5)
and parity-check matrices (Section 6).

In the special case, when f(X) � Xn − a for some
a ∈ U(A) and M is a left Aσ,δ-submodule (resp. a principal
left Aσ,δ-submodule generated by a right divisor of Xn − a

whose leading coefficient is a unit) of Aσ,δ/(Xn − a)l, the
(Xn − a, σ, δ)-code C � ϕ− 1

Xn− a(M) is called an
(Xn − a, σ, δ)-constacyclic (resp. a monic principal
(Xn − a, σ, δ)-constacyclic) code. In this paper, we deal with
such a code only when δ � 0 and thus call it an (Xn−

a, σ)-constacyclic (resp. a monic principal (Xn − a, σ)-con-
stacyclic) code. A linear codeC⊆An is called a σ-constacyclic
code (resp. a monic principal σ-constacyclic code) of length n

if there exists a ∈ U(A) such that C is an (Xn − a, σ)-code
(resp. a monic principal (Xn − a, σ)-code). Amonic principal
σ-constacyclic code generated by a right divisor g ∈ Aσ of
Xn − a, for some a ∈ U(A), is denoted by (g)a

n,σ .

3. Generator Matrix of a Monic Principal
(f, σ, δ)-Code over a Ring

In this section, we assume that A is a ring with identity, σ is a
ring endomorphism of A that maps the identity to itself, and
δ is a σ -derivation of A. For an A-free (f, σ, δ)-code C of
rank n − r, define a generator matrix of C as a matrix
G ∈Mn− r,n(A) whose rows form an A-basis of C (see [17])
for the classical definition of a generator matrix of a linear
code over a field). In set notation, we have
C � xG|x ∈ An− r{ }.

Let f(X) � 􏽐
n
i�0 aiX

i ∈ Aσ,δ be monic and C a monic
principal (f, σ, δ)-code generated by a monic
g(X) � 􏽐

r
i�0 giX

i ∈ Aσ,δ of degree r. +en, by ([8], +eorem
1), C is free over A of rank n − r. Using g and the map Tf

introduced in Section 1, Boulagouaz and Leroy [8] gave a
way of computing G as in Lemma 1. +e main aim of this
section is to introduce, in +eorem 1, more practical re-
cursive formulas that compute the entries of G using g, σ,
and δ. Corollary 5 deals with the case when δ � 0.

Lemma 1 (see [8], +eorem 1). With the assumptions as
above, the monic principal (f, σ, δ) -code C has a generator
matrix G ∈Mn− r,n(A) whose rows are given by
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T
i
f g0, . . . , gr, 0, . . . , 0( 􏼁, (4)

for 0≤ i≤ n − r − 1.

+e following results aim at giving the set-up for pro-
ducing formulas that compute

T
i
f g0, . . . , gr, 0, . . . , 0( 􏼁, (5)

much more easily, which among other things gives an ob-
vious programming advantage to the process of computing
G, for instance.

To simplify notation, for i≥ 0 and (x0, . . . , xn− 1) ∈ An,
we set

x
(i)
0 , . . . , x

(i)
n− 1􏼐 􏼑 � T

i
f x0, . . . , xn− 1( 􏼁. (6)

Lemma 2. For (x0, . . . , xn− 1) ∈ An and i ∈ N, we have

(a) x
(i)
0 � δ(x

(i− 1)
0 ) − σ(x

(i− 1)
n− 1 )a0;

(b) x
(i)
j � δ(x

(i− 1)
j ) + σ(x

(i− 1)
j− 1 ) − σ(x

(i− 1)
n− 1 )aj,

for1≤ j≤ n − 1.

Proof. By definition,

Tf x0, x1, . . . , xn− 1( 􏼁 � σ x0( 􏼁, σ x1( 􏼁, . . . , σ xn− 1( 􏼁( 􏼁Cf + δ x0( 􏼁, δ x1( 􏼁, . . . , δ xn− 1( 􏼁( 􏼁

� δ x0( 􏼁 − σ xn− 1( 􏼁a0, δ x1( 􏼁 + σ x0( 􏼁 − σ xn− 1( 􏼁a1, . . . , δ xn− 1( 􏼁 + σ xn− 2( 􏼁 − σ xn− 1( 􏼁an− 1( 􏼁.
(7)

As (x
(i)
0 , x

(i)
1 , . . . , x

(i)
n− 1) � Ti

f(x0, . . . , xn− 1) � Tf(x
(i− 1)
0 ,

x
(i− 1)
1 , . . . , x

(i− 1)
n− 1 ), we have

x
(i)
0 , x

(i)
1 , . . . , x

(i)
n− 1􏼐 􏼑 � δ x

(i− 1)
0􏼐 􏼑 − σ x

(i− 1)
n− 1􏼐 􏼑a0, δ x

(i− 1)
1􏼐 􏼑􏼐

+ σ x
(i− 1)
0􏼐 􏼑 − σ x

(i− 1)
n− 1􏼐 􏼑a1, . . . , δ x

(i− 1)
n− 1􏼐 􏼑

+ σ x
(i− 1)
n− 2􏼐 􏼑 − σ x

(i− 1)
n− 1􏼐 􏼑an− 1􏼑.

(8)
□

Corollary 1. For (x0, . . . , xn− 1) ∈ An with xn− 1 � 0 , we have

(a) x
(1)
0 � δ(x0);

(b) x
(1)
j � δ(xj) + σ(xj− 1) for 1≤ j≤ n − 2;

(c) x
(1)
n− 1 � σ(xn− 2).

Proof. +is follows directly from Lemma 2 and properties of
σ and δ. □

Corollary 2. For (x0, . . . , xn− 1) ∈ An with
xs+1 � . . . � xn− 1 � 0 for some 0≤ s≤ n − 2 , we have

(a) x
(i)
s+i � σi(xs) for 1≤ i< n − s − 1;

(b) x
(i)
s+j � 0 for 1≤ i< j≤ n − s − 1.

Proof. We proceed by (finite) induction on i. For i � 1, it
follows from Corollary 1 that

x
(1)
s+1 � δ xs+1( 􏼁 + σ xs( 􏼁 � δ(0) + σ xs( 􏼁 � σ xs( 􏼁. (9)

For 1 � i< j≤ n − s − 1, we have s + 1≤ s + j − 1≤ n − 2
and (by Corollary 1)

x
(1)
s+j � δ xs+j􏼐 􏼑 + σ xs+j− 1􏼐 􏼑 � δ(0) + σ(0) � 0. (10)

Assume now, for 1< i< n − s − 1, that x
(i− 1)
s+i− 1 � σi− 1(xs)

and, for i − 1< t≤ n − s − 1, that x
(i− 1)
s+t � 0. +en, it follows

from Lemma 2 that

x
(i)
s+i � δ x

(i− 1)
s+i􏼐 􏼑 + σ x

(i− 1)
s+i− 1􏼐 􏼑 − σ x

(i− 1)
n− 1􏼐 􏼑as+i

� δ(0) + σ σi− 1
xs( 􏼁􏼐 􏼑 − σ(0)as+i � σi

xs( 􏼁.
(11)

We also have (by Lemma 2), for 1< i< j≤ n − s − 1,

x
(i)
s+j � δ x

(i− 1)
s+j􏼐 􏼑 + σ x

(i− 1)
s+j− 1􏼐 􏼑 − σ x

(i− 1)
n− 1􏼐 􏼑as+j

� δ(0) + σ x
(i− 1)
s+j− 1􏼐 􏼑 − σ(0)as+j � σ x

(i− 1)
s+j− 1􏼐 􏼑.

(12)

As i − 1< j − 1, x
(i− 1)
s+j− 1 � 0 by assumption. +us, x

(i)
s+j � 0

as claimed. □

Corollary 3. Let (x0, . . . , xn− 1) ∈ An and δ � 0 .

(a) If xn− 1 � 0 , then, x
(1)
0 � 0 and x

(1)
j � σ(xj− 1) for

1≤ j≤ n − 1 .
(b) If xs+1 � . . . � xn− 1 � 0 for some 0≤ s≤ n − 2 , then

for any 1≤ i≤ n − s − 1 ,

(i) x
(i)
j � 0 for 0≤ j≤ i − 1 , and

(ii) x
(i)
j � σ(x

(i− 1)
j− 1 ) for 0≤ i − 1< j≤ n − 1.

Proof

(a) A direct application of Corollary 1 yields the claim.
(b) We proceed by (finite) induction on i. Let i � 1. If

0≤ j≤ i − 1, then, j � 0. So, x(i)
0 � x

(1)
0 � 0 by part (1)

above. From part (1) again, for 0 � i − 1< j≤ n − 1,
x

(i)
j � x

(1)
j � σ(xj− 1) � σ(x

(0)
j− 1) � σ(x

(i− 1)
j− 1 ) as de-

sired. Assume now that the result holds for all
1≤ i< n − s − 1. Set yj � x

(i)
j for each 0≤ j≤ n − 1,

and note that y
(t)
j � (x

(i)
j )(t) � x

(i+t)
j for all t≥ 1. By

the inductive assumption, we see that

yn− 1 � x
(i)
n− 1 � σ x

(i− 1)
n− 2􏼐 􏼑 � σ2 x

(i− 2)
n− 3􏼐 􏼑 � · · · � σi

x
(0)
n− 1− i􏼐 􏼑

� σi
xn− 1− i( 􏼁.

(13)

As i< n − s − 1, n − 1 − i> s. So, xn− 1− i � 0 and, thus,
yn− 1 � 0. It now follows from part (1) applied to
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(y0, . . . , yn− 1) that x
(i+1)
0 � y

(1)
0 � 0, and for 1≤ j≤ n − 1,

x
(i+1)
j � y

(1)
j � σ(yj− 1) � σ(x

(i)
j− 1). Note, in particular, that

for 1≤ j≤ i + 1, 0≤ j − 1≤ i. So, x
(i)
j− 1 � 0 by the inductive

assumption, and therefore, x
(i+1)
j � σ(0) � 0 in this

case. □

Corollary 4. Let (x0, . . . , xn− 1) ∈ An , δ � 0 , and
a1 � · · · � an− 1 � 0. 7en,

(a) For i ∈ N , we have

(1) x
(i)
0 � − σ(x

(i− 1)
n− 1 )a0 ;

(2) x
(i)
j � σ(x

(i− 1)
j− 1 ) for 1≤ j≤ n − 1.

(b) If, further, x0 � x1 � . . . xs � 0 for some 0≤ s≤ n − 2,
then, we have

(i) (1) x
(1)
0 � − σ(xn− 1)a0

(2) x
(1)
j � 0for1≤ j≤ s + 1

(3) x
(1)
j � σ(xj− 1) for s + 2≤ j≤ n − 1

(ii) For 2≤ i≤ n − s − 1 , we have
(1) x

(i)
0 � − σ(x

(i− 1)
n− 1 )a0

(2) x
(i)
j � σ(x

(i− 1)
j− 1 ) for 1≤ j≤ i − 1

(3) If s≥ 1, then x
(i)
j � 0 for i≤ j≤ i + s − 1

(4) x
(i)
j � σ(x

(i− 1)
j− 1 ) for i + s≤ j≤ n − 1.

Proof

(a) +is follows directly from Lemma 2 with δ � 0 and
a1 � · · · � an− 1 � 0.

(b) By part (a), we have

(i) x
(1)
0 � − σ(x

(0)
n− 1)a0 � − σ(xn− 1)a0

(2) For 1≤ j≤ s + 1, x
(1)
j � σ(x

(0)
j− 1) � σ(xj− 1) �

σ(0) � 0
(3) For s + 2≤ j≤ n − 1, x

(1)
j � σ(x

(0)
j− 1) � σ(xj− 1).

(ii) Items 1, 2, and 4 are immediate from part (a). As
for item 3, assume that s≥ 1. We use (finite)
induction on i. For i � 2 and 2≤ j≤ s + 1, we
have 1≤ j − 1≤ s and it thus follows from part (a)
and part (b-i-2) that x

(2)
j � σ(x

(1)
j− 1) � σ(0) � 0.

Suppose now that x
(i)
j � 0 for 2≤ i≤ n − s − 2

and i≤ j≤ i + s − 1. +en, for i + 1≤ j≤ i + s, we
have i≤ j − 1≤ i + s − 1. So, it follows from part
(a) and the inductive step that
x

(i+1)
j � σ(x

(i)
j− 1) � σ(0) � 0.

Now comes the main result of this section, which gives
precise recursive formulas for the entries of a generator
matrix of C enhancing ([8], +eorem 1). □

Theorem 1. Keep the assumptions mentioned at the be-
ginning of this section. 7en, a generator matrix
G ∈Mn− r,n(A) of C is

g0 . . . gr 0 0 . . . 0

g
(1)
0 . . . g

(1)
r σ gr( 􏼁 0 . . . 0

g
(2)
0 . . . g

(2)
r g

(2)
r+1 σ2 gr( 􏼁 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

g
(n− r− 1)
0 . . . g

(n− r− 1)
r g

(n− r− 1)
r+1 g

(n− r− 1)
r+2 . . . σn− r− 1

gr( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (14)

where

(1) gj � 0 for r + 1≤ j≤ n − 1,
(2) g

(i)
0 � δ(g

(i− 1)
0 ) for 1≤ i≤ n − r − 1

(3) g
(i)
j � δ(g

(i− 1)
j ) + σ(g

(i− 1)
j− 1 ) for 1≤ i≤ n − r − 1 and

1≤ j≤ n − 1.

Proof. Using Lemma 1 and applying Corollaries 1 and 2
with s � r, (x0, . . . , xn− 1) � (g0, . . . , gn− 1), and gr+1 � · · · �

gn � 0 yield the claim of the theorem. □

If C of +eorem 1 is a monic principal σ-code (i.e.,
δ � 0), then, a generator matrix of C takes a more beautiful
form as the following result shows, the proof of which is just
a direct application of +eorem 1 in this special case.

Corollary 5. Keep all the assumptions of 7eorem 1 with
δ � 0. 7en, a generator matrix G ∈Mn− r,n(A) of C is

g0 · · · gr 0 0 · · · 0

0 σ g0( 􏼁 · · · σ gr( 􏼁 0 . . . 0

⋮ ⋱ ⋱ ⋮

0 0 · · · 0 σn− r− 1
g0( 􏼁 · · · σn− r− 1

gr( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (15)

Example 1. Let R be a ring with identity and A the ring
a b

0 a
􏼠 􏼡|a, b ∈ R􏼨 􏼩. Letting σ:

a b

0 a
􏼠 􏼡↦ a 0

0 a
􏼠 􏼡 and

δ:
a b

0 a
􏼠 􏼡↦ 0 b

0 0􏼠 􏼡, it can be checked that σ is a ring

endomorphism of A that maps the identity to itself and δ is a
σ-derivation of A. Let C a monic principal (σ, δ)-code of
length 4 generated by g(X) � X − α ∈ Aσ,δ with

α �
1 1
0 1􏼠 􏼡. Noting that g0 � − α, g1 � 1, g2 � g3 � 0, we

get from +eorem 1 that a generator matrix of C is

G �

g0 g1 0 0

g
(1)
0 g

(1)
1 σ g1( 􏼁 0

g
(2)
0 g

(2)
1 g

(2)
2 σ2 g1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

g0 1 0 0

δ g0( 􏼁 δ(1) + σ g0( 􏼁 1 0

δ g0( 􏼁( 􏼁
(1) δ(1) + σ g0( 􏼁( 􏼁

(1)
(1)

(1)
(0)

(1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

g0 1 0 0

δ g0( 􏼁 δ g1( 􏼁 + σ g0( 􏼁 1 0

δ2 g0( 􏼁 δ2(1) +(δσ + σδ) g0( 􏼁 (δσ + σδ)(1) + σ2 g0( 􏼁 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�

− α 1 0 0

δ(− α) σ(− α) 1 0

δ2(− α) 0 σ2(− α) 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− α 1 0 0

1 − α − 1 1 0

1 − α 0 − 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(16)
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On the other hand, if δ � 0, then, it follows from Cor-
ollary 5 that a generator matrix of C is

G �

g0 g1 0 0

0 σ g0( 􏼁 σ g1( 􏼁 0

0 0 σ2 g0( 􏼁 σ2 g1( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

− α 1 0 0

0 − 1 1 0

0 0 − 1 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(17)

Example 2. Let A � F 3 × F3, σ(x, y) � (y, x), and
f(X) � X6 + 1 ∈ Aσ . Denoting (a, a) ∈ A by a, we can see
that f(X) � (X2 + 1)(X4 + 2X2 + 1) � (X4 + 2X2 + 1)

(X2 + 1). +e σ-code generated by g(X) � X4 + 2X2 + 1 is a
monic principal σ-constacyclic (or negacyclic if one wishes),
which is a self-orthogonal [6, 4, 2] code over A with gen-

erator matrix 1 0 2 0 1 0
0 1 0 2 0 1􏼠 􏼡. Using the obvious Gray

map on Magma ([18]), this code yields a ternary [12, 4, 3]

code whose dual is a [12, 8, 2] code, which is quasioptimal
(see [19]).

4. Control Matrix of a Monic Principal
(f, σ, δ)-Code over a Ring

In this section, we assume that A is a ring with identity, σ is a
ring endomorphism of A that maps the identity to itself, and
δ is a σ-derivation of A. +e results of Section 3 are utilized
here to give control matrices (defined below) of a monic
principal (f, σ, δ)-code, a monic principal σ-code, and a
monic principal σ-constacyclic code.

For H ∈Mn,t(A) with t≤ n, denote by Annl(H) the left
A-submodule of An:

Annl(H): � x ∈ A
n
|xH � 0􏼈 􏼉. (18)

If C is an (f, σ, δ)-code of length n over A, a matrix
H ∈Mn,t(A), with t≤ n, is called a control matrix of C if
C � Annl(H). Consequently, for an A-free code C, if G is a
generator matrix of C and H is a control matrix of C, then,
GH � 0.

For a monic principal (f, σ, δ)-code C over A that is
generated by some monic g ∈ Aσ,δ which is both a right and
left divisor of f, Boulagouaz and Leroy [8] gave a way of
computing a control matrix of C, as in Lemma 3, using Tf

and h, where h ∈ Aσ,δ is such that gh � f. +eorem 2 gives
precise and more practical recursive formulas that compute
a control matrix of C using f, h, σ and δ. Corollary 6 deals
with the special case when δ � 0, while Corollary 7 handles
the more special case when C is monic principal
σ-constacyclic.

Lemma 3 (see [8], Corollary 1). Let C be a monic principal
(f, σ, δ) -code of length n generated by somemonic g ∈ Aσ,δ of
degree n − k which is also a left divisor of f , with f � gh for
some h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ,δ . 7en, a control matrix ofC is
the matrix H ∈Mn,n(A) whose rows are
Ti

f(h0, . . . , hk, 0, . . . , 0) for 0≤ i≤ n − 1 .

Remark 1. Lemma 3 is still valid if we assume that the
leading coefficient of g is a unit in A.

With the assumptions of Lemma 3, the following the-
orem gives explicit and more practical recursive formulas to
compute a control matrix.

Theorem 2. Keep the assumptions of Lemma 3 with
f(X) � 􏽐

n
i�0 aiX

i. 7en, a control matrix H ∈Mn,n(A) of C
is given by

h0 . . . hk 0 0 . . . 0

h
(1)
0 . . . h

(1)
k σ hk( 􏼁 0 . . . 0

h
(2)
0 . . . h

(2)
k h

(2)
k+1 σ2 hk( 􏼁 . . . 0

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

h
(n− k− 1)
0 . . . h

(n− k− 1)
k h

(n− k− 1)
k+1 h

(n− k− 1)
k+2 . . . σn− k− 1

hk( 􏼁

h
(n− k)
0 . . . h

(n− k)
k h

(n− k)
k+1 h

(n− k)
k+2 . . . h

(n− k)
n− 1

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

h
(n− 1)
0 . . . h

(n− 1)
k h

(n− 1)
k+1 h

(n− 1)
k+2 . . . h

(n− 1)
n− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(19)

where,

(1) hj � 0 for k + 1≤ j≤ n − 1,
(2) for 2≤ n − k, 1≤ i≤ n − k − 1, and 1≤ j≤ n − 1,

(i) h
(i)
0 � δ(h

(i− 1)
0 ),

(ii) h
(i)
j � δ(h

(i− 1)
j ) + σ(h

(i− 1)
j− 1 ),

(3) for n − k≤ i≤ n − 1 and 1≤ j≤ n − 1

(i) h
(i)
0 � δ(h

(i− 1)
0 ) − σ(h

(i− 1)
n− 1 )a0, and

(ii) h
(i)
j � δ(h

(i− 1)
j ) + σ(h

(i− 1)
j− 1 ) − σ(h

(i− 1)
n− 1 )aj.

Proof. By Lemma 3, a control matrix of C is the matrix
H ∈Mn,n(A) whose rows are

T
i
f h0, . . . , hk, 0, . . . , 0( 􏼁 � h

(i)
0 , . . . , h

(i)
n− 1􏼐 􏼑, for 0≤ i≤ n − 1. (20)

Now applying Lemma 2 and Corollaries 1 and 2 with
s � k and (h0, . . . , hn− 1) in place of (x0, . . . , xn− 1) yields the
desired conclusion. □

Remark 2. In +eorem 2, case (1) deals with the first row of
H, case (2) deals with the rows (beyond the first row) which
end with consecutive zeros, and case (3) deals with the
remaining rows. It is obvious that in case n − k � 1, we
disregard case (2) and consider only cases (1) and (3). In
such a case, as n � k + 1, the last column of H is the (k + 1)st

which has hk at the top, and so the upper triangle of zeros
does not exist (see the example below).

Example 3. Let R be a ring of characteristic 3 with identity

and A �
a b

0 a
􏼠 􏼡

􏼌􏼌􏼌􏼌􏼌􏼌a, b ∈ R􏼨 􏼩. Take σ:
a b

0 a
􏼠 􏼡↦ a b

0 a
􏼠 􏼡

and δ:
a b

0 a
􏼠 􏼡↦ 0 b

0 0􏼠 􏼡. Let f(X) � X3 + 2X ∈ Aσ,δ

where 2 obviously denotes 2 1 0
0 1􏼠 􏼡. Consider g(X) � X +
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2β ∈ Aσ,δ and h(X) � X2 + βX + α ∈ Aσ,δ with α �
0 1
0 0􏼠 􏼡

and β �
1 1
0 1􏼠 􏼡. A simple verification shows that

f � gh � hg. Let C be the monic principal (f, σ, δ)-code
generated by g. Noting that h0 � α, h1 � β, and h2 � 1, it
follows from +eorem 2 (cases (1) and (3); see the above
remark) that a control matrix of C is

H �

h0 h1 h2

h
(1)
0 h

(1)
1 h

(1)
2

h
(2)
0 h

(2)
1 h

(2)
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ �

α β 1

α 2α + 1 β

α β 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. (21)

To double-check that H is a correct control matrix, it
follows from +eorem 1 that a generator matrix of C is

G �
2β 1 0
2α 2β 1􏼠 􏼡. Making use of the characteristic of R and

properties of σ, δ, α, and β, it is straightforward to check that
GH � 0.

Corollary 6. Keep the assumptions of 7eorem 2 with δ � 0.
7en, a control matrix H ∈Mn,n(A) of C is given by

h0 h1 h2 . . . hk 0 0 0 . . . 0

0 σ h0( 􏼁 σ h2( 􏼁 . . . σ hk− 1( 􏼁 σ hk( 􏼁 0 0 . . . 0

0 0 σ2 h0( 􏼁 . . . σ2 hk− 2( 􏼁 σ2 hk− 1( 􏼁 σ2 hk( 􏼁 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . . . . 0 σn− k− 1
h0( 􏼁 . . . . . . . . . σn− k− 1

hk( 􏼁

h
(n− k)
0 h

(n− k)
1 . . . . . . h

(n− k)
k h

(n− k)
k+1 h

(n− k)
k+2 . . . . . . h

(n− k)
n− 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

h
(n− 1)
0 h

(n− 1)
1 . . . . . . h

(n− 1)
k h

(n− 1)
k+1 h

(n− 1)
k+2 . . . . . . h

(n− 1)
n− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (22)

where the number of initial consecutive zeros in the ith row is
precisely i − 1 for i � 2, . . . , n − k, and

(1) hj � 0 for k + 1≤ j≤ n − 1,

(2) for 2≤ n − k, 1≤ i≤ n − k − 1, and 1≤ j≤ n − 1,

(i) h
(i)
0 � 0,

(ii) h
(i)
j � σ(h

(i− 1)
j− 1 ),

(3) for n − k≤ i≤ n − 1 and 1≤ j≤ n − 1,

(i) h
(i)
0 � − σ(h

(i− 1)
n− 1 )a0, and

(ii) h
(i)
j � σ(h

(i− 1)
j− 1 ) − σ(h

(i− 1)
n− 1 )aj.

Proof. Use +eorem 2 and Corollary 3. □

Corollary 7. Keep the assumptions of Corollary 6. LetC be a
monic principal σ-constacyclic code C � (g)a

n,σ for some
a ∈ U(A) such that g is also a left divisor of Xn − a with Xn −

a � g(X)h(X) for some h(X) � 􏽐
k
i�0 hiX

i ∈ Aσ,δ. 7en, the
entries of a control matrix H � (Hi,j) ∈Mn,n(A) of C are as
follows:

(a) If n − k � 1, then,

H1,j � hj− 1; if 1≤ j≤ n, (23)

and , for 2≤ i≤ n,, then,

Hi,j �
− σi− 1

hn− i+j􏼐 􏼑a ; if 1≤ j≤ i − 1,

σi− 1
hj− i􏼐 􏼑 ; if i≤ j≤ n.

⎧⎪⎨

⎪⎩
(24)

(b) If n − k≥ 2, then,

(i) for i � 1,

H1,j �
hj− 1 ; if 1≤ j≤ k + 1,

0 ; if k + 2≤ j≤ n.
􏼨 (25)

(ii) for 2≤ i≤ n − k,

Hi,j �

0 ; if 1≤ j≤ i − 1,

σi− 1
hj− i􏼐 􏼑 ; if i≤ j≤ i + k,

0 ; if i + k + 1≤ j≤ n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(26)

(iii) for n − k + 1≤ i≤ n,

Hi,j �

− σi− 1
hn− i+j􏼐 􏼑a ; if 1≤ j≤ i − (n − k),

0 ; if i − (n − k) + 1≤ j≤ i − 1,

σi− 1
hj− i􏼐 􏼑 ; if i≤ j≤ n.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(27)
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Proof. Apply Corollary 4 and Corollary 6. □

5. The Dual of a Monic Principal σ-Code over a
Finite Commutative Ring

In this section, we assume that A is a finite commutative ring
with identity and σ is an automorphism of A. We give in
+eorem 3 a characterization of monic principal σ-codes
over A whose duals are also monic principal σ-codes,
strengthening and extending ([3],+eorem 1). Furthermore,
Corollary 8 utilizes +eorem 3 and Corollary 5 to give a
generator matrix of the dual of a monic principal σ-con-
stacyclic code. Finally, Corollary 9 characterizes self-dual
monic principal σ-codes over A in such a way that gener-
alizes and strengthens ([2], Corollary 4).

For a linear code C⊆An, the set y ∈ An|〈x, y〉 �􏼈

0 for allx ∈ C} of elements of An orthogonal to C with
respect to the Euclidean inner product on An is called the
dual ofC and is denoted byC⊥. It can be checked thatC⊥ is
a left A-submodule of An and so is a linear code. It is noted
that if C is free with a generator matrix G and a control
matrix H, then, it follows from the equality GH � 0 (see
Section 4) that the columns of H are elements of the dual
code C⊥.

For a skew-polynomial h(X) � 􏽐
s
i�0 hiX

i ∈ Aσ , define
the following skew-polynomials:

σn
(h(X)) � 􏽘

s

i�0
σn

hi( 􏼁X
i
(for n ∈ N)and h

∗
(X) � 􏽘

s

i�0
σi

hs− i( 􏼁X
i
.

(28)

Consider the ring of Laurent skew-polynomials:

A X, X
− 1

; σ􏽨 􏽩 � 􏽘
n

i�− m

aiX
i
|m, n ∈ N∪ 0{ }, ai ∈ A

⎧⎨

⎩

⎫⎬

⎭, (29)

where addition is given by the usual rule and multiplication
is given by the rule:

aiX
i

􏼐 􏼑 bjX
j

􏼐 􏼑 � aiσ
i

bj􏼐 􏼑X
i+j

(for i, j ∈ Z), (30)

and then extending associatively and distributively to all
elements of A[X, X− 1; σ]. It is obvious that Aσ is a subring of
A[X, X− 1; σ]. It is worth noting that X− 1a � σ − 1(a)X− 1 and
aX− 1 � X− 1σ(a) for all a ∈ A.

+e following result and its proof are similar, in part, to
their counterparts over finite fields appearing in the liter-
ature (see for instance [3], Lemma 1]).

Lemma 4. Let ψ: A[X, X− 1; σ]⟶ A[X, X− 1; σ] be the
map defined by

􏽘

n

i�− m

aiX
i↦ 􏽘

n

i�− m

X
− i

ai, (31)

Also, let h(X) � 􏽐
s
i�0 hiX

i ∈ Aσ be of degree s. 7en, the
following holds:

(i) ψ is a ring antiautomorphism,
(ii) h∗(X) � Xsψ(h(X)),
(iii) for any n ∈ N, Xnh(X) � σn(h(X)) Xn, and
(iv) if hs is not a zero divisor in A, then, h(X) is not a zero

divisor in Aσ .

Proof

(i) It is straightforward to show that ψ is bijective and
additive. Consider two Laurent skew-polynomials
S(X) � 􏽐

n1
i�− m1

siX
i and T(X) � 􏽐

n2
j�− m2

tjX
j. Let-

ting k � max m1, m2􏼈 􏼉, we may add zero terms if
necessary to set S(X) � 􏽐

n1
i�− k siX

i and
T(X) � 􏽐

n2
j�− k tjX

j. +en,

ψ(S(X)T(X)) � ψ 􏽘

n1

i�− k

siX
i⎛⎝ ⎞⎠ 􏽘

n2

j�− k

tjX
j⎛⎝ ⎞⎠⎛⎝ ⎞⎠ � ψ 􏽘

n1

i�− k

􏽘

n2

j�− k

siX
i
tjX

j⎛⎝ ⎞⎠

� ψ 􏽘

n2

j�− k

􏽘

n1

i�− k

si
⎛⎝ σi

tj􏼐 􏼑X
i+j

� 􏽘

n2

j�− k

􏽘

n1

i�− k

X
− (i+j)

siσ
i

tj􏼐 􏼑.

(32)

On the other hand,

ψ(T(X))ψ(S(X)) � 􏽘

n2

j�− k

X
− j

tj
⎛⎝ ⎞⎠ 􏽘

n1

i�− k

X
− i

si
⎛⎝ ⎞⎠ � 􏽘

n2

j�− k

􏽘

n1

i�− k

X
− j

tjX
− i

si

� 􏽘

n2

j�− k

􏽘

n1

i�− k

X
− (i+j)σi

tj􏼐 􏼑si � 􏽘

n2

j�− k

􏽘

n1

i�− k

X
− (i+j)

siσ
i

tj􏼐 􏼑.

(33)
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+us, ψ(S(X)T(X)) � ψ(T(X))ψ(S(X)).
(ii) We see that

X
sψ(h(X)) � X

s
􏽘

s

i�0
X

− i
hi

⎛⎝ ⎞⎠ � 􏽘
s

i�0
X

s− i
hi

� 􏽘

s

i�0
σs− i

hi( 􏼁X
s− i

� 􏽘

s

j�0
σj

hs− j􏼐 􏼑X
j

� h
∗
(X).

(34)

(iii) Xnh(X) � 􏽐
s
i�0 XnhiX

i � 􏽐
s
i�0 σ

n(hi)X
i+n � σn

(h(X))Xn.
(iv) Let r(X) � 􏽐

t
j�0 rjX

j ∈ Aσ be such that rt ≠ 0 and
h(X)r(X) � 0 (resp. r(X)h(X) � 0). +en,
σs(rt)hs � 0 (resp. rtσt(hs) � 0). Note that since hs

is not a zero divisor in A and σt is an automorphism
of A, σt(hs) is not a zero divisor in A either. It then
follows that σs(rt) � 0 (resp. rt � 0). Since σs is an
automorphism of A, it follows in both cases that
rt � 0, a contradiction. +us, r(X) � 0.

Special cases of the following two results (in the context
of finite fields) appear in [3]. □

Lemma 5. Let g(X) � 􏽐
n− k
i�0 giX

i ∈ Aσ be of degree n − k,
gn− k ∈ U(A), h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ of degree k, and
b ∈ U(A). 7en, Xn − b � g(X)h(X) if and only if Xn − a �

σn(h(X))g(X) for a � σk(b)σk− n(gn− k)σk(g− 1
n− k).

Proof. Either of the claimed equivalent statements imply
that hk ∈ U(A). We first prove the lemma for the case when
g is monic. Assume that Xn − b � g(X)h(X). +en, h is
monic too. It follows from Lemma 4 (iii) that,

σn
(h(X))g(X)h(X) � σn

(h(X))X
n

− σn
(h(X))b

� X
n
h(X) − σn

(h(X))b.
(35)

So, [Xn − σn(h(X))g(X)]h(X) � σn(h(X))b. Since
deg(h) � deg(σn(h)b) and h is monic, deg(Xn − σn

(h(X))g(X)) � 0 regardless of the characteristic of A. So,
Xn − σn(h(X))g(X) � a for some nonzero a ∈ A, and
ah(X) − σn(h(X))b � 0. Since h and σn(h) are monic, the
leading coefficient of ah(X) − σn(h(X))b is a − σk(b). +us,
a � σk(b) and Xn − σk(b) � σn(h(X))g(X) as claimed.

Conversely, suppose that Xn − σk(b) � σn(h(X))g(X).
Applying the above argument for σn(h) and σk(b) instead of
g and b, respectively, yields

X
n

− σn− k σk
(b)􏼐 􏼑 � σn

(g(X))σn
(h(X)). (36)

So, σn(Xn − b) � σn(g(X)h(X)) and, thus,
Xn − b � g(X)h(X) as claimed.

We now drop the assumption that g is monic. Assume
that Xn − b � g(X)h(X) and let G � g− 1

n− kg. +en, G ∈ Aσ is
monic, and

G(X)h(X) � g
− 1
n− kX

n
− g

− 1
n− kb

� X
nσ − n

g
− 1
n− k􏼐 􏼑 − bg

− 1
n− k

� X
n

− bσ− n
gn− k( 􏼁g

− 1
n− k􏽨 􏽩σn

g
− 1
n− k􏼐 􏼑.

(37)

Letting H � hσ − n(gn− k) ∈ Aσ , we then have
G(X)H(X) � Xn − bσ− n(gn− k)g− 1

n− k. Since G is monic and
bσ − n(gn− k)g− 1

n− k ∈ U(A), it follows from the argument in the
first paragraph of this proof that

X
n

− σk
(b)σk− n

gn− k( 􏼁σk
g

− 1
n− k􏼐 􏼑 � X

n
− σk

bσ − n
gn− k( 􏼁g

− 1
n− k􏼐 􏼑

� σn
(H(X))G(X)

� σn
(h(X))gn− kG(X)

� σn
(h(X))g(X),

(38)

as claimed.
Conversely, suppose that Xn − a � σn(h(X))g(X) with

a � σk(b)σk− n(gn− k)σk(g− 1
n− k). Note that a ∈ U(A) since σ is

an automorphism of A and gn− k ∈ U(A). Let G � g− 1
n− kg.

+en, G ∈ Aσ is monic and Xn − a � σn(h(X))gn− kG(X). As
hgn− k ∈ Aσ and σk and σn are automorphisms of A (and also
additive automorphisms when extended to Aσ ), let
c ∈ U(A) and H ∈ Aσ be such that a � σk(c) and
σn(h)gn− k � σn(H). So, Xn − σk(c) � H(X)G(X). It now
follows from the argument in the first paragraph of this
proof that Xn − c � G(X)H(X); that is,

X
n

− σ − k
(a) � G(X)h(X)σ − n

gn− k( 􏼁

� g
− 1
n− kg(X)h(X)σ − n

gn− k( 􏼁.
(39)

So,

gn− k X
n

− σ − k
(a)􏽨 􏽩 � g(X)h(X)σ − n

gn− k( 􏼁,

X
nσ − n

gn− k( 􏼁 − gn− kσ
− k

(a) � g(X)h(X)σ − n
gn− k( 􏼁,

X
n

− gn− kσ
− k

(a)σ − n
g

− 1
n− k􏼐 􏼑􏽨 􏽩σ − n

gn− k( 􏼁 � g(X)h(X)σ − n
gn− k( 􏼁,

X
n

− gn− kσ
− k

(a)σ − n
g

− 1
n− k􏼐 􏼑 � g(X)h(X)σ − n

gn− k( 􏼁σ − n
g

− 1
n− k􏼐 􏼑,

X
n

− gn− kbσ− n
gn− k( 􏼁g

− 1
n− kσ

− n
g

− 1
n− k􏼐 􏼑 � g(X)h(X).

(40)
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Hence, Xn − b � g(X)h(X) as claimed. □

Remark 3. If we do not want to be so specific about the
nature of a, b, and h as they appear above, we could rephrase
Lemma 5 as follows:

A skew-polynomial g ∈ Aσ , whose leading coefficient is a
unit inA, is a left divisor ofXn − b ∈ Aσ for some b ∈ U(A) if
and only if g is a right divisor of Xn − a ∈ Aσ for some
a ∈ U(A).

Example 4. Let σ be an automorphism of A, and α ∈ U(A)

with σ(α) � α. For g(X) � X − α and h(X) � X3 + α
X2 + α2X + α3, we have X4 − α4 � g(X)h(X) in Aσ . On the
other hand,

σ4(h(X))g(X) � h(X)g(X)

� X
4

− σ3 α4􏼐 􏼑σ − 1
(1)σ3 1− 1

􏼐 􏼑 � X
4

− α4,

(41)

as asserted by Lemma 5.

Lemma 6. Let h(X) � 􏽐
k
i�0 hiX

i ∈ Aσ be of degree k with
hk, h0 ∈ U(A) . If h is a right divisor of Xn − b for some
b ∈ U(A) , then, h∗ is a left divisor of Xn − σk− n(b− 1) and a
right divisor of Xn − b− 1σ − k(h0)σn− k(h− 1

0 ) .

Proof. Suppose that h is a right divisor of Xn − b for some
b ∈ U(A). So, l(X)h(X) � Xn − b for some l ∈ Aσ with
deg(l) � n − k (as hk ∈ U(A)). We then have from Lemma 4:

ψ(h(X))ψ(l(X)) � X
− n

− b,

X
k
[ψ(h(X))ψ(l(X))]X

n− k
� 1 − X

k
bX

n− k
,

h
∗
(X)ψ(l(X))X

n− k
� 1 − X

nσk− n
(b),

� σk− n
b

− 1
􏼐 􏼑 − X

n
􏽨 􏽩σk− n

(b),

h
∗
(X)ψ(l(X))X

n− kσk− n
b

− 1
􏼐 􏼑 � σk− n

b
− 1

􏼐 􏼑 − X
n
,

h
∗
(X) − ψ(l(X))X

n− kσk− n
b

− 1
􏼐 􏼑􏽨 􏽩 � X

n
− σk− n

b
− 1

􏼐 􏼑.

(42)

Since deg(l) � n − k, − ψ(l(X))Xn− kσk− n(b− 1) ∈ Aσ . It is
now obvious that h∗ is a left divisor of Xn − σk− n(b− 1). Now,
keeping in mind that deg(h∗) � deg(h) � k and the leading
coefficient of h∗ is h0 ∈ U(A), it follows from Lemma 5 that
h∗ is a right divisor of Xn − a, where

a � σn− k σk− n
b

− 1
􏼐 􏼑􏼐 􏼑σ− k

h0( 􏼁σn− k
h

− 1
0􏼐 􏼑 � b

− 1σ− k
h0( 􏼁σn− k

h
− 1
0􏼐 􏼑,

(43)

as claimed. □

Example 5. Keep the notations of Example 4. By Lemma 6,
h∗(X) � α3X3 + α2X2 + αX + 1 is a left divisor of
X4 − σ − 1(α− 4) � X4 − α− 4. In fact, we have

α3X3
+ α2X2

+ αX + 1􏼐 􏼑 α− 3
X + α− 4

􏼐 􏼑 � X
4

− α− 4
. (44)

We also deduce from Lemma 6 that h∗ is a right divisor
of X4 − σ3(α3)/α4σ(α3) � X4 − α− 4 too. In fact, (α− 3X+

α− 4)(α3X3 + α2X2 + αX + 1) � X4 − α− 4.

+e following is a very important and interesting fact
concerning the A-module orthogonal to a free A-module
over a finite commutative ring A, where orthogonality is
with respect to the Euclidean inner product. +is result is a
rephrasing of ([20], Proposition 2.9). It should be noted that
the authors of [20] assumed that the finite commutative ring
is Frobenius. However, going through their proof and the
results they utilized, it becomes clear that such an as-
sumption is unnecessary. It is, however, a necessary as-
sumption for the converse of ([20], Proposition 2.9) to hold,
which we do not need here (see [20], Remark 2.10) and the
few lines following it).

Lemma 7. If A is a finite commutative ring with identity, M

is a free A -submodule of An of rank k , and M⊥ is the A

-submodule of An orthogonal to M with respect to the Eu-
clidean inner product on An , then, M⊥ is free of rank n − k .

Proof. Let G ∈Mk,n(A) be a matrix whose rows are the k

elements of an A-basis of M. +en, G is a full-row-rank
matrix (that is, the rows of G form a linearly independent set).
As it is obvious that M⊥ � x ∈ An|Gxt � 0􏼈 􏼉, it follows from
([20], Proposition 2.9) that M⊥ is free of rank n − k. □

In the terminology of this paper, ([3], +eorem 1)
characterizes the monic principal σ-codes over a finite field F
(with σ an automorphism of F ) whose duals are also monic
principal σ-codes, extending ([2], +eorem 2). It is claimed
in ([3], p. 240) that ([3],+eorem 1) remains valid over finite
rings (not even assuming commutativity!) if one assumes
that the constant term of g is a unit. Yet, when looking at the
proof of ([3], +eorem 1), we see that a crucial underlying
assumption is that the dual of a linear code over a finite field
is free (as both are vector spaces) and the sum of the di-
mensions of the two codes is equal to their length. However,
the freeness assumption on the dual does not necessarily
hold over rings in general even if the original linear code is
free, let alone talking about the sum of the dimensions. So,
the same proof of ([3], +eorem 1) cannot be adopted for
finite rings and, thus, we can not see at the moment how the
aforementioned claim can be verified. To the best of the
authors’ knowledge, however, it was not until the appear-
ance of ([20], Proposition 2.9) (Lemma 7) three years after
the study by Boucher and Ulmer [3] that we were able to
extend ([3], +eorem 1) to finite commutative rings (+e-
orem 3).

Theorem 3. Let A be a finite commutative ring with identity,
σ a ring automorphism of A , andC a monic principal σ -code
of length n generated by some monic g(X) � 􏽐

n− k
i�0 giX

i ∈ Aσ
with g0 ∈ U(A) .

(i) If the dual C⊥ of C is a monic principal σ -code
generated by some h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ with
h0, hk ∈ U(A) , then, C is monic principal σ -con-
stacyclic with C � (g)σ

k(g0)σ2k(hk)
n,σ .
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(ii) If for some a ∈ U(A) ,C � (g)a
n,σ is monic principal σ

-constacyclic, then, the dual C⊥ of C is the monic
principal σ -constacyclic code C⊥ � (h∗)c

n,σ , where
h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ is such that
Xn − σ− k(a) � g(X)h(X) with h0 ∈ U(A) , and c �

σ− k(a− 1)σ − k(h0)σn− k(h− 1
0 ) .

Proof

(i) Let C⊥ be a monic principal σ-code generated by
some h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ with hk, h0 ∈ U(A).
Since h− 1

0 h ∈ Aσ also generates C⊥, we assume that
h0 � 1, set h⊥(X) � 􏽐

k
i�0 σk− i(hk− i)X

i, and note that
h⊥ is monic. We claim that
g(X)h⊥(X) � Xn − g0σk(hk). Suppose that
g(X)h⊥(X) � 􏽐

n
i�0 ciX

i. Notice that cn � 1 and
c0 � g0σk(hk). To settle the claim, it remains to show
that cl � 0 for l ∈ 1, . . . , n − 1{ }. Since
Xig(X)􏼈 􏼉0≤ i≤ k− 1 and Xjh(X)􏼈 􏼉0≤ j≤ n− k− 1 are

A-generators of C and C⊥, respectively, it follows
that

〈Xi0g(X), X
i1h(X)〉 � 0. (45)

For any i0 ∈ 0, . . . , k − 1{ } and i1 ∈ 0, . . . , n − k − 1{ }.
So, for every such i0 and i1, we have

0 �〈Xi0g(X), X
i1h(X)〉

�〈􏽘
n− k

i�0
σi0 gi( 􏼁x

i+i0 , 􏽘
k

i�0
σi1 hi( 􏼁X

i+i1〉

�〈􏽘
n− k

i�0
σi0 gi( 􏼁x

i+i0 , 􏽘

k+i1− i0

i�i1− i0

σi1 hi− i1+i0
􏼐 􏼑X

i+i0〉

� 􏽘

min n− k,k+i1− i0{ }

i�max 0,i1− i0{ }

σi0 gi( 􏼁σi1 hi− i1+i0
􏼐 􏼑

� σi0 􏽘

min n− k,k+i1− i0{ }

i�max 0,i1− i0{ }

giσ
i1− i0 hi− i1+i0

􏼐 􏼑
⎡⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎦.

(46)

Since σi0 is an automorphism of A,

􏽐
min n− k,k+i1− i0{ }
i�max 0,i1− i0{ }

giσi1− i0(hi− i1+i0
) � 0. Let

l � k + i1 − i0. +en, l ∈ 1, . . . , n − 1{ } and

σi
hl− i( 􏼁 � σi σl− i− k

hk− l+i( 􏼁􏼐 􏼑 � σl− k
hk− l+i( 􏼁 � σi− i0 hi− i1+i0

􏼐 􏼑.

(47)

So,

0 � 􏽘

min n− k,k+i1− i0{ }

i�max 0,i1− i0{ }

giσ
i1− i0 hi− i1+i0

􏼐 􏼑

� 􏽘

min n− k,l{ }

i�max 0,l− k{ }

giσ
l− k

hk− l+i( 􏼁

� 􏽘

min n− k,l{ }

i�max 0,l− k{ }

giσ
i

hl− i( 􏼁

� cl,

(48)

as desired. It now follows from Lemma 5 that
Xn − σk(g0)σ2k(hk) � σn(h⊥(X))g(X), and hence,
C � (g)σ

k(g0)σ2k(hk)
n,σ is σ-constacyclic.

(ii) As g is a right divisor of Xn − a whose leading co-
efficient is a unit, it follows from Lemma 5 that there
exists some h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ such that
Xn − σ − k(a) � g(X)h(X). Since g0h0 � σ− k(a) and
A is commutative with σ − k(a) ∈ U(A), h0 ∈ U(A).
It then follows from Lemma 6 that h∗ is a right
divisor of Xn − c with c � σ− k(a− 1)σ − k

(h0)σn− k(h− 1
0 ). Let C∗ � (h∗)c

n,σ be the monic
principal σ-constacyclic code generated by h∗. We
show that C∗ � C⊥. As C is a monic principal
σ-code generated by g, which is of degree n − k,C is
A-free of rank k ([8], +eorem 1). Since A is a finite
commutative ring, it follows from Lemma 7 that C⊥
is A-free of rank n − k. On the other hand, asC∗ is a
monic principal σ-code generated by h∗, which is of
degree k, C∗ is A-free of rank n − k too. So,
|C∗| � |C⊥|<∞. It, thus, suffices to show that
C∗⊆C⊥. Since Xig(X)􏼈 􏼉0≤ i≤ k− 1 and
Xjh∗(X)􏼈 􏼉0≤ j≤ n− k− 1 are A-generators of C and C∗,
respectively, it suffices to show that
<Xig(X), Xjh∗(X)> � 0 for each such i and j. An
argument like that in part (i) above will do. Hence,
C⊥ � (h∗)c

n,σ . □

Remark 4. If we do not want to be so detailed in+eorem 3,
we would rephrase it as follows (with some obvious
additions):

Let A be a finite commutative ring with identity, σ a ring
automorphism of A, and C a monic principal σ-code of
length n generated by some monic g(X) � 􏽐

n− k
i�0 giX

i ∈ Aσ
with g0 ∈ U(A). +en, the following are equivalent

Security and Communication Networks 11



(assuming in each case that the constant term of the gen-
erating skew-polynomial is a unit in A):

(i) C⊥ is a monic principal σ-code.
(ii) C⊥ is a monic principal σ-constacyclic code.
(iii) C is a monic principal σ-constacyclic code.

Note that “(i)⟶ (iii)” is part (i) of +eorem 3,
“(iii)⟶ (ii)” is part (ii) of+eorem 3, and “(ii)⟶ (i)” is
trivial.

Example 6. Keep the notations of Examples 4 and 5. As
(X3 + αX2 + α2X + α3)(X − α) � X4 − α4, let C be the
monic principal σ-constacyclic code C � (X − α)α

4

4,σ . It then
follows from +eorem 3 that
C⊥ � (α3X3 + α2X2 + αX + 1)

α− 4

4,σ .

Remark 5. Note that in part (ii) of +eorem 3, if
aσ− k(a) � σ − k(h0)σn− k(h− 1

0 ), then, C⊥ is the monic prin-
cipal σ-constacyclic code C⊥ � (h∗)a

n,σ . +at is, both C and
C⊥ are generated by right divisors of the same polynomial
Xn − a.

If a σ-code C is monic principal σ-constacyclic over a
finite commutative ring with identity (where σ is an auto-
morphism of the ring), +eorem 3 asserts that the dual code
C⊥ is monic principal σ-constacyclic as well. +e following
theorem gives a generator matrix of the dual code in such a
case.

Corollary 8. LetA be a finite commutative ring with identity,
σ a ring automorphism of A , a ∈ U(A) , and C � (g)a

n,σ a
monic principal σ -constacyclic code generated by some monic
g(X) � 􏽐

n− k
i�0 giX

i ∈ Aσ with g0 ∈ U(A) . Let
h(X) � 􏽐

k
i�0 hiX

i ∈ Aσ be such that
g(X)h(X) � Xn − σ − k(a), as ensured by 7eorem 3. 7en, a
generator matrix H ∈Mn− k,n(A) of C⊥is

hk σ hk− 1( 􏼁 . . . σk
h0( 􏼁 0 . . . 0

0 σ hk( 􏼁 σ2 hk− 1( 􏼁 . . . σk+1
h0( 􏼁 0 . . .

⋮ ⋮ ⋮ ⋮

0 . . . . . . 0 σn− k− 1
hk( 􏼁 . . . σn− 1

h0( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(49)

Proof. By+eorem 3, the dual codeC⊥ is a monic principal
σ-constacyclic code generated by h∗. Now, applying Cor-
ollary 5 yields the desired conclusion. □

Example 7

(a) Keep the notations of Example 5. It follows from
Corollary 8 that a generator matrix of C⊥ is
H � h3 σ(h2) σ2(h1) σ3(h0)􏼐 􏼑 � 1 α α2 α3􏼐 􏼑.

(b) Let A �
a b

0 a
􏼠 􏼡|a, b ∈ Z6􏼨 􏼩 and σ:

a b

0 a
􏼠 􏼡

↦ a − b

0 a
􏼠 􏼡. Let α �

1 1
0 1􏼠 􏼡 ∈ U(A), g(X) � X2 +

α ∈ Aσ , and h(X) � X2 − α ∈ Aσ . We then get

h(X)g(X) � g(X)h(X) � X
4

− α2. (50)

Letting C � (g)α
2

4,σ , it follows from+eorem 3 thatC⊥ �

(h∗)α
− 2

4,σ and from Corollary 8 that C⊥ has the following
generator matrix:

H �
h2 σ h1( 􏼁 σ2 h0( 􏼁 0

0 σ h2( 􏼁 σ2 h1( 􏼁 σ3 h0( 􏼁

⎛⎝ ⎞⎠

�
1 σ(0) σ2(− α) 0

0 σ(1) σ2(0) σ3(− α)

⎛⎝ ⎞⎠ �
1 0 − α 0

0 1 0 − α
􏼠 􏼡.

(51)

Due to +eorem 3, the following result gives a charac-
terization of self-dual σ-codes over finite commutative rings
in such a way that generalizes ([2], Corollary 4) and further
strengthens it.

Corollary 9. Keep the assumptions of7eorem 3 with n � 2k.
7en, the following statements are equivalent:

(i) C is a self-dual σ-code.
(ii) C is a monic principal σ-constacyclic code with

C � (g)a
n,σ, a ∈ U(A), and σk(h− 1

0 )h∗ � g, where
g(X)h(X) � Xn − σ − k(a).

(iii) For any l ∈ 0, . . . , k{ }, 􏽐
l
i�0 σk− l(gi)gi+k− l � 0.

Proof. (i)⇔(ii): assume that C � C⊥. It follows from
+eorem 3 and its proof thatC⊥ is σ-constacyclic generated
by h∗ ∈ Aσ , where h(X) � 􏽐

k
i�0 hiX

i is satisfying h0 ∈ U(A)

and g(X)h(X) � Xn − σ − k(a) for some a ∈ U(A). As
σk(h− 1

0 )h∗ also generates C⊥ and both g and σk(h− 1
0 )h∗ are

monic and generate the same code, we must have
g � σk(h− 1

0 )h∗. Conversely, assume that C � (g)a
n,σ , for

some a ∈ U(A), and σk(h− 1
0 )h∗ � g where

g(X)h(X) � Xn − σ − k(a).+en, by+eorem 3,C⊥ is monic
principal and generated by h∗. Since h∗ and σk(h− 1

0 )h∗ � g

generate the same code, we conclude that C � C⊥.
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(i)⇔(iii): follow the proof of Corollary 4 of [2] verbatim
with the use of+eorem 3 and the obvious adjustments. □

Example 8. Let A � F3 × F3, σ(x, y) � (y, x), and denote
(a, a) ∈ A by a. Taking h(X) � X2 + 2X + 2 ∈ Aσ , we get
h∗(X) � 2X2 + 2X + 1 and σ2(h− 1

0 )h∗(X) � 2(2X2 + 2
X + 1) � X2 + X + 2. Letting g(X) � X2 + X + 2, a simple
verification shows that g(X)h(X) � X4 + 1.We then deduce
from Corollary 9 (ii) that C � (X2 + X + 2)

− 1
4,σ is a self-dual

σ-constacyclic code over A, which is negacyclic over A of
length 4. Using Magma [18], this yields, after the obvious
Gray map, a negacyclic [8, 4, 3] ternary code over A with the
generator matrix in systematic form

1 0 0 0 1 0 2 0
0 1 0 0 0 1 0 2
0 0 1 0 2 0 2 0
0 0 0 1 0 2 0 2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. So, we get a new construction of

the unique self-dual code with these parameters [21], which
is classically obtained as a direct sum of two copies of the
tetracode [22], (Table XII).

Example 9. Consider F4 � F2(w) with w2 + w + 1 � 0. Let
A � F4 × F4, σ(x, y) � (x, y2), and f(X) � X6 + 1 ∈ Aσ
where 1 denotes (1, 1). Letting

g1(X) � h1(X) � X
3

+ 1,

g2(X) � 1 + 0, w
2

􏼐 􏼑x + 0, w
2

􏼐 􏼑x
2

+ x
3
,

h2(X) � 1 + 0, w
2

􏼐 􏼑x +(0, w)x
2

+ x
3
,

g3(X) � 1 +(0, w)x +(0, w)x
2

+ x
3
,

h3(X) � 1 +(0, w)x + 0, w
2

􏼐 􏼑x
2

+ x
3
,

(52)

we see that f � gihi for every i � 1, 2, 3. So, by Corollary 9,
the three codes C1 � (g1)

− 1
6,σ ,C2 � (g2)

− 1
6,σ , andC3 � (g3)

− 1
6,σ

are self-dual σ-constacyclic codes over A. Generator ma-
trices of C1, C2, and C3 are, respectively, as follows:

G1 �

(1, 1) (0, 0) (0, 0) (1, 1) (0, 0) (0, 0)

(0, 0) (1, 1) (0, 0) (0, 0) (1, 1) (0, 0)

(0, 0) (0, 0) (1, 1) (0, 0) (0, 0) (1, 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G2 �

(1, 1) 0, w
2

􏼐 􏼑 0, w
2

􏼐 􏼑 (1, 1) (0, 0) (0, 0)

(0, 0) (1, 1) (0, w) (0, w) (1, 1) (0, 0)

(0, 0) (0, 0) (1, 1) 0, w
2

􏼐 􏼑 0, w
2

􏼐 􏼑 (1, 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠,

G3 �

(1, 1) (0, w) (0, w) (1, 1) (0, 0) (0, 0)

(0, 0) (1, 1) 0, w
2

􏼐 􏼑 0, w
2

􏼐 􏼑 (1, 1) (0, 0)

(0, 0) (0, 0) (1, 1) (0, w) (0, w) (1, 1)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

(53)

Moreover, using the obvious Gray map to F4, we get
from C2 a self-dual [12, 6, 2] code over F4. For this, Magma
[18] was used.

6. Parity-Check Matrix of a Monic Principal
(f, σ, δ)-Code over a Finite
Commutative Ring

Let A be a ring, σ a ring endomorphism of A that maps the
identity to itself, and δ a σ-derivation of A. If C is an A-free
(f, σ, δ)-code of length n and rank k, a matrix
H∗ ∈Mn− k,n(A) is called a parity-check matrix of C if

(1) HT
∗ is a control matrix of C, and

(2) H∗ is a generator matrix of the dual C⊥.

In classical coding theory over finite fields, the dual code
of a linear code is also linear, and hence, a parity-check
matrix of such a code always exists. However, for a monic
principal (f, σ, δ)-code C over a ring A (despite being
A-free), the dual C⊥ may not be A-free, and thus, a parity-
check matrix of C may not exist (due to the lack of re-
quirement (2) above). Nonetheless, when A is a finite
commutative ring with identity and σ is a ring automor-
phism of A, nice things happen.With this assumption added
to the hypotheses of +eorem 2, +eorem 4 shows that the
transpose of the matrix consisting of the last n − k columns
of H of+eorem 2 is indeed a parity-check matrix ofC.+is
is a dramatic improvement of +eorem 2 in this important
and widely used case.

Theorem 4. Let A be a finite commutative ring with identity,
σ a ring automorphism of A, and keep the other notations and
assumptions of 7eorem 2. 7en, a parity-check matrix
H∗ ∈Mn− k,n(A) of C is given by

hk h
(1)
k h

(2)
k . . . h

(n− k− 1)
k h

(n− k)
k . . . h

(n− 1)
k

0 σ hk( 􏼁 h
(2)
k+1 . . . h

(n− k− 1)
k+1 h

(n− k)
k+1 . . . h

(n− 1)
k+1

0 0 σ2 hk( 􏼁 . . . h
(n− k− 1)
k+2 h

(n− k)
k+2 . . . h

(n− 1)
k+2

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 . . . σn− k− 1
hk( 􏼁 h

(n− k)
n− 1 . . . h

(n− 1)
n− 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(54)

where h
(i)
j is as in 7eorem 2.

Proof. Note that H∗ is the transpose of the last n − k

columns of H of +eorem 2. +e rows H1, . . . , Hn− k of H∗
are A-linearly independent since H∗ is in echelon form. Let
C∗ be the free left A-submodule of An a basis of which is
H1, . . . , Hn− k. +en, C∗ has cardinality equal to |A|n− k. On
the other hand, it follows from Lemma 7 thatC⊥ is A-free of
rank n − k. So, C⊥ has cardinality equal to |A|n− k as well.
With H of +eorem 2, we have C � Annl(H)⊆Annl(HT

∗).
By Lemma 7 again, Annl(HT

∗) is A-free of rank k. +en,
|Annl(HT

∗)| � |A|k � |C| and soC � Annl(HT
∗). +us, HT

∗ is
a control matrix of C. +is, in particular, implies that
H1, . . . , Hn− k ∈ C

⊥. So,C∗⊆C⊥. SinceC∗ andC⊥ are of the
same finite cardinality, C∗ � C⊥. So, H∗ is a generator
matrix of C⊥ and thus a parity-check matrix of C. □
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Example 10. Keep the notation and assumptions of Example
3 with A finite and commutative and σ a ring automorphism
of A. By +eorem 4, the matrix H∗ � 1 β 1( 􏼁 is a parity-
check matrix ofC. By +eorem 1, a generator matrix ofC is

G �
2β 1 0
2α 2β 1􏼠 􏼡. It can be easily checked that GHT

∗ � 0.

When δ � 0, H∗ takes a nicer form.

Corollary 10. Keep the assumptions of7eorem 4 with δ � 0.
7en, a parity-check matrix H∗ ∈Mn− k,n(A) of the monic
principal σ-code C is given by

hk σ hk− 1( 􏼁 σ2 hk− 2( 􏼁 . . . σk
h0( 􏼁 h

(k+1)
k h

(k+2)
k . . . h

(n− 1)
k

0 σ hk( 􏼁 σ2 hk− 1( 􏼁 . . . σk
h1( 􏼁 σk+1

h0( 􏼁 h
(k+2)
k+1 . . . h

(n− 1)
k+1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . σn− k− 1
hk( 􏼁 . . . . . . σn− 1

h0( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (55)

where h
(i)
j is as in 7eorem 2.

Proof. Follows immediately from+eorem 4 and Corollary
6.

A special, yet important, case of Corollary 10 is when C

is a monic principal σ-constacyclic code, in which case H∗
takes a much better form. □

Corollary 11. Keep the assumptions of 7eorem 4 with C a
monic principal σ-constacyclic code, C � (g)a

n,σ for some
a ∈ U(A). 7en, a parity-check matrix H∗ ∈Mn− k,n(A) ofC
is given by

hk σ hk− 1( 􏼁 σ2 hk− 2( 􏼁 . . . σk
h0( 􏼁 0 0 . . . 0

0 σ hk( 􏼁 σ2 hk− 1( 􏼁 . . . σk
h1( 􏼁 σk+1

h0( 􏼁 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . σn− k− 1
hk( 􏼁 . . . . . . σn− 1

h0( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (56)

Proof. For j � 1, . . . , n, let Cj denote the jth column of H

in Corollary 7. If n − k � 1, then, H∗ � (CT
k+1), where (by

Corollary 7 (a))

C
T
k+1 � C

T
n � hk, σ hk− 1( 􏼁, σ2 hk− 2( 􏼁, . . . , σk

h0( 􏼁􏼐 􏼑. (57)

Suppose now that n − k≥ 2. +en, the rows of H∗ are
precisely CT

k+1, CT
k+2, . . . , CT

n . We begin by specifying the
entries of Ck+1, where we show that

C
T
k+1 � Hi,k+1􏼐 􏼑

T

1≤ i≤ n
� hk, σ hk− 1( 􏼁, σ2 hk− 2( 􏼁, . . . , σk

h0( 􏼁, 0, . . . , 0􏼐 􏼑,

(58)

that is, Hi,k+1 � σi− 1(hk− (i− 1)) for 1≤ i≤ k + 1, and Hi,k+1 � 0
for k + 2≤ i≤ n. By Corollary 7 (b)-(i), H1,k+1 � hk. Let
2≤ i≤ n. We deal with the following three cases:

Case (j � k + 1 � n − k): for 2≤ i≤ n − k � k + 1, we
have 2≤ i≤ k + 1 � j≤ i + k, so we are in the second
case of Corollary 7 (b)-(ii). +us, Hi,k+1 � σi− 1(hk− (i− 1))

here. For n − k + 1≤ i≤ n, we have j � k + 1
� n − k≤ i − 1≤ n − 1 and i − (n − k) + 1≤ k + 1 � j. So
i − (n − k) + 1≤ j≤ i − 1, and we are in the second case
of Corollary 7 (b)-(iii). +us, Hi,k+1 � 0 here. +is fully
verifies the asserted entries of Ck+1 when
j � k + 1 � n − k.

Case (j � k + 1> n − k): for 2≤ i≤ n − k, we have
i≤ n − k< j � k + 1 and i + k≥ 2 + k> j. So, i≤ j≤ i + k,
and we are in the second case of Corollary 7 (b)-(ii).
+us, Hi,k+1 � σi− 1(hj− 1) � σi− 1(hk− (i− 1)) here. Let
n − k + 1≤ i≤ n. If i≤ j≤ n, then, we are in third case of
Corollary 7 (b)-(iii). +us, Hi,k+1 � σi− 1(hj− 1)

� σi− 1(hk− (i− 1)) here as well. If n − k + 1≤ j≤ i − 1,
then, i − (n − k) + 1≤ n − (n − k) + 1 � k + 1 � j. So
i − (n − k) + 1≤ j≤ i − 1, and we are in the second case
of Corollary 7 (b)-(iii). +us, Hi,k+1 � 0 here. +is fully
verifies the asserted entries of Ck+1 when
j � k + 1> n − k.
Case (j � k + 1< n − k): let 2≤ i≤ n − k. If
i≤ k + 1 � j< n − k, then, i + k≤ n − k + k � n. So, we
have i≤ j≤ i + k, and we are in the second case of
Corollary 7 (b)-(ii). +us, Hi,k+1 � σi− 1(hk+1− i)

� σi− 1(hk− (i− 1)) here. If j � k + 1< i≤ n − k, then
1≤ j≤ i − 1, and we are in the first case of Corollary 7
(b)-(ii). +us, Hi,k+1 � 0 here. For n − k + 1≤ i≤ n, we
have j � k + 1< n − k < n − k + 1≤ i. So, j≤ i − 1. Also,
i − (n − k) + 1 ≤ n − (n − k) + 1 � k + 1 � j. So, we
have i − (n − k) + 1≤ j≤ i − 1, and we are in the second
case of Corollary 7 (b)-(iii). +us, Hi,k+1 � 0 here as
well. +is fully verifies the asserted entries of Ck+1 when
j � k + 1< n − k.
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Now, as for Ck+1+t with t � 1, . . . , n − k − 1, note that (by
Corollary 7) Hi,k+1+t � 0 for 1≤ i≤ t. For t + 1≤ i≤ k + 1 + t,
Corollary 4 (a) yields Hi,k+1+t � σi− 1(hk+1+t− i). For
k + 1 + t + 1≤ i≤ n, Corollary 4 (a) again yields Hi,k+1+t � 0.
+is completes the proof.

Note that a requirement in the above corollary is that g

be both a right and left divisor of Xn − a (according to

+eorem 4). +e following corollary deals with the case
when g is a right divisor of Xn − a and a left divisor of Xn −

σ − k(a) and g0 ∈ U(A) (see the assumptions of Corollary
8). □

Corollary 12. Keep the assumptions of Corollary 8. 7en, a
parity-check matrix H∗ ∈Mn− k,n(A) of C is given by

hk σ hk− 1( 􏼁 σ2 hk− 2( 􏼁 . . . σk
h0( 􏼁 0 0 . . . 0

0 σ hk( 􏼁 σ2 hk− 1( 􏼁 . . . σk
h1( 􏼁 σk+1

h0( 􏼁 0 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . . . . σn− k− 1
hk( 􏼁 . . . . . . σn− 1

h0( 􏼁

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (59)

Proof. By Corollary 8, H∗ is a generator matrix of C⊥.
Furthermore, it is clear that z ∈ Annl(HT

∗) if and only if
z ∈ x ∈ An|〈x, y〉 � 0 for ally ∈ C⊥􏼈 􏼉 � (C⊥)⊥. Since
(C⊥)⊥ and C are both free of the same rank (thanks to
Lemma 7) and C⊆(C⊥)⊥, we conclude that C � Annl(HT

∗).
Hence, H∗ is a parity-check matrix of C as claimed. □

7. Conclusion and Future Work

7.1. Conclusion. In this article, recursive formulas were
provided to compute the entries of generator and control
matrices of a monic principal (f, σ, δ)-codeC over a ring A.
When A is finite and commutative with an automorphism σ
and the generator polynomial of C is both a right and a left
divisor of f, a parity-check matrix of C was also given.
When further δ � 0, a characterization was given for such
codes whose dual codes were also monic principal. Partic-
ularly, self-dual codes of this kind as well as monic principal
skew-constacyclic were discussed.

7.2. FutureWork. Some of the issues that can be worked on
are the following:

(i) Despite the importance of the generator matrices,
control matrices, and parity-check matrices in
identifying certain monic principal skew codes over
rings, improvements on other coding-theoretic
parameters are still to be discussed.

(ii) What can be said about monic principal dual codes
of monic principal skew codes in case δ ≠ 0, and
what can be said about the non-monic-principal
dual codes of monic principal skew codes in both
cases δ � 0 and δ ≠ 0?

(iii) In case δ ≠ 0, what can be said about self-dual monic
principal (σ, δ)-codes and constacyclic (σ, δ)-codes
in terms of their characterizations or properties?
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