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Pervasive smartphones boost the prosperity of location-based service (LBS) and the increasing data prompt LBS providers to
outsource their LBS datasets to the cloud side. +e privacy issues of LBS in the outsourced cloud scenario have attracted
considerable interest recently. However, current schemes cannot provide sufficient privacy preservation against practical
challenges and are little concerned about the data retrieval efficiency of the cloud side. +erefore, we present an efficient Privacy-
Preserving LBS Query Scheme (i.e., PPQS). In our scheme, two cloud entities are employed to store the sensitive information of
the outsourced data and provide the query service, which enhances the ability of privacy preservation for sensitive information.
Besides, by using the techniques of homomorphic encryption and searchable symmetric encryption, the proposed scheme
supports both the type query and the range query, which can significantly improve the data retrieval efficiency of the cloud side
and reduce the computation burden on the cloud side and the user side. +rough detailed analysis on security and computation
cost, we show the enhanced ability of privacy preservation and the lower computation cost compared to previous schemes. Based
on a real dataset, extensive simulations are performed to validate the effectiveness and performance of our scheme.

1. Introduction

Along with the boom of location-aware mobile electronic
devices and the development of wireless communication,
location-based service (LBS) has been prevalent in social
domains and has attracted considerable interest recently.
With the help of LBS, people can get convenience in points
of interest (POI) searching, route guiding, and so forth.
Nowadays, due to the advantages of cloud on data com-
putation and storage, the location-based service provider
(LBSP) tends to outsource the storage service and the query
service to the cloud side [1].

A typical scenario for LBS in the outsourced cloud is
shown in Figure 1. +e LBSP first outsources its database
that contains valuable and sensitive information (e.g.,

coordinates of POI) to the cloud side. +en, based on the
outsourced database, the cloud side handles users’ LBS
queries. However, this new service paradigm brings new
privacy issues since the cloud side is assumed to be semitrust
(honest-but-curious). In general, the privacy issues for LBS
in the outsourced cloud are two main parts: (1) Since the
sensitive information contained in the outsourced database
may be exposed to the cloud side, how to keep the out-
sourced data secret from the cloud side (i.e., how to guar-
antee data privacy of the outsourced data). (2) Since the
private information such as the current location contained
in the LBS user’s query request faces the risk of being ex-
posed to the cloud side, how to keep the private information
secret from the cloud side (i.e., how to ensure the LBS user’s
query privacy).
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To guarantee data privacy, one straightforward method
is to encrypt all the data before the LBSP outsources its
database to the cloud side. Similarly, to prevent the leakage
of private information contained in users’ queries, a com-
mon way is to encrypt the private data contained in users’
queries before users submit their query requests to the cloud
side.+erefore, most of the current researches adopt the way
of encryption to solve the privacy issues for LBS in the
outsourced cloud [2–6]. Although the above researches can
preserve data privacy and query privacy, their schemes are
designed based on a single cloud structure (i.e., the cloud
side consists of one single cloud provider). Accordingly,
both the storage service and the query service rely on a single
cloud provider. However, if the single cloud provider is
controlled or the data stored in this cloud are stolen by the
profit-driven insider, sensitive information may be up
against the crisis of being leaked since all the outsourced data
can be obtained on a one-time basis. +us, while preserving
data privacy and query privacy, how to design a new scheme
to enhance the ability of privacy preservation for sensitive
information is an urgent problem to be solved.

Current researchers pay little attention to the data re-
trieval efficiency of the cloud side since their schemes are
only the range query supported [2–4]. +at is, a user can
appoint an encrypted search area into an LBS query request
and then submit this query request to the cloud side.
Without knowing the user’s location information, the cloud
side will return all the encrypted data located in the search
area as the query result to the user. Schemes that only
support the range query lead to an expensive computation
cost both on the cloud side and the user side. For the cloud
side, it has to retrieve all the encrypted data in its database.
For the user side, the user has to decrypt all the encrypted
data in the query result to find the desired data. In reality, the
user’s query contains not only the search area but also the
search interests (i.e., POI types). +us, in addition to the
range query based on the user’s search area, the type query
based on the user’s POI query type is also an essential factor
that needs to be considered for the LBS query in the out-
sourced cloud. +erefore, while preserving query privacy,
how to design a scheme that supports both the range query
and the type query to improve the data retrieval efficiency of
the cloud side is a problem to be fixed.

To address the above problems, we proposed a Privacy-
Preserving LBS Query Scheme (PPQS) in the outsourced

cloud, which provides a stronger privacy guaranty and
improves the data retrieval efficiency of the cloud side under
a dual cloud structure. From the work in Ref. [7], if the
sensitive knowledge is partitioned into two parts and dis-
tributed to two noncolluding clouds, the privacy can be
preserved against the cloud side. Based on the idea of divide-
and-conquer, the dual cloud structure consisting of two
noncolluding clouds can ensure that each of the clouds only
knows its own part and effectively isolates the knowledge
contained in outsourced data. +erefore, two cloud entities
(i.e., the type retrieval cloud and the location retrieval cloud)
are adopted in our scheme to store the sensitive data (i.e.,
encrypted POI type data and encrypted location data)
separately. Specifically, the contributions of our scheme can
be summarized as below.

(1) We propose a dual cloud structure to enhance the
ability of privacy preservation for sensitive infor-
mation in the outsourced cloud scenario, i.e., our
scheme has the ability to resist the insider attack and
the eavesdropping attack while preserving data
privacy and query privacy.

(2) Our scheme supports both the type query and the
range query. Compared to the schemes that only
support the range query, our scheme can signifi-
cantly improve the data retrieval efficiency of the
cloud side and reduce the computation burden on
the cloud side and the user side.

+e remainder of the paper is organized as follows. In
Section 2, after discussing the related work, the system
model, security requirements, and design goal are given.
Subsequently, the basic notations and concepts are intro-
duced in Section 3. +en, the detailed scheme, the analysis
about security and computation cost, and the simulation
results and corresponding analysis are given in Sections 4, 5,
and 6, respectively. Finally, a conclusion is presented in
Section 7.

2. Related Work

Our work focuses on the issues of privacy-preserving LBS
query over outsourced encrypted data. In this section, we
briefly review some related works that can be used to realize
privacy-preserving LBS query.

Some early works mainly focus on the issues of privacy-
preserving LBS query in the nonoutsourced cloud scenario.
In this scenario, users send their query requests to the
semitrust (i.e., honest-but-curious) LBSP that stores LBS
data resources. To prevent the LBSP from obtaining the
user’s private information (e.g., the user’s identity and lo-
cation information), some well-known approaches like
k-anonymity, dummy, spatial cloaking, and private infor-
mation retrieval (PIR) are widely adopted. k-anonymity is a
common way used to preserve the LBS user’s private in-
formation [8], and the core of k-anonymity is to ensure that
a user cannot be identified with a probability of at least 1/k.
Nevertheless, the sensitive information of users may also be
leaked if k users’ queries lack diversity in the sensitive at-
tributes [9]. Dummy usually adopts the way of adding fake
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Figure 1: +e privacy risks for LBS in the outsourced cloud.
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users into the real user’s query request to confuse the LBSP.
As the LBSP cannot identify a real user from other fake users
in the query process, the real user’s privacy can be preserved.
However, since fake users are added to the real user’s query
request, the communication overhead and computation cost
inevitably increase [10]. To confuse the LBSP, spatial
cloaking, such as transforming an LBS user’s location to an
obfuscation area or a cloaked area [11], is adopted to de-
crease the accuracy of the user’s location. However, this
approach achieves privacy preservation at the expense of
expected locations’ accuracy so that some nearby POI may
be excluded [12]. PIR was first used to prevent the identifier
of retrieved data from being leaked to the database server
[13]. For the privacy-preserving LBS query, the user also can
obtain the record from the LBSP without revealing which
record he/she is interested in by using PIR [14]. For example,
based on PIR, Y Xun et al. designed a framework to find the
user’s requested data without revealing to the LBSP which
records are retrieved [15]. However, PIR usually brings a
heavy computation cost since PIR needs a linear scan for all
the data stored in the LBSP.

In the outsourced cloud scenario, current studies focus
on the issues of privacy-preserving LBS query over out-
sourced encrypted data. For instance, to preserve data
privacy of the outsourced data and the user’s query privacy, a
framework named FINE was designed for the privacy-
preserving LBS query over outsourced encrypted data [16].
However, the framework only supports the rectangle range
LBS query, which is not very practical since the user’s query
range is usually a circle. Subsequently, a privacy-preserving
LBS query scheme was proposed to support the circle range
LBS query over outsourced encrypted data [2]. However, the
scheme only considers the circle range LBS query, i.e., a user
can appoint only a circle into his/her LBS query and get all
the encrypted data located in the circle from the cloud side.
To improve the data retrieval efficiency of processing the
circle range LBS query, Li et al. [3] put forward a privacy-
preserving tree index structure in their scheme. To provide a
flexible LBS query over outsourced encrypted data, Zhu et al.
[4] designed a special polygons spatial query algorithm and
proposed a privacy-preserving polygons spatial query
scheme that allowed a user to appoint any polygon into an
LBS query request. Afterward, to improve the query perti-
nence, by combining search token and inverted index
technique, Zeng et al. [5] proposed a privacy-preserving
generic LBS query scheme. However, the user side still faces
the pressure of decrypting a matrix of n-dimensional vectors
to get the desired results. Although the above studies can
achieve the preservation of data privacy and query privacy in
the outsourced cloud scenario, the storage service and the
query service in these proposed schemes rely on a single
cloud provider (i.e., using the single cloud structure), which
may lead to the risk of leaking sensitive information con-
tained in outsourced data if the single cloud is controlled or
the data stored in this cloud is stolen by the profit-driven
insider. Besides, most of the above schemes are only the
range query supported and cannot support the type query
based on users’ search interests, which leads to an expensive
computation cost both on the cloud side and the user side.

+erefore, in this work, we use a dual cloud structure to
provide a stronger privacy guaranty and design the scheme
PPQS that supports both the type query and the range query
to improve the data retrieval efficiency of the cloud side.

2.1. System Overview. In this section, we first describe the
system model and then give the security requirements and
design goal.

2.2. System Model. +e system consists of four entities:
Location-Based Service Provider (LBSP), Type Retrieval
Cloud (TRC), Location Retrieval Cloud (LRC), and LBS
User (U), as shown in Figure 2.

2.2.1. Location-Based Service Provider (LBSP). +e LBSP is
the owner of LBS data and is responsible for the LBS user
registration. Due to the advantages of storage and compu-
tation on the cloud side, the LBSP outsources its storage
service and LBS query service to the cloud side. Nonetheless,
considering the value of these LBS data, the LBSP will
perform some encryption operations to prevent the
knowledge of data from being disclosed to the cloud side
before outsourcing the LBS data to the cloud side.

2.2.2. Type Retrieval Cloud (TRC) and Location Retrieval
Cloud (LRC). In our scheme, the cloud side is separated into
two cloud entities: the type retrieval cloud (TRC) and the
location retrieval cloud (LRC). +e type retrieval cloud is
responsible for storing and retrieving the encrypted type
data composed of the encrypted POI type keywords, while
the location retrieval cloud is in charge of storing and re-
trieving the encrypted location data. Note that the two cloud
entities are two different cloud providers (e.g., Azure and
Amazon).

2.2.3. LBS User (U). An LBS user can request an LBS query
service to seek a certain POI type data within a specified
range. Before issuing a query, an LBS user must be a reg-
istered user, i.e., the authenticity and legitimacy of the user
should have been checked. Since the secure authentication
mechanism of LBS users in the outsourced cloud has been
proposed in [17], we assume that all the users are authen-
ticated users in our scheme. However, to guarantee the LBS
user’s query privacy, the user will perform some encryption
operations on the query content before sending the query
request to the cloud side.

2.3. Security Requirements. In our scheme, the LBSP and
LBS users are assumed to be honest. Specifically, the LBSP
provides the LBS data accurately and LBS users perform
encryption operations during the process of LBS query
honestly. However, the cloud side is assumed to be honest
but curious as in previous works [2, 4, 5], i.e., the type
retrieval cloud and the location retrieval cloud are assumed
to be honest but curious in this work. Herein, honest means
each cloud entity performs protocols honestly without
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tampering or retaining part of data on purpose. Curious
means each cloud entity is interested in the data it owns or
handles, and wants to know the knowledge contained in
these data. However, the type retrieval cloud and the location
retrieval cloud are assumed to be two noncolluding entities
in our scheme. Besides, identity privacy, the collusion attack
on privacy (i.e., any two parties collude to disclose the third
party’s privacy), and how to prevent the above two cloud
entities from collecting information from the real world to
analyze the encrypted LBS data and users’ queries are be-
yond the scope of this paper.

Under the above assumptions, to provide privacy-pre-
serving LBS query in the outsourced cloud, the following
security requirements should be satisfied in our scheme.

2.3.1. Data Privacy. +e outsourced LBS data should be
kept secret from the type retrieval cloud and the location
retrieval cloud, i.e., our scheme should prevent the above
two clouds from obtaining any actual knowledge about
the outsourced data even if these data are stored in their
databases.

2.3.2. Query Privacy. +e knowledge contained in the user’s
query request should be kept secret from the type retrieval
cloud and the location retrieval cloud, i.e., our scheme
should prevent the above two clouds from obtaining any
actual knowledge contained in the user’s query request even
if the above two clouds are responsible for handling the
user’s query and returning the query result to the user.

2.3.3. Resistance to the Insider Attack. In addition to pre-
venting the knowledge contained in outsourced data from
being leaked to the insider, our scheme should also prevent
the outsourced data from being controlled or stolen on a
one-time basis.

2.3.4. Resistance to the Eavesdropping Attack. In addition to
preventing the knowledge contained in the user’s query
request from being leaked to the eavesdropper, our scheme
should also prevent the knowledge contained in the user’s
query request from being acquired on a one-time basis.

2.4. Design Goal. Under the mentioned system model and
security requirements, our design goal is to design an effi-
cient and secure privacy-preserving LBS query scheme in the
outsourced cloud scenario. +e main objectives are as
follows.

2.4.1. Guarantee Privacy Requirements. +e proposed
scheme should meet the defined security requirements.
Since the type retrieval cloud and the location retrieval cloud
are assumed to be honest but curious, the outsourced LBS
data should be kept secret from the cloud providers oth-
erwise the sensitive data of the LBSP could be disclosed.
Similarly, the knowledge contained in the LBS user’s query
request should also be kept secret from the cloud entities
(i.e., the type retrieval cloud and the location retrieval cloud)
even if they provide the query service.

2.4.2. Perform LBS Query Efficiently. +e designed scheme
should achieve high time efficiency. Although the out-
sourced cloud provider can offer a large computing power,
the data retrieval efficiency of the cloud side should be ef-
ficient for guaranteeing a short response time.

2.4.3. Achieve Low Computation Cost. Although the per-
formance of smartphones has been greatly improved, the
limitation of their batteries is still a problem. Moreover, the
energy consumption of the cloud side should also be con-
sidered.+erefore, the proposed scheme should consider the
computation cost for reducing the computation burden on
the user side and cloud side.

3. Building Blocks

In this section, we give the notations and techniques used in
this paper.+e summary of notations is presented in Table 1.

3.1. Paillier Cryptosystem. Paillier cryptosystem is to solve
addition operations upon the encryption field [18]. Due to
additive homomorphism, the operation on encrypted data is
consistent with the corresponding operation on unen-
crypted data. Specifically, the paillier cryptosystem con-
sisting of three algorithms (i.e., key generation, encryption,
and decryption) is shown below.

Key generation: firstly, two independent large prime
numbers p and q are randomly selected. +en, we compute
n � p · q and λ � lcm(p − 1, q − 1), where lcm is the least
common multiple function. Finally, the public key n and
private key (λ, ϕ (n)) can be obtained, where
ϕ(n) � λ− 1modn.

Encryption: assume m is a plaintext to be encrypted.
Firstly, a random number r ∈ Z∗n2 is selected. +en, the
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encrypted result E(m; r) can be computed by the following
equation:

E(m; r)(n + 1)
m

· r
nmod n

2
. (1)

Decryption: to get the plaintext m, the encrypted result
E(m; r) can be recovered with the private key (λ, ϕ (n)) by
the following equation:

m �
E(m; r)

λmod n
2

􏼐 􏼑 − 1
n

⎛⎝ ⎞⎠ · ϕ(n)mod n. (2)

+e property of addition homomorphic in the paillier
cryptosystem can be proved by the following equation:

E m1; r1( 􏼁⊕E m2; r2( 􏼁 � (n + 1)
m1r

n
1 · (n + 1)

m2r
n
2

� (n + 1)
m1+m2 r1 · r2( 􏼁

n

� E m1 + m2; r1 · r2( 􏼁.

(3)

3.2. Distance Comparison Algorithm. To guarantee the pri-
vacy of the LBS user’s location and query radius, the distance
comparison algorithm is proposed based on ciphertext
comparison schemes [19–21], as shown in Algorithm 1.
Herein, the user’s query radius is denoted by qr, and di

represents the Euclidean distance between the user’s coor-
dinates and the coordinates of a POI, where qr and di are
both integers. +e key generation of the paillier crypto-
system is represented by Gen, the encryption operation with
public key PKT is represented by EPKT

, and the decryption
operation with private key SKT is represented by DSKT

. R is
the space of random number r. S is the polynomial prob-
ability algorithm, and S(1k,PK) ⊂ Z, where k is the security
parameter.

4. Proposed PPQS

In this section, we give the formal descriptions of the
proposed scheme, which consists of the following four

phases: data preparation phase, query request phase, query
retrieval phase, and result filtration phase.

4.1. Data Preparation. In general, the information of data
items stored in the LBSP includes identifiers, POI type
keywords, coordinates, descriptions, etc. Each data item D is
plaintext in the format of 〈ID, W, (X, Y),DS〉, as shown in
Table 2. Herein, the identifier and POI type keyword of each
data item are converted to bit strings, i.e., ID ∈ 0, 1{ }λ and
W⊆ 0, 1{ }∗, where λ is the security parameter of a pseudo-
random function (PRF) F and a pseudo-random permu-
tation (PRP) P.

4.1.1. Secret Key Generation. As mentioned in the system
model, the LBSP outsources its encrypted LBS data to the
cloud side for providing LBS users with the LBS query
service.+e secret key generation is the preparatory work for
the outsourced storage service and query service, which
mainly contains the following steps.+e LBSP first chooses a
secret key KH for a secure hash function H, where
H: 0, 1{ }∗ ⟶ Z∗n . +en, the LBSP selects a key KS for a PRF
F1, a key KP for a PRP P, and a key KT for another PRF F2.
Subsequently, the LBSP selects a random number KE for a
symmetric encryption algorithm Enc (i.e., AES), where
KE ∈ Z∗n . Finally, the LBSP assigns secret keys KH, KS, KT,
and KE to each registered user. Besides, the TRC runs the
paillier cryptosystem to generate the key pair (PKT, SKT)

and then opens its public key PKT to other entities, and the
LBS user runs RSA to get the key pair (PKU, SKU).

4.1.2. Encrypted Database Generation. +e LBSP runs Al-
gorithm 2 to generate two encrypted databases. Database
TSet is generated by the searchable symmetric encryption
(SSE) [22, 23] and contains the association between the
encrypted POI-type keyword (i.e., search token stag) and the
corresponding set of encrypted RID (i.e., e). Database ETB
contains the relation between the encrypted ID (i.e., RID)
and the corresponding encrypted coordinates (i.e., (x′, y′))
and encrypted description (i.e., E). In ETB, RID is generated
by the pseudo-random permutation P with its key KP,
(x′, y′) is generated by the secure hash function H with its
secret key KH, and E is generated by the symmetric en-
cryption algorithm Enc with its secret key KE, as shown in
Table 3. Suppose that the number of data items corre-
sponding to the keyword w ∈W is denoted as |nw|. +en, it
needs c0 ∗ |nw|max times to generate the encrypted data items,
where c0 represents the number of POI-type keywords and
|nw|max is the max number of data items for all the POI-type
keywords. +erefore, the time complexity of Algorithm 2 is
O(c0|nw|max).

4.1.3. Query Request. +e user U generates an original query
request Q � ((x, y), qr, w), where (x, y) is the user’s current
position coordinates, qr is the user’s query radius, and w is
the POI-query-type keyword.

As illustrated in the system model, the user needs to
perform some encryption operations before sending the

Table 1: Summary of notations.

Notation Description
(x, y) A location coordinate
d(i,j) +e distance from i to j

D A data item
ID +e identifier of a data item
U A user
W Keywords related to POI types
DS Description of a data item
F A pseudo-random function, i.e., PRF
P A pseudo-random permutation, i.e., PRP
Enc A symmetric encryption algorithm, AES
(PKT, SKT) Key pair generated by the paillier cryptosystem
(PKU, SKU) A user’s key pair generated by RSA algorithm
Q An original query
Enc A symmetric encryption algorithm, i.e., AES
H A hash function
qr A query radius
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Input: qr, di.
Output: qr >di as TRUE or FALSE.
(1) +e type retrieval cloud generates key pair (PKT, SKT)⟵Gen(1k) by running the paillier cryptosystem and selects a random

value r⟵R. +e public key PKT is open to other entities;
(2) +e user encrypts query radius qr with PKT and then generates PKT(qr)⟵EPKT

(qrg; r);
(3) +e location retrieval cloud generates random r′⟵R and s⟵ S, and then computes Ci

′⟵ (PKT(qr) · EPKT
(− (di + j)g; 0))s ·

EPKT
(0; r′) � (PKT(qrg; r) · EPKT

(− (di + j)g); 0)s · EPKT
(0; r′) � PKT(s(qr − (di + j))g; rs°r′) for j � 1, 2, . . . n − 1, the location

retrieval cloud computes Ci
′ and sends Ci

′ to the type retrieval cloud;
(4) If and only if DSKT

(Ci
′) � 0 is found, the type retrieval cloud outputs qr >di as TRUE. Otherwise outputs FALSE.

ALGORITHM 1: Distance comparison algorithm.

Table 2: Database form of the LBSP.

ID W (X, Y) DS
〈1, w1, (x1, y1) DS
〈2, w2, (x2, y2) DS1〉
〈3, w3, (x3, y3) DS2〉
〈4, w4, (x4, y4) DS3〉

· · ·

〈IDi, wi, (xi, yi) DS4〉

Table 3: Database form of ETB.

RID (x′, y′) E

〈RID1, (x1 + H(KH), y1 + H(KH)) E1〉
〈RID2, (x1 + H(KH), y2 + H(KH)) E2〉
〈RID3, (x1 + H(KH), y3 + H(KH)) E3〉
〈RID4, (x1 + H(KH), y4 + H(KH)) E3〉

· · ·

〈RIDi, (x1 + H(KH), yi + H(KH)) Ei〉

Input: LBSP, KS, KP, KT, KE, KH,
Output: TSet ETB,
(1) Initialize T to an empty array, ETB to an empty database, and t to an empty list;
(2) for each w ∈W do
(3) c⟵ 0
(4) s⟵F1(KS, w), and stag⟵F2(KT, w);
(5) for each ID ∈ DB(w) do
(6) RID⟵P(KP, ID);
(7) (x′, y′)⟵ (x + H(KH), y + H(KH));
(8) E⟵Enc(KE,DS);
(9) ETB⟵ (RID, (x, y), E);
(10) l⟵F2(stag, c)

(11) e⟵Enc(s,RID);
(12) t⟵ e;
(13) end for
(14) T⟵ (l, t);
(15) TSet⟵T;
(16) c0⟵ c + 1;
(17) end for

ALGORITHM 2: Encrypted database generation.
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original query for guaranteeing query privacy. More spe-
cifically, the user uses the POI-type keywords w and KT to
generate search token stag, generates secret key s with w and
KS, uses KH and the hash function H to encrypt the current
coordinates, and encrypts the query radius qr with public key
PKT. Finally, the user sends the query request EQ1 to the
type retrieval cloud and sends query request EQ2 to the
location retrieval cloud. +e pseudocode of query request is
shown as Algorithm 3.

4.2. Query Retrieval. +e query retrieval consists of two
processes: the type retrieval and the range retrieval. In brief,
the type retrieval is to find the matched data that correspond
to the user’s POI query type and the range retrieval is to
perform distance calculation on the ciphertext domain for
the matched data.

4.2.1. Type Retrieval. After receiving the user’s query request
EQ1, the TRC can find out a list t from TSet according to the
user’s stag. In list t, the POI type of each e (i.e., encrypted
RID) is consistent with the user’s POI query type keyword w.
Afterward, the TRC inserts all the e contained in list t into an
empty list ta and then sends ta to the LRC. +e pseudocode
of type retrieval process is shown as Algorithm 4. According
to the user’s search token stag, the TRC requires at most
O(c0) times to find out list t. +erefore, the time complexity
of Algorithm 4 is O(c0) at most.

4.2.2. Range Retrieval. After receiving the user’s query re-
quest EQ2, the LRC first gets the set of RID by decrypting e in
list ta with s.+en, according to the set of RID, the LRC finds
out the corresponding encrypted coordinates (x′, y′) and
encrypted description E in ETB. For each RIDi, the LRC
performs the following steps: calculates the Euclidean dis-
tance between (xi

′, yi
′) and (x″, y″) (i.e.,

di � dis((xi
′, yi
′), (x″, y″))), runs the distance comparison

algorithm and calculates Ci
′, generates ei

′ by encrypting Ei

with the user’s public key PKU, and inserts Ci
′ and ei
′ to an

empty list tb. +e pseudocode of range retrieval process is
shown as Algorithm 5. Since the number of RID is consistent
with the number of data that correspond to the user’s POI

query type keyword w, the times of decrypting e is |nw|.
Besides, since the LRC needs to run the distance comparison
algorithm once for each RID, the corresponding times of
running the distance comparison algorithm is |nw|. +ere-
fore, the time complexity of Algorithm 5O(|nw|max2) is at
most.

4.3. Result Filtration. Based on the list tb, the TRC figures
out the data that locate in the user’s query radius by
decrypting Ci

′ with the private key SKT. If DSKT
(Ci
′) � 0, the

TRC inserts the corresponding ei
′ into list and sends as the

query result to the user.+e pseudocode of result filtration is
shown in Algorithm 6. Since the TRC needs to decrypt all C′
in list tb to get list and the number of C′ is consistent with the
number of RID, the times of decrypting C′ is |nw|. +erefore,
the time complexity of Algorithm 6 is O(|nw|max) at most.

After getting res, the user can obtain the desired data by
decrypting res with the private key SKU and KE.

5. Discussion

In this section, the security analysis is first presented to check
whether the defined security requirements can be satisfied in
our scheme. Subsequently, in terms of the number of data
that need to be processed in different phases, the compu-
tation cost of the previous schemes and our scheme are
analyzed and compared.

5.1. Security Analysis. Security analysis is based on the
proposed security requirements: data privacy, query privacy,
resistance to the insider attack, and resistance to the
eavesdropping attack. Before analyzing the security re-
quirements, the following lemmas are introduced to show
the security of pseudo-random permutation PRP, pseudo-
random permutation PRF, symmetric encryption algorithm
AES, and the paillier cryptosystem.

Lemma 1 (see [5]). For an adversary A who uses probabi-
listic polynomial time (PPT) algorithm, if its advantages
a dvPRFF,A (λ) and a dvPRPF,A (λ) are negligible, then the PRF and
PRP are secure, where

advPRFF,A (λ) � Pr A
F(K,·) 1λ􏼐 􏼑 � 1􏽨 􏽩 − Pr A

f(·) 1K
􏼐 􏼑 � 1􏽨 􏽩and

advPRPF,A (λ) � Pr A
F(K,·) 1λ􏼐 􏼑 � 1􏽨 􏽩 − Pr A

f(·) 1K
􏼐 􏼑 � 1􏽨 􏽩.

(4)
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Lemma 2 (see [6]). For an adversary A who uses probabi-
listic polynomial time (PPT) algorithm, if its advantages
advΣ,A(λ) is negligible, then the symmetric encryption scheme
Σ � (Enc,Dec) is secure, where

advΣ,A(λ) � Pr A
(K,0,·,·) 1λ􏼐 􏼑 � 1􏽨 􏽩 − Pr A

(K,1,·,·) 1k
􏼐 􏼑 � 1􏽨 􏽩. (5)

Lemma 3 (see [24]). For an adversary A who uses proba-
bilistic polynomial time (PPT) algorithm, if its advantages
advDRC,A(ε) is negligible, then the paillier cryptosystem is a
(N, 2, e)-decisional composite residuosity (DRC) problem and
secure, where

Pr A N, 2, e, x0( 􏼁 � 1􏼂 􏼃 − Pr A N, 2, e, x1( 􏼁 � 1􏼂 􏼃≤ advDRC,A(ε).

(6)

5.1.1. Data Privacy

Theorem 1. Based on the security of PRP, PRF, symmetric
encryption algorithm AES, hash function H, and the paillier
cryptosystem, our scheme can achieve data privacy.

Proof. In our scheme, two encrypted databases (i.e. TSet,
ETB) are outsourced to the TRC and the LRC, respectively.

Input: KS, KH, KT, PKT, SKU,
Output: EQ1, EQ2,
(1) U initializes an original query Q � ((x, y), qr, w);
(2) stag⟵F2(KT, w), s⟵F1(KS, w);
(3) (x″, y″)⟵ (x + H(KH), y + H(KH));
(4) PKT(qr)⟵EPKT

(qrg; r);
(5) U sends EQ1 � stag to the TRC;
(6) U sends EQ2 � 〈s‖(x″, y″)‖‖PKT(qr)‖PKU〉 to the LRC;

ALGORITHM 3: Query request.

Input: EQ1, TSet,
Output: ta

(1) Initialize ta to an empty list;
(2) c⟵ 0;
(3) while c< c0 do
(4) l⟵F2(stag, c);
(5) if l ∈ TSet then
(6) t⟵TSet[l];
(7) ta⟵ t;
(8) else
(9) c⟵ c + 1;
(10) end if
(11) end while
(12) the TRC sends ta to the LRC;

ALGORITHM 4: Type retrieval.

Input: ETB, EQ2
Output: tb

(1) Initialize to an empty list;
(2) for each e in tado
(3) RID⟵Dec(s, e);
(4) for each RIDido
(5) Calculates di � dis((xi

′, yi
′), (x″, y″));

(6) Performs the distance comparison algorithm and calculatesCi
′;

(7) ei
′⟵PKU(Ei);

(8) end for
(9) tb⟵ (Ci

′, ei
′);

(10) end for
(11) the LRC sends tb to the TRC;

ALGORITHM 5: Range retrieval.
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In TSet, the relation between the POI-type keyword w and
encrypted index l is built by search token stag, where l and
are both generated by the pseudo-random function F2.
Moreover, the ciphertext e is generated by the symmetric
encryption algorithm AES with its secret key and an input
RID, where s is the outcome produced by the pseudo-
random function F1 and RID is an encrypted outcome
generated by the pseudo-random permutation P. +erefore,
if the PRP, PRF, and symmetric encryption are secure, the
TRC cannot obtain knowledge from TSet even if the TRC
owns database TSet. In ETB, the encrypted ID (i.e. RID),
encrypted coordinates (i.e. (x′, y′)), and the encrypted
description (i.e. E) are generated by the pseudo-random
permutation P, the hash function H, and the symmetric
encryption algorithm AES, respectively. +us, as long as the
PRP, hash function, and symmetric encryption are secure,
the LRC cannot get any actual knowledge from ETB even if
the LRC owns database ETB.

Besides, the retrieved data e contained in list ta sent from
the TRC to the LRC is generated by the symmetric en-
cryption AES. Similarly, the retrieved data C′ contained in
list tb sent from the LRC to the TRC is produced by the
paillier cryptosystem.+erefore, if the symmetric encryption
and the paillier cryptosystem are secure, the knowledge
contained in transferred data between the two clouds (i.e.,
the TRC and the LRC) can also be well protected. +us,
under the assumption that the two clouds are two non-
colluding entities, no single cloud can obtain the knowledge
of the data stored in itself unless the other cloud provides
additional information (i.e., the two clouds collude with each
other and share the secret key s and SKT).

+erefore, our scheme can provide data privacy. □

5.1.2. Query Privacy

Theorem 2. Based on the security of PRP, PRF, symmetric
encryption algorithm, the hash function, and the paillier cryp-
tosystem, our scheme can guarantee the user’s query privacy.

Proof. In the user’s query request EQ1, the user’s POI query
type keyword is represented by search token stag, where is
generated by the pseudo-random function F2. During the
process of type retrieval, the stag is converted to the encrypted
index l for finding the ciphertext e in list ta, where l is
generated by the pseudo-random function F2 with stag, e is

generated by the symmetric encryption algorithm AES with
its secret key s and an input RID, s is the outcome produced
by the pseudo-random function RID, and is an encrypted
outcome generated by the pseudo-random permutation P.
+erefore, although the process of type retrieval is performed
on the TRC, the TRC cannot learn any useful knowledge
about the user’s query type due to the security of PRP, PRF,
and symmetric encryption. In the user’s query request EQ2,
the user’s coordinates and query radius are encrypted by the
hash function H and the paillier cryptosystem, respectively.
During the process of range retrieval, the distance comparison
between the user’s query radius and the Euclidean distance
that indicates the user’s coordinates and the coordinates of a
POI is performed on the ciphertext domain. +erefore, if the
hash function and the paillier cryptosystem are secure, the
LRC cannot obtain any actual knowledge about the user’s
accurate location and query radius.

+erefore, our scheme can provide query privacy. □

5.1.3. Resistance to the Insider Attack

Theorem 3. Based on @eorem 1 and the proposed dual
cloud structure, our scheme has the ability to resist the insider
attack.

Proof. As mentioned in +eorem 1, data privacy can be
achieved. +us, our scheme can prevent the knowledge
stored in outsourced data from being leaked to the cloud
service provider including its insider. However, under the
single cloud structure, the outsourced data stored in the
cloud side may be controlled or stolen by the insider on a
one-time basis since there is only one cloud service provider
(i.e., only one cloud entity). Nevertheless, the cloud side in
our scheme is divided into two noncolluding cloud entities
(i.e., the TRC and the LRC) and the sensitive information
(i.e., POI-type information and POI location information) in
the outsourced data is stored in the above two cloud pro-
viders separately. +erefore, unless the insider occupies the
two cloud entities simultaneously, our scheme can prevent
the insider from controlling or stealing all the outsourced
data on a one-time basis.

+us, compared to the schemes under the single cloud
structure, our scheme provides a stronger ability of privacy
preservation for sensitive information contained in the
outsourced data. □

Input: tb, SKT

Output: res
(1) Initialize to an empty list;
(2) for each Ci

′ in tb do
(3) if DSKT

(Ci
′) � 0 then

(4) res⟵ ei
′;

(5) end if
(6) end for
(7) the TRC sends res to the user U;

ALGORITHM 6: Result filtration.
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5.1.4. Resistance to the Eavesdropping Attack

Theorem 4. Based on @eorem 2 and the proposed dual
cloud structure, our scheme has the ability to resist the
eavesdropping attack.

Proof. As mentioned in+eorem 2, the user’s query privacy
can be achieved. +us, our scheme can prevent the
knowledge contained in the query request from being leaked
to the eavesdropper. However, under the single cloud
structure, all the user’s query private data may be obtained
by the eavesdropper on a one-time basis since these data are
contained in one query request. Nevertheless, the user’s
query private data (i.e., POI-type keyword, location, and
query radius) in our scheme are sent to the TRC and the LRC
by two separate query requests (i.e. EQ1, and EQ2).
+erefore, unless the eavesdropper captures the two query
requests simultaneously, our scheme can prevent the
eavesdropper from obtaining all the user’s query private data
on a one-time basis.

+erefore, compared to the schemes under the single
cloud structure, our scheme provides a stronger ability of
privacy preservation for sensitive information contained in
the user’s query request. □

5.2. Cost Analysis. Herein, we compare our scheme with
previous schemes by analyzing the linear relationship be-
tween the computation cost and the number of data that
need to be processed in different phases. +e notations in
this section are described in Table 4 and the comparison
results of computation cost with the previous schemes
[2, 4, 5] are concluded and shown in Table 5.

+e encrypted database is generated by the LBSP, so the
phase of the encrypted database generation reflects the
computation cost of the LBSP. In the phase of encrypted
database generation, the computation cost of each scheme in
Table 5 is linear to N.

+e query retrieval is performed by the cloud side, so the
phase of the query retrieval reflects the computation cost of
the cloud side. In the phase of query retrieval, the com-
putation cost of scheme EPQ and scheme are linear to N.
However, the computation cost of scheme P3GQ is linear to
2 η and the computation cost of our scheme is linear to η.
+e reason is that the scheme EPQ and scheme Polaris are
both only the range query supported, so all the data items
need to be compared to decide whether these data items are
within the user’s query range. +erefore, the computation
cost of scheme EPQ and scheme Polaris are linear to N.
However, the scheme P3GQ and our scheme P3GQ support
both the type query and the range query. +erefore, in
scheme P3GQ and our scheme, the first step of the query
retrieval phase is to find the data items that match the user’s
POI query type keyword, and then only the matched data
items need to be compared to decide whether they are within
the user’s query range.η is less than N since η is the number
of data items for one kind of POI type. +erefore, in the
phase of query retrieval, the computation cost of our scheme
is less than other schemes.

+e result filtration is to prepare an encrypted dataset
(i.e., the query result) in which each encrypted data satisfy
the user’s query conditions, so the number of data in the
encrypted dataset reflects the computation cost of the user
side. In the phase of result filtration, the computation cost of
scheme EPQ and scheme are linear to ζ, where ζ also
represents the number of data located in the user’s query
range after performing the range retrieval. However, the
computation cost of scheme P3GQ and our scheme is linear
to ξ, where ξ also denotes the number of data that not only
correspond to the user’s query type but locate in the user’s
query range after performing the type retrieval ξ and the
range retrieval. is less than ζ since there is not only one kind
of POI type data in the user’s query range. +erefore, in the
phase of result filtration, the computation cost of our scheme
is the same as that of scheme P3GQ, but less than that of
scheme EPQ and scheme Polaris.

6. Evaluation

In this section, we first describe the simulation setup and
then give the simulation results and corresponding analysis.

6.1. Setup. Implementations: our scheme is implemented
with Python programming language and conducted on a
Windows machine with an Intel Core-i7 3.6GHz, 16GB
RAM, and Microsoft Windows 7 OS. Besides, we call the
encrypted sub-package in the Pycryto encryption library to
implement the encryption algorithms of our scheme and
adopt a 512 -bit paillier cryptosystem to encrypt the coor-
dinates of each data item. Moreover, the LBS resources are
collected from an open map of Beijing by using the public
API interface of the Amap service [25] and the database of
the LBSP is built in the form of Table 2. Based on the da-
tabase of LBSP, we construct a dataset DS with 10000 data
items and the coordinates of these data items are randomly
distributed in 10 km× 10 km square area LA. Besides, the
encrypted database in the cloud side is implemented by
constructing the type index table and the location data table
in MYSQL, so the delay time of data transmission between
clouds is assumed to be 0. To evaluate the time cost, retrieval
efficiency, and computation burden, the simulations are
performed in the following two scenarios.

Scenario 1: based on the dataset DS, three original
datasets (i.e.ODS1,ODS2, ODS3, and) containing two
assigned POI-type data (i.e., the catering service denoted
Type1 as and the accommodation service denoted Type2 as)
are formed. Specifically, the number of Type1 and Type2 in
original dataset ODS1 are 1000 and 500, respectively, the
number of Type1 and Type2 in original dataset ODS2 are
2000 and 1000, respectively, the number of Type1 and Type2
in original dataset ODS3 are 3000 and 1500, respectively.
Moreover, the total number of data items in each original
dataset is 10000. +is scenario is used to evaluate the time
cost of generating outsourced datasets.

Scenario 2: to simulate the data retrieval service, two POI
query types (i.e. Type1, and Type2), 5 randomly selected
locations in LA, and 5 specified query radii (i.e., ranging
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from 0.5 km to 2.5 km with step length 0.5 km) are assigned
into the LBS query request. In addition, the grid structure
with the grid cell size of 1 km × is constructed for LA, and the
method of related area list [2] is used to define the LBS user’s
query area. +is scenario is used to evaluate the time cost of
the LBS query request generation, the data retrieval effi-
ciency of the outsourced cloud, and the computation burden
on the user side and cloud side.

6.2. Simulation Results

6.2.1. Time Cost of Outsourced Datasets Generation. For
evaluating the time cost of generating outsourced data-
sets, each of the three original datasets (i.e., ODS1, ODS2,
and ODS3) is executed 10 times to generate the corre-
sponding encrypted data items. Figure 3 shows the av-
erage time cost of generating outsourced datasets (i.e.,
DS1, DS2, and DS3).

As can be seen from Figure 3, the time cost of generating
outsourced datasets is increasing with the number of the
assigned POI-type data in original datasets. To generate
encrypted data items, the nonassigned POI-type data only
need to hash their coordinates, while the assigned POI-type
data not only need to hash their coordinates but also need to
construct searchable encrypted indexes. +erefore, the in-
creasing number of assigned POI-type data increases the
time cost of generating outsourced datasets.

6.2.2. Time Cost of the LBS Query Generation. +e efficiency
of generating an LBS query request is important to the user
side. +erefore, to evaluate the time cost of the LBS query
request generation, 5 random locations in square area are
selected as the LBS user’s initial coordinates based on the
setting of scenario 2, and each location is performed 10 times
for generating the LBS query request. +e average time cost
of generating the LBS query request at each location is
calculated and Figure 4 shows the average time cost of

Table 4: Notations.

Notation Description
N +e total number of LBS data items
H One hash function operation
SE One symmetric encryption operation
SD One symmetric decryption operation
EX One exponentiation operation in group G

P One pairing operation in group G

AE One asymmetric encryption operation
AD One asymmetric decryption operation
PA One additive homomorphism operation in the paillier cryptosystem
F′ One operation of pseudo-random permutation
F″ One operation of pseudo-random function
M1 One multiplication operation in group G

M2 One multiplication operation between a n × n matrix and a ndimensional vector
M3 One inner-product operation of twon-dimensional vectors
t +e number of edges of a polygon
η +e number of data after type retrieval
ς +e number of data after range retrieval
ξ +e number of data after type retrieval and range retrieval

Table 5: Computation cost comparison with previous schemes.

Scheme Data preparation Query process
Encrypted database generation Query request Query retrieval Result filtration

EPO [2] N(2(H + 1M1 + 2EX) + S) 2H + 4EX + 4AE N(2P + 3M1 + 4) ξ(SE)

Polaris [4] N(3H + SE + 2EX) t(H + M1 EX + : N(4t(P + M1)) ξ(AE)

P3GQ [5] N(F′ + 3F″ + EX + 2M2) 2F″ + EX + 2M2 2η(SD + EX + M2) ξ(SE)

PPQS (our scheme) N(F′ + 2F″ + 2SE + 2H) 2(F″ + H) + PA F″ + η(SD + PA ξ(AE)
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Figure 3: Time cost of outsourced datasets generation.
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generating the encrypted LBS query request at different
locations.

As can be seen from Figure 4, when generating the LBS
query request at different locations, the time cost of gen-
erating the encrypted LBS query request is stable, and it has
little relationship with the locations. +e reason is that no
matter which location is selected as the user’s current co-
ordinates to generate the encrypted LBS query request, the
way of encryption on the coordinates is the same (i.e., using
the hash function to encrypt the user’s current coordinates).
In addition, the time cost of the LBS query request gener-
ation has little to do with the POI types contained in the LBS
query request. +e reason is that the user’s POI query types
are represented by the corresponding POI type keywords
that are finally converted to search tokens by the pseudo-
random function.

6.2.3. Retrieval Efficiency of the Outsourced Cloud. +e data
retrieval time is related to the data retrieval efficiency of the
outsourced cloud. +erefore, to evaluate the data retrieval
efficiency of the outsourced cloud, the data retrieval service
is performed 10 times on each outsourced dataset (i.e. DS1,
DS2, and DS3) based on the setting of scenario 2. Figure 5
shows the average time cost of data retrieval service with
different POI query types and query radii under different
outsourced datasets.

Based on Figure 5, we can conclude how the time cost of
data retrieval service is affected by the user’s query radius,
the data density of POI query type, the dataset density of POI
type, and the supported query mode.

To research the relation between the time cost and the
user’s query radius, the user’s query radius is selected from
0.5 km to 2.5 km. When the POI query type is fixed
(e.g.,Type1), the time cost of data retrieval service is in-
creasing with the query radius no matter on which out-
sourced dataset. +e reason is that the increase of the user’s
query radius leads to the enlargement of the user’s query
area, which leads to the increase of the data located in the
user’s query area. Accordingly, the cloud side needs to run
more distance comparison operations, which finally leads to
the increase of the time cost of data retrieval service.

Since the data amount of is twice that of type2 in each
outsourced dataset, the data density of type1 can be seen as a
high-density POI type if the data density of is type2 assumed
to be a low-density POI type. From Figure 5, it can be seen
that the time cost of data retrieval service for the high-
density POI type (i.e. type1) is higher than that for the low-
density POI type (i.e.Type2) no matter on which outsourced
dataset. +e reason is that the user’s query radius decides the
query area, and when the query area is fixed, the amount of
data of the high-density POI type is greater than that of the
low-density POI type in the query area. Accordingly, a larger
amount of data requires more distance comparison oper-
ations to be run, which leads to the increase of time cost.
Besides, from Figure 5, the time cost on these two POI types
in each outsourced dataset has similar behavior. +e reason
is that the time cost on the cloud side is basically spent on the
distance comparison of the assigned POI-type data located

in the query area during the data retrieval service. When the
data amount of these two POI types in each outsourced
dataset is proportional (i.e., the data amount of type1 is twice
that of type2 in each outsourced dataset), the corresponding
data amount of these two POI types in the query area is
proportional. Accordingly, the time cost of data retrieval
service on these two POI types (i.e., Type1andType2) is
proportional in each outsourced dataset, which leads to
similar behavior of the time cost on these two POI types in
each outsourced dataset.

Recall that the data amount of any POI type (no matter
type1 or type2) in DS3 is more than that in DS1 and DS2.
+us, in terms of the dataset density of POI type, DS3 can be
seen as a high-density outsourced dataset if DS1 or DS2 is
assumed to be a low-density outsourced dataset. From
Figure 5, for any POI type (e.g., Type1), it can be seen that
the time cost of data retrieval service on a high-density
outsourced dataset (e.g., DS3) is greater than that on a low-
density outsourced dataset (e.g. DS1,). +e reason is that
when the query area is fixed, the amount of POI-type data
contained in a high-density outsourced dataset is more than
that contained in a low-density outsourced dataset, i.e., the
running times of distance comparison operation on a high-
density outsourced dataset are more than that on a low-
density outsourced dataset in the query area, which leads to a
greater time cost of data retrieval service on a high-density
outsourced dataset.

Figure 5 reflects the results about the time cost of data
retrieval service with the assigned POI types (i.e., the results
are obtained based on the query mode that supports both the
type query and the range query), which means the cloud side
only needs to run distance comparison operation for the
matched POI-type data in the query area. However, if the
type query is not supported, the cloud side needs to run the
distance comparison for all the data rather than the matched
POI-type data in the query area, which will undoubtedly lead
to a bigger computation burden and a greater time cost of
data retrieval service. +erefore, compared to the scheme
that only supports the range query, the scheme (i.e. PPQS)
that supports both the type query and the range query can
effectively reduce the computation burden on the cloud side
and improve the data retrieval efficiency of the cloud side.

6.2.4. Computation Burden on the User Side. +e amount of
encrypted data in the query result returned to the user from
the cloud side is related to the computation burden on the
user side. Although different schemes use diverse decryption
algorithms to enable the user to get the desired result by
decrypting the encrypted data in the query result, if the user
side is assumed to adopt the same decryption algorithm, the
number of encrypted data contained in the query result
returned to the user can be used as the basis for measuring
the user’s computation burden. +erefore, the computation
burden on the user side is evaluated according to the number
of data in the query result. Besides, since our scheme pro-
vides the mode that supports both the type query and the
range query (i.e. T&R), the data retrieval service is first
executed 10 times on each outsourced dataset (i.e., DS1, DS2,
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and DS3) based on the setting of scenario 2. To compare with
the mode that only supports the range query (i.e. R), under
the condition of removing the type index table, the data
retrieval service is then executed 10 times on each out-
sourced dataset. Finally, the average number of data con-
tained in the query result returned to the user side is
calculated and Figure 6 shows the average number of data
contained in the query result with different POI query types
and query radii under different outsourced datasets.

Based on Figure 6, we can conclude how the number of
data contained in the query result is affected by the user’s
query radius, the data density of POI query type, the dataset
density of POI type, and the supported query mode.

When the POI query type is fixed (e.g., Type1), the
number of data contained in the query result is increasing

with the user’s query radius no matter on which outsourced
dataset. +e reason is that the increase of the query radius
leads to the enlargement of the user’s query area, which leads
to the increase of the data located in the user’s query area.
Accordingly, the cloud side needs to insert more data into
the query result.

Recall that the data density of type1 can be seen as a high-
density POI type if the data density of type2 is assumed to be
a low-density POI type. In the mode that supports both the
type query and the range query (i.e.,T&R), it can be seen that
the number of data contained in the query result for the
high-density POI type (i.e., Type1) is greater than that for the
low-density POI type (i.e., Type2) no matter on which
outsourced dataset. +e reason is that when the query area is
fixed, the amount of the high-density POI-type data is
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Figure 5: Time cost of data retrieval service on different outsourced datasets. (a) Time cost of data retrieval service on outsourced dataset
DS1. (b) Time cost of data retrieval service on outsourced dataset DS2. (c) Time cost of data retrieval service on outsourced dataset DS3.
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greater than that of the low-density POI type data in the
query area. Accordingly, the cloud side needs to insert more
data into the query result.

As mentioned above, DS3 can be seen as a high-density
outsourced dataset if DS1 or DS2 is assumed to be a low-
density outsourced dataset. In the mode that supports both
the type query and the range query (i.e., T&R), for any POI

type (e.g., Type1), it can be seen that the number of data
contained in the query result on a high-density outsourced
dataset (e.g., DS3) is greater than that on a low-density
outsourced dataset (e.g., DS1). +e reason is that a high-
density outsourced dataset has a greater data density com-
pared to a low-density dataset in the user query area, which
leads to the increase of the data contained in the query result.
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Figure 6: Number of data contained in the query result on different outsourced datasets. (a) Number of data contained in the query result on
outsourced dataset. DS1 (b) Number of data contained in the query result on outsourced dataset. DS2(c) Number of data contained in the
query result on outsourced dataset DS3.
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In the mode that only supports the range query (i.e., R),
since the cloud side cannot find out the encrypted data
according to the user’s POI query type, the data inserted into
the query result are the encrypted data within the user’s
query radius. +erefore, the number of data contained in the
query result has similar behavior in each outsourced dataset
(i.e., the number of data contained in the query result is
almost the same in each outsourced dataset when the user’s
query radius is fixed). However, in the mode that supports
both the type query and the range query (i.e., T&R), the data
inserted into the query result must meet two conditions: (1)
the data are consistent with the user’s POI query type and (2)
the data are located in the user’s query radius. +erefore, no
matter on which outsourced dataset, the number of data
contained in the query result under the mode that supports
both the type query and the range query is less than that
under the mode that only supports the range query.
+erefore, since the number of data contained in the query
result is related to the computation burden on the user side,
the scheme (i.e., PPQS) that supports both the type query
and the range query can effectively reduce the computation
burden on the user side compared to the scheme that only
supports the range query.

7. Conclusion

In this paper, an efficient privacy-preserving LBS query
scheme (i.e., PPQS) in the outsourced cloud scenario is
proposed. Specifically, we propose a dual cloud structure to
enhance the ability of privacy preservation for sensitive
information in the outsourced cloud, i.e., our scheme has the
ability to resist the insider attack and the eavesdropping
attack while preserving data privacy and query privacy.
Moreover, by using the techniques of homomorphic en-
cryption and searchable symmetric encryption, our scheme
supports both the type query and the range query, which can
effectively improve the data retrieval efficiency of the cloud
side and reduce the computation burden on the user side
and the cloud side. Finally, the effectiveness and perfor-
mance of our scheme are validated through the analysis on
security and computation cost and extensive simulations.

Data Availability

In this paper, the LBS data are collected from the public API
interface of Amap service. +e URL is https://lbs.amap.com/
api/webservice/summary.
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