
Research Article
Privacy-Preserving Collaborative Computation for Human
Activity Recognition

Lin Wang,1,2 Chuan Zhao ,1,2,3 Kun Zhao ,4 Bo Zhang ,1,2 Shan Jing,1,2

Zhenxiang Chen,1,2 and Kuiheng Sun1,2

1School of Information Science and Engineering, University of Jinan, Jinan 250022, China
2Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan 250022, China
3Shandong Provincial Key Laboratory of Software Engineering, Jinan, China
4Inspur Electronic Information Industry Co. Ltd., Beijing, China

Correspondence should be addressed to Chuan Zhao; ise_zhaoc@ujn.edu.cn and Kun Zhao; zhaokunbj@inspur.com

Received 17 November 2021; Accepted 28 January 2022; Published 28 February 2022

Academic Editor: Yuling Chen

Copyright © 2022 Lin Wang et al. -is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Human Activity Recognition (HAR) enables computer systems to assist users with their tasks and improve their quality of life in
rehabilitation, daily life tracking, fitness, and cognitive disorder therapy. It is a hot topic in the field of machine learning, and HAR
is gaining more attention among researchers due to its unique societal and economic advantages. -is paper focuses on a
collaborative computation scenario where a group of participants will securely and collaboratively train an accurate HAR model.
-e training process requires collecting a massive number of personal activity features and labels, which raises privacy problems.
We decentralize the training process locally to each client in order to ensure the privacy of training data. Furthermore, we use an
advanced secure aggregation algorithm to ensure that malicious participants cannot extract private information from the updated
parameters even during the aggregation phase. Edge computing nodes have been introduced into our system to address the
problem of data generation devices’ insufficient computing power. We replace the traditional central server with smart contract to
make the systemmore robust and secure. We achieve the verifiability of the packaged nodes using the publicly auditability feature
of blockchain. According to the experimental data, the accuracy of the HAR model trained by our proposed framework reaches
93.24%, which meets the applicability requirements. -e use of secure multiparty computation techniques unavoidably increases
training time, and experimental results show that a round of iterations takes 36.4 seconds to execute, which is still acceptable.

1. Introduction

Human Activity Recognition (HAR) is a machine learning
task to identify human activities through images, videos, or
sensor data generated by smart wearable devices. HAR has a
wide range of applications today, such as monitoring the
health of individuals by recognizing their activities, or it can
be used in public places such as plazas and train stations to
identify unusual acts of terror in order to give an advance
warning [1].

However, when using this type of data, companies or
data owners often face a number of issues:

(1 )Data owners are reluctant to reveal their informa-
tion, whether directly or by computational inference

(2) -emassive amount of data generated by IoTdevices
poses a huge challenge to the storage and processing
capacity of central servers

(3) -e network bandwidth cannot handle such an order
of magnitude of data transfer

(4) -e node performing the computation can be
hijacked or corrupted by adversaries to perform
incorrect computation operations

To address the above-mentioned issues, researchers have
conducted many explorations. In order to protect privacy
and save bandwidth, federated learning is proposed [2].
Federated learning enables us to keep model training pro-
cedure on local devices without transmitting data to central
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server. At present, federated learning has a mature ap-
plication in the industrial field [3]. However, with in-
depth research, it is found that there are still some
problems in federated learning. For example, although
federated learning only transmits model update param-
eters, the updated parameters will still disclose sensitive
information to the third party or the central server [4, 5].
Commonly used methods, including secure multiparty
computation and differential privacy, aim to resist privacy
disclosure in the learning process[4, 6]. However, these
approaches are often accompanied by a loss of model
efficiency or an increase in training time. Blockchain also
has many studies that combine it with federated learning
due to its decentralized nature. Kumar et al. use block-
chain to first validate the data and then use federated
learning to train a deep learning model globally to im-
prove recognition rates against CT images of COVID-19
patients [7]. Qi et al. use a blockchain-based federated
learning framework for predicting traffic flow, the model
will be verified by miners, the noise will be added to the
model to enhance privacy safeguards, and the scheme can
effectively prevent poisoning attacks, but there will be
some sacrifice in model effectiveness [8]. Edge computing
is also commonly used in cutting-edge research in ma-
chine learning, where the use of edge nodes to offload
computational and storage tasks from a central server can
effectively improve training efficiency. Khelifi et al. ex-
plored the applicability of deep learning models (i.e.,
convolutional neural networks, recurrent neural net-
works, and augmented learning) with IoT devices. -e
study sought to assess the future trends of deep learning
plus edge computing in the future. -e study points out
that convolutional neural models can be used in the IoT
domain and that reliable machine learning models can be
trained even with data from complex environments [9].
Secure multiparty computing often plays an important role
in this as well. Sangaiah et al. proposed an approach using
edge computing plus machine learning to protect the
confidentiality of certain location-based services. -e ap-
proach uses Hidden Markov Models by combining decision
trees and k-means algorithms. -e benefits of the mobile
edge service strategy are location confidentiality and low
latency. Both network and computing services are located
near the user as a way to achieve lower latency [10, 11].

In this paper, we adopt the idea of federated learning,
where users train models locally and optimize the model
jointly by uploading parameters instead of uploading data to
a central server [2]. We also use a secure aggregation al-
gorithm to eliminate the possibility of the server inferring
information via gradients [12, 13]. Furthermore, we consider
edge computing and blockchain in our framework. To be
specific, we replace the traditional central server with a
blockchain.-e properties of blockchainmake our proposed
framework possess a series of security features such as
transparency, auditable, and tamper-proof [14]. Edge nodes
are introduced in our scheme to relieve the computational
pressure and bandwidth pressure on the system [15]. -e
specific framework structure and the implementation will be
presented in Section 3.

In general, our contributions can be summarized as
follows:

(1) We consider federated learning and edge computing
scenario to keep private data local instead of being
uploaded to the central server, which helps to protect
users’ privacy. By doing so, we also achieved alle-
viating the load of the central server, making the
computation tasks be processed faster.

(2) We implement an advanced secure aggregation al-
gorithm that aggregates exactly the results we want,
the same as the computed result under plaintext.
Also, the whole aggregation and transmission pro-
cess is in the form of shares, which ensures that the
adversary cannot steal information by observing
these intermediate shares.

(3) We deploy smart contracts to replace the traditional
central server, avoiding the occurrence of a single
point failure of the central server. Moreover, the
public auditability feature of blockchain also allows
other nodes to verify the aggregation results, thus
preventing dishonest behaviors of aggregation
nodes.

2. Preliminaries

In this section, we briefly introduce basic tools and corre-
sponding techniques needed in this paper.

2.1. Edge Computing. Edge computing is a distributed
computing architecture that refers to distributing compu-
tation and storage tasks to edge nodes that are logically
closer to users and data sources for processing. -is ar-
chitecture can effectively reduce network latency caused by
data transmission, significantly improve the response time of
network services, and enhance data security for a better user
experience.

In the 1990s, to improve network quality, a research
group at MITproposed CDN (Content Delivery Network) to
enable network sites close to users to acquire and cache
network content and reduce the footprint on users’
broadband. -is architecture is widely used in various In-
ternet scenarios [15]. On the other hand, cloud computing
was created to cope with the increasing amount of data and
computing. -e rapid growth and evolution of cloud
computing have led to dramatic changes in the way society
works and business models [16], but along with devel-
opment, cloud computing has also revealed many
drawbacks. For example, the increasing volume of com-
putation and data not only increases the computational
burden on servers but also increases the bandwidth
burden on cloud computing centers. -is may prolong
data processing time and reduce data processing speed
and transmission speed. -is is fatal for applications such
as the Internet of -ings, which has a huge amount of data
and is latency-sensitive [17].

Edge computing can be seen as a combination of CDN
and cloud computing. Due to the advancement of
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technology, the performance of devices as edge nodes is also
improving, which enables the tasks of edge nodes to be no
longer limited to storage but also includes data processing
and computing operations such as machine learning. With
the development of IoT, edge computing is widely used to
process IoT data, which makes edge computing technology
have a broader development prospect.-e usual architecture
of edge computing is shown in Figure 1.

2.2. Secret Sharing. Secret sharing refers to schemes for
distributing a secret among a group of participants,
each of whom is allocated a share of the secret. -e secret
can be reconstructed only when a sufficient number of
shares are combined. Individual shares are of no use on
their own. In this paper, we use Shamir’s Secret Sharing,
which is formulated by Adi Shamir [12]. Shamir’s
Secret Sharing is an ideal and perfect (t, n)-threshold
scheme. In such a scheme, the aim is to divide a secret s

into n pieces of data s1, . . . , sn (known as shares) in such a
way that

(1) Knowledge of any t or more si pieces makes s easily
computable. -at is, the complete secret s can be
reconstructed from any combination of t pieces of
data

(2) Knowledge of any t − 1 or fewer si pieces leaves s

completely undetermined, in the sense that the
possible values for s seem as likely as with knowledge
of 0 pieces. -e secret s cannot be reconstructed with
fewer than t pieces.

2.3. Federated Learning. Federated learning is a distributed
machine learning framework proposed by Google that al-
lows multiple users to collaborate on training a global model
while maintaining user’s privacy, as shown in Figure 2[18].
In recent years, various countries have established legal
restrictions to preserve the privacy of personal information,
which makes direct access to user data for machine learning
training impossible. Google proposes federated learning,
which trains data locally rather than uploading data to a
traditional central server to address this issue. -is dis-
tributed architecture ensures the confidentiality of user data
while also optimizing the usage of computing resources on
local devices. -e central server is only responsible for the
coordination, which decreases the server’s processing load.
However, some issues must be addressed before federated
learning can be used in practice, such as communication
issues with a large number of participating devices and
system compatibility issues caused by the diversity of par-
ticipating devices [19]. However, with the increased em-
phasis on privacy protection, federated learning has become
a very promising technology [20].

Definition 1 (federated learning).
Federated learning refers to training a global model

using data stored in millions of remote devices, a task that
can be represented by the following objective function:

minF(w), whereF(w) ≔ 􏽘
m

n�1
pkFk(w), (1)

where m represents the total number of devices, Fk is the
local objective function of the k-th device, pk is defined as
the influence weight of the corresponding device, pk has the
following properties, pk ≥ 0, and 􏽐

m
k�1 pk � 1.

2.4. Smart Contract. For the first time, Nick Szabo proposed
the concept of smart contract in 1995 [21]. Smart contracts
are a set of digital contracts that are automatically executed
between committed parties. Smart contract is more secure
and has lower transaction costs than regular contract.
However, due to technological limitations, smart contract
could not be executed until the practical implementation of
blockchain technology. Blockchain is built on mutually
trusted nodes, allowing us fairly and securely to run con-
tracts. -ere are numerous stable and well-known appli-
cations, such as Ether on the public chain and Fabric and
Quorum on the nonpublic chain. Smart contract can be
developed to extend the functionalities of blockchain beyond
digital currency such as Bitcoin, allowing it to be widely used
in banking, copyright, and many other industries. However,
there are still issues in smart contract that must be addressed,
such as unusual programming languages and a lack of
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debugging tools, which pose security concerns to smart
contract [22].

3. Assumptions and Threats

Our framework is an open machine learning system that
allows each node to join or depart at any time. We assume
that all nodes want in order to collaborate to train a machine
learning model but do not want their data to be utilized or
observed by others.

3.1. Design Assumptions

3.1.1. System Topology. We assume that the edge nodes are
smart hardware in the home with enough processing power
for local training, such as smart gateways, smart routers, or
personal computers. Each edge node connects all of the smart
devices in the home (e.g., camera, smartphone, and smart-
watch). We anticipate that no malicious attacks will be ini-
tiated among familymembers.-us, we can transmit plaintext
between smart devices and edge node without considering
encryption.We assume that each edge node can communicate
with a subset of other edge nodes, allowing messages to be
broadcast from any edge node to all edge nodes.

3.1.2. Machine Learning. We assume that the Genesis Block
propagates all training information to all edge nodes. -e
initial model, hyperparameters, optimization strategies, and
learning objectives are all part of this. -e edge nodes want
to keep the local dataset private during the training phase.
We use stochastic gradient descent (SGD) as the optimi-
zation algorithm in the local training phase. SGD is a
universal optimization technique that may be used to train a
wide range of models, including deep neural networks [23].

3.2. 3reats. We analyzed possible threats during the
training process as follows:

(1) Users’ data can be maliciously analyzed and abused.
We must prevent exposing users’ plaintext data

(2) An adversary can deduce user information by seeing
updates. User updates should not be directly observed

(3) Corrupted edge nodes may perform incorrect cal-
culations and submit invalid global models

When data need to be stored on a cloud server, encryption
of the data is often an option to prevent the cloud server from
stealing the data. However, we assume that an edge node is
only responsible for collecting and processing information
from family members. -erefore, we do not consider en-
cryption between smart devices and edge devices.

4. Framework Design

4.1. Framework Overview. Our proposed framework’s main
goals are as follows:

(1) Data owners collaborate to train an efficient Human
Activity Recognition model

(2) Accelerate the training process by introducing edge
computing architecture

(3) Prevent leakage of user information during the ag-
gregation phase by using secure aggregation
algorithms

(4) Use blockchain public verifiability and tamper-evi-
dent to oversee the behavior of packaged nodes

Each node on the blockchain network collects data
generated by the smart devices. Each block includes the
information generated after one iteration round. Figure 3
shows the process of one iteration.

(1) Preparation. Smart devices collect data on human
behaviors using built-in sensors. When certain cri-
teria are satisfied (power and network connection, no
other tasks, and sufficient data), smart devices will
transmit this data to the associated edge node. Before
training begins, all edge nodes on this blockchain
network receive an initial random global model from
the Genesis Block, used for the first update. -is
process is shown in Steps 1, 2, and 3 of Figure 3.

(2) Local Training. A local model is calculated using the
latest global model and local data. -is is Step 4 of
Figure 3.

(3) Model Aggregation. With the secret sharing algo-
rithm, each node divides its update into n secret
shares (n specifies the number of edge nodes in the
distributed ledger) and distributes them to other
nodes (Step 5). Step 6 requires all nodes to ag-
gregate the shares they receive and then broadcast
the results in Step 7. -e first node that receives
enough results will reconstruct the global model
(Step 8).

(4) Submit Block. Finally, the first node to reconstruct
the global model will combine the essential data into
a new block and upload this block to the blockchain
(Step 9).

4.2. Preparation for Training. Steps 1, 2, and 3 in Figure 3
represent the preparation phase. In this phase, we mainly
focus on data collection, data transmission, and creating and
distributing Genesis Block.

First, the smart device will collect information about
people’s activities. When certain conditions are met (e.g., the
volume of data is sufficient; power and network are con-
nected), the smart devices will send the data to the associated
edge node.

-e initial training information will be added to the
Genesis Block. We anticipate that a trusted institution will
generate the Genesis Block and broadcast it to all edge nodes
to begin the training process. -e trusted institution is only
trusted at this phase, and it will not be involved in the
following training process. -e Genesis Block provides the
model’s initial state w0 and the predicted number of iter-
ations T. -ere are also public keys PK for each user i used to
generate the commitment to each node’s update (detailed in
Section 4.5).
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4.3. Local Training. In the t − th iteration, the global model
wt is downloaded locally from the blockchain by each edge
node. Each node has nk samples, where k is the index of the
node. nk varies among nodes depending on the number of
local smart devices and the amount of people’s activities on
that day. Each edge node computes a local gradient gk on the
current model wt using its local data nk. For a given learning
rate ε, the local model wk

t+1 is given by

wt − εgk⟶ w
k
t+1. (2)

-e hyperparameters required for the computation
process, such as the learning rate ε and the client training
batch size Bt, are specified by the Genesis Block.

4.4. Aggregation Protocol. Edge nodes use a secret sharing
approach to broadcast their local updates to other nodes in
the blockchain network. For the following step of verifica-
tion, they also broadcast the commitment COMM(Δwi)sign
of their update simultaneously, which carries their signature
so that others cannot forge it. -e entire aggregation process
is described in the following.

-e optimization algorithm in our proposed framework
is stochastic gradient descent (SGD). Each node computes
updates using the latest global model downloaded from
blockchain and local data, and all updates are aggregated
into a new global model. In the i − th iteration, the following
equation is used to update the model parameter w:

wt+1 � wt − ηt λwt +
1
b

􏽘

xi,yi)∈Bt( )

Δl wt, xi, yi( 􏼁⎛⎜⎜⎜⎝ ⎞⎟⎟⎟⎠. (3)

ηt is the learning rate, λ denotes the regularization pa-
rameter, which is used to prevent overfitting, Bt denotes the
batch of one training sample of size b, and Δl denotes the
gradient of the loss function.

-e aggregation protocol requires all edge nodes to
collaborate in order to aggregate their local updates into a
new global model, and this protocol uses secret sharing to
ensure that each node’s private data and model updates
cannot be seen or inferred by any node other than itself.
Algorithm 1 shows the secure aggregation algorithm.

Assume that m edge nodes representing m families
collaborate to train a model, and the update i.update for each
node i will be encoded as a d-polynomial. -is polynomial

will be divided into n secret shares (n � 2∗ (d + 1)). -ese n

shares are distributed equally among allm nodes, and it takes
(d + 1) shares to reconstruct this model, indicating that at
least m/2 nodes must collaborate to obtain the private data of
a specific node. Each edge node i that accumulates enough
shares (usually aminimumnumber u) aggregates those shares
and then broadcasts the aggregation result[i] to all nodes
once again. After receiving the aggregated d + 1 shares from
at least half of the nodes, a node can reconstruct the sum of all
local node updates 􏽐

u
i�1 Δwj. Eventually, the aggregated re-

sults of all nodes 􏽐
u
i�1 Δwj, the latest global model wt, and all

update commitments will be stored in a new block.

4.5. Block Structure. Each block contains a hash pointing to
the previous block in order to link to it. Furthermore,
malicious edge nodes may perform the aggregation process
incorrectly to damage the model. Each block should include
a new global model wt as well as the aggregation results of all
node updates 􏽐uΔw to validate the edge node aggregation
procedure. -is allows us to test whether the global model is
correctly generated by

wt � wt−1 +
1
u
∗ 􏽘

u

Δw⎛⎝ ⎞⎠. (4)

Figure 4 shows the blockchain structure that we
designed. To ensure that the aggregated results are generated
from each node’s local update, we keep each node’s com-
mitment to their submitted updates in the block as well.-en,
the homomorphic nature of the commitment allows us to
check if the edge node honestly aggregated the model [24].

COMM 􏽘Δwi􏼐 􏼑 � 􏽙
i

COMM Δwi( 􏼁. (5)

5. Experiment

We use virtual machines to simulate PCs capable of col-
lecting personal data from smartphones and training local
models using the Long Short-Term Memory (LSTM) al-
gorithm. We used three virtual machines for deep learning
training, each with 4GB of RAM and a GTX2080TI GPU.
Figure 5 shows the training effect of our proposed frame-
work compared to the training effect of the algorithm using
differential privacy. Differential privacy is another prom-
inent strategy in federated learning for protecting personal
information. However, using differential privacy often re-
sults in decreased accuracy. -e results show that our model
meets the usability requirement and outperforms the model
using differential privacy.

In addition, as shown in Figure 6, we tested the running
duration of each component. Because the computation of
the security aggregation algorithm is substantially more
significant than that of plaintext, a cycle of iteration takes
36.4 seconds, with the process of secure aggregation
counting for 72.26% of the overall time. However, this is still
acceptable.

①
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③
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Figure 3: Overview.
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for each client[i] ∈ m do
d − polynomial⇐i.update
n shares ⇐d − polynomial
n shares are equally distributed among m nodes

end for
for each client[i] ∈ m do
if client[i] received u shares then
aggregation results · Share[i]⇐

Aggregate(client update[1].share[i], · · · client update[u]share[i])

Broadcast the share of aggregation results
end if

end for
for each client[i] ∈ m do
if client[i] received d+ 1 shares of aggregation results then
Reconstructing out aggregated results

end if
end for

ALGORITHM 1: Secure aggregation algorithm.

Global Model : Wt Updates a�er aggregation :∑u∆w Hash value of the
previous block

Commitment of the node1 update: COMM (∆w1)sign

Commitment of the node2 update: COMM (∆w2)sign

Commitment of the nodeu update: COMM (∆wu)sign

. . .

Figure 4: Block structure.
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Figure 5: Comparison of the two algorithms.
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6. Conclusion

In this paper, we proposed a privacy-preserving collabo-
rative machine learning framework. We combined edge
computing architecture with distributed computing to en-
sure that data are kept local, which ensures that private data
are not compromised. In addition, we used a secure ag-
gregation algorithm to ensure that personal information
does not leak even throughout the aggregation process. We
tested this framework on the HAR dataset and compared the
performance of our proposed framework to other popular
methods. Our framework can be used for a wide range of
different machine learning tasks that require privacy
protection.

-is framework can be improved in two ways in the
future. Firstly, as the number of nodes in the network grows,
the effectiveness of our consensus protocol rapidly decreases
due to network fluctuations and differences in processing
capacity across users. As a result, in the future, we will
provide a new consensus mechanism based on consistency
hash and proof of stake (PoS). It can also prevent malicious
computing nodes from poisoning the model, enhance the
efficiency of the consensus process, and reduce energy usage.
On the other hand, the edge computing nodes considered in
this paper will only cover smart wearable devices from the
same family.-e edge computing nodes will be home PCs or
smart gateways. So, we will overlook data theft and data
poisoning at this point. However, we are aware that data and
model poisoning attacks can still be carried out between
family members. -us, we will strive to apply anomaly
detection methods to identify poisoned data and models in
future work.
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Repository: Davide Anguita, Alessandro Ghio, Luca
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