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With the rapid development of cloud computing, cloud storage is widely used. In the cloud environment, users’ virtual machine
systemmirrors and data are stored in the cloud server.+e escape of virtual machines and Trojan virus attacks make it challenging
to ensure the integrity of virtual machine systems. Trusted computing is expensive to randomly verify data integrity and does not
adapt to dynamic data changes. Provable data integrity is a potential solution to this problem. Merkle Hash Tree (MHT) model is
widely adopted in provable data integrity. Although MHTrequires only a small amount of evidence for verification, the verifier’s
number of hash calculations and the server’s efficiency of evidence query are not optimal. Moreover, the verification frequency of
each piece of data is not considered by MHT. Properly handling these factors can improve the actual verification performance. In
this paper, a lightweight and efficient data integrity verification approach called HB+-MHT is proposed for the tenant virtual
machine (TVM) in cloud computing. In HB+-MHT, the Huffman hash tree scheme is used for small file verification to ensure that
the hot file has a shorter path, which reduces the required amount of evidence for verification. Meanwhile, the B+ hash tree scheme
is used for big files verification, which can effectively reduce evidence query time and hash calculation times. +e experimental
results show that the scheme proposed in this paper can perform data integrity verification well, with reduced computing and
storage overhead.

1. Introduction

+e wide application of cloud computing provides users
with convenient and cheap services, which greatly reduces
the storage overhead and management burden of users.
However, due to the huge scale of cloud computing systems
and unprecedented openness and complexity, these systems
are faced with security issues more severe than before. +e
centralized management of cloud computing centers has
become the target of attacks, which endangers the data
confidentiality, integrity, and availability of cloud platforms
[1–3].

When users or enterprises outsource their data to cloud
computing service providers or entrust cloud computing
service providers to run their applications, cloud computing
service providers have priority access to the data or

applications. Cloud system tenants usually use encryption to
ensure the security of the private data stored on the cloud
server [4]. Meanwhile, the development of encryption
technology and access control technology provides reliable
confidentiality for the tenant’s private data [5]. However,
due to various risks such as internal personnel management
negligence, hacker attack, or server system failure, cloud
service providers cannot make users believe that their data
has not maliciously tampered. Since all data of the tenant
virtual machine are stored in the cloud, security issues often
occur, such as the virtual machine escaping and the attack of
virtual machines by illegal users outside the system. +ese
issues bring great challenges to the integrity protection of
tenant data in the system. In the cloud environment, it is
usually assumed that the cloud server is not trusted, and the
tenant virtual machine can only establish trust through
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online interaction with the cloud server. In addition, there
are many dynamic services in the cloud environment, thus
effectively ensuring that the data integrity in the dynamic
environment is crucial to users’ experience of cloud services.
Due to the openness and dynamic characteristics of cloud
computing, it is difficult to establish trust, which makes the
security of dynamic data integrity of tenants a problem.

+erefore, it is urgent to design an efficient integrity
verification scheme to ensure the integrity of tenant virtual
machine systems and data in the cloud. Building a secure
and reliable integrity verification method has become a
research hotspot in the field of information security.

+e traditional trusted computing method is based on the
trusted computing technology proposed by the Trusted
Computing Group (TCG) [6], which tries to provide credi-
bility for the endpoints in the distributed computing envi-
ronment. +e Trusted Platform Module (TPM) is introduced
into the hardware layer of the computing platform to provide
a hardware-based trusted root for the computing platform.
Starting from the trusted root, the integrity of the hardware
and software of a local platform is measured layer by layer by
the trust chain transmission mechanism. +e traditional
trusted computing methods have a low verification level and
coarse granularity, and they are faced with the problem of
high computational cost in system dynamic measurement.
When verifying the integrity of a file, these methods need to
calculate the integrity of all previous files in turn, which
requires a lot of computing power to randomly verify data
integrity and does not adapt to dynamic data changes.

Provable data integrity (PDI) is considered a potential
solution to this problem. According to whether fault-tol-
erant processing is adopted, PDI can be divided into two
types: POR model of data recovery proof and PDP model of
data holding proof [7, 8]. PDP judges whether the cloud data
is damaged, while POR attempts to recover the data after
identifying the damaged data. PDP pays more attention to
detection efficiency, while POR pays more attention to data
recovery. From the perspective of monitoring Trojans or
Viruses destroying cloud data, this paper mainly discusses
the PDP mechanism.

Merkle Hash Tree (MHT) is commonly used in PDP for
the cloud environment. MHT is a well-studied authentica-
tion structure [9] that intends to efficiently prove that a data
set is undamaged and unaltered. It is constructed as a binary
tree where the leaves are the hashes of authentic data values.
Each middle node is the hash of the concatenation of its left
and right child nodes, and the root node is signed by the
integrity management authority. +e research on MHT has
greatly improved the efficiency of PDP. However, there are
two issues that MHTdoes not consider. One issue is that the
verification frequency of specific data is not considered, and
each data has an equal authentication path. It is reasonable
that the frequently verified data should have a shorter path.
+e other issue is that MHT designs the authentication
structure for reducing the number of evidence but ignores
the impact of the number of hash calculations of the verifiers
and the evidence query time of the servers, which may be
important performance constraints in the actual
environment.

To address the aforementioned challenges, this paper
proposes a data integrity verification approach called HB+-
MHT for TVM. HB+-MHT adopts different verification
schemes according to the file size. Small files are loaded into
the TVM, and the optimized hash tree is adopted for ver-
ification. In this case, compared with the communication
overhead of transmitting small files to TVM, the traditional
PDP methods with multiple signature operations might take
more verification time. For large files, an improved PDP
method is adopted because the communication overhead of
transmitting large files to TVM may be too high. Our
contributions are summarized as follows:

(i) +e Huffman Merkel scheme is designed to verify
the integrity of small files. According to different
integrity verification frequencies or weights, the
authentication path of hot files is optimized and
shortened effectively.

(ii) +e B+ hash tree scheme is designed to verify the
integrity of large files, which optimizes the server
evidence query and reduces the number of client
hash verifications.

(iii) Experiments show that our scheme can realize data
integrity verification well, which reduces the com-
putational overhead effectively and achieves high
verification efficiency.

+e rest of the paper is arranged as follows. Section 2
discusses the related work, Section 3 describes the detailed
design of the scheme, Section 4 evaluates and analyzes the
experimental results, and finally, Section 5 concludes the
paper.

2. Related Work

TCG introduces the TPM in the hardware layer. Based on
the trusted root and the trusted chain transfer mechanism,
the integrity measurement can be implemented for the
hardware and software layers of the local platform. However,
the integrity measurement mechanism proposed by TCG
has low verification levels. It can only verify the credibility of
the operating system of the computing platform and does
not specify the verification method for application layer
credibility. In the process of verification, the whole mea-
surement list should be sent to the verifier, which will easily
cause measurement leakage. Reiner Sailer et al. [10] pro-
posed IMA, a more secure system integrity measurement
architecture. +e system kernel maintains a list of metrics
and hashes the measured values to obtain the aggregation
values as a reliable basis for the verification of the metrics.
Meanwhile, the system extends the concept of TCG trust
metrics to the application layer dynamic system. However,
every verification needs to hash all the measurements again
to obtain the aggregate value, which greatly reduces the
efficiency of the system operation. Also, the privacy pro-
tection of the TCG remote authentication mechanism is still
unsolved. To solve the shortcomings of IMA, Xu et al. [11]
store the measurement with the Merkle tree structure so that
only the authentication path related to the measurement
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needs to be sent. However, since the Merkle tree is a bal-
anced binary tree, too many middle nodes need to be
queried. So, the average search complexity is high, and this
method needs to be further optimized.

+e current PDP mechanisms mainly rely on MAC au-
thentication code, RSA signature or BLS signature, and they
can support dynamic operation, multiple copies or privacy
protection, etc. Based on the data holding proof of MAC
authentication code [12], the MAC value of the message au-
thentication code is used as the verification metadata to verify
the integrity of the data stored on the remote server. However,
users need to download data for integrity verification, which
results in a lot of communication overhead and privacy data
leakage. Also, this method does not support dynamic data
integrity verification. To solve the problem that dynamic data
operation is not supported, Erway et al. [13] introduced the
jump table dynamic data structure to support dynamic data
operation. +is scheme has some problems, such as a long
authentication path, requiring a lot of auxiliary information,
and high computational and communication overhead. Wang
et al. [14] proposed a PDP mechanism based on the Merkle
tree, which uses theMHTstructure to ensure the correctness of
data block location. Meanwhile, they used the BLS signature
mechanism to ensure the integrity of data block content. Al-
though the model supports dynamic data operations, the in-
sertion of data is easy to increase the scale of MHTand make it
out of balance. Shen et al. [15] proposed a fully dynamic
structure combining bidirectional linked list and position array
to support data dynamic update more effectively. Tan et al. [16]
proposed a lightweight integrity verification scheme based on
the jump table and BLS signature mechanism to reduce the
overhead of generating verification metadata for verifiers. Sun
et al. [17] proposed an adaptive authenticated data structure
with privacy-preserving for big data stream in cloud, which can
provide real-time authentication of outsourced big data. Jin
et al. [18] verified the data that is accessed frequently in the
cloud by signature verification. However, this method requires
verifiers to download the data locally and verify the data that
has not been queried for a long time through PDP.

In general, many methods reduce the amount of verifi-
cation evidence through MHT and extend the structure of
MHT for further performance optimization or security en-
hancement. However,MHTmay not be optimal in some cases.
For example, a frequently verified file has the same amount of
evidence as an infrequently verified file in the traditional
MHT-based scheme. It is more reasonable for hotspot files to
have shorter authentication paths. For the verification of large
files, because the amount of evidence without transferring the
file is significantly reduced in the PDP scheme, how the cloud
storage server can quickly find the evidence and how the client
can quickly calculate the hash values may be the main bot-
tleneck. To this end, this paper proposes the Huffman hash
tree and B+ hash tree to overcome the bottleneck.

3. Detailed Design

3.1. Overall Framework. As shown in Figure 1, HB+-MHT
consists of TVM, Cloud Storage Server (CSS), and Key
Management Center (KMC). KMC securely distributes

public and private keys to tenants and transmits the tenants’
public keys to CSS. TVM runs the query agent to initiate a
data integrity verification challenge to CSS. CSS queries the
evidence and generates proof as a response. TVM verifies the
data integrity by analyzing the correctness of the proof.

+e HB+-MHT cloud data integrity verification ap-
proach consists of two verification schemes. One is the
Huffman hash tree (HHT) scheme, which is generally used
to verify the integrity of the small file. Compared with the
communication overhead of transmitting small files, the
traditional PDP methods with more signature operations
might take more computing time. +erefore, for small files,
this scheme adopts a method that loads these files into TVM
and further combines hash tree and Huffman tree to realize
HHT, thereby shortening the authentication path and im-
proving the verification efficiency of the files with high
verification weight.+e other is based on the combination of
the B+ hash tree and BLS aggregate signature. It reduces
communication overhead by not loading files into TVM and
achieves no-copy verification of large files. Because the
amount of evidence is significantly reduced when the PDP
scheme is adopted, how the cloud storage server can quickly
find the evidence and how the client can quickly calculate the
hash values has become the main bottleneck. B+ hash tree
optimizes hash computation and evidence organization,
which can effectively reduce the processing time of CSS and
TVM.

3.2. Hash Tree Construction

3.2.1. B+HT: B+ Hash Tree. B+HT is an extension of the
combination of B+ tree and MHT, and it is also a balanced
multichannel evidence lookup tree. For the B+HT with an
order ofm, each node in the tree has at mostm subtrees, and
all nonleaf nodes except the root have at least m/2 subtrees.
A middle node consists of a tuple (C1, H1, P1, C2, H2, P2, . . .,
Cm,Hm, Pm), where Ci (1≤ i≤m) is the number of leaf nodes
of its i-th subtree;Hi is the hash value of the concatenation of
all data items in the root node of its i-th subtree; Pi points to
the root node of its i-th subtree. +e leaf nodes represent all
data blocks of the file. +e root node has one more item than
the middle node, which is the signature of the root node
data.

+e data of B+HT should be usually stored on a disk due
to limited memory. Most operating systems read data in
blocks and put data written at one time into one disk block
or multiple consecutive disk blocks. +erefore, if the size of
the B+HTnode is slightly smaller than the disk block size u,
the quick query of evidence in nodes can be achieved. Let v

be the size of subtree information in a node; then, m should
be approximately equal to u/v. To ensure performance and
tree balance, the number of subtrees of each middle node
cannot be less than ⌈M/2⌉. Each hash calculation in MHT
only takes the data of two subtrees as the input, while each
hash calculation in B+HT takes the data of multiple subtrees
as the input. +erefore, B+HTcan obtain the total hash value
of all blocks through much fewer hash operations than
MHT, which means that the number of hash calculations for
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evidence verification is greatly reduced. Each middle node
stores the number of leaves of each subtree, which can realize
a fast data block search. As an example, Figure 2 shows
looking up the data block d11. According to the root node, it
is deduced that d11 is the seventh leaf node of V3’s subtree.
Similarly, according to theV3 node, it is known that d11 is the
fourth leaf node of V7’s subtree.

We define authentication path pathi about data di as the
set of passing nodes on the path from node i to root node.
+e set of node hash values of the sibling nodes of all nodes
on the authentication path is called auxiliary authentication
information, which is denoted as Ωi. As shown in Figure 2,
the authentication path about d11 is Path11 � v1, v3, v7{ } and
its auxiliary authentication information Ωi � v1〈h(v2)〉, v3􏼈

〈h(v6), h (v8)〉, v7〈h(d8), h(d9), h(d10)〉}. Obviously, the
authentication path is much shorter than MHT.

3.2.2. HHT: Huffman Hash Tree. Huffman hash tree (HHT)
is an extension of the combination of the Huffman tree and
MHT, in which each leaf node is assigned a weight to reflect
the frequency of data verification. A middle node is rep-
resented as a tuple (LC, LP, H, RC, RP), where H is the hash
of the data concatenation of its left child and right child; LP
and RP point to the left and right child nodes, respectively;
LC and RC are the numbers of leaf nodes contained by the
left and right children, respectively. In HHT, the leaf nodes
are numbered sequentially from left to right. +e path of a
leaf can be quickly located according to LC and RC stored in
the middle nodes. +e root node also adds a signature to the
hash valueH. For a leaf l, this paper defines l’s weighted path
length as the product of l’s path length and l’s. Let AWPL be
the average weighted path length of all leaf nodes in the tree.
Suppose the weights of n leaf nodes are (w1, w2, wi, . . . , wn)

􏽐
n
i�1 wi � 1; then, the binary hash tree with the smallest

AWPL is called the Huffman hash tree.
For example, in Figure 3, there are four files a, b, c, and d

with verification probabilities of (0.6, 0.2, 0.1, 0.1), respec-
tively. +ree binary hash trees are constructed with (I)
AWPL� 2, (II) AWPL� 2.8, and (III) AWPL� 1.6. It can be
seen that AWPL of the tree in (III) is the smallest. It can be
analyzed and verified that the tree in (III) is exactly a
Huffman hash tree.

+e general process of generating HHT is as follows. (1)
According to the given weights (w1, w2, wi . . . wn) ,
􏽐

n
i�1 wi � 1, the set F � T1, T2, . . . , TM􏼈 􏼉 of n binary trees are

formed. Each Ti has only one node, and its left and right
subtrees are empty. (2) Select two trees Ts1 and Ts2 with the
smallest root node weight from F and build a new binary tree
Tnew with Ts1 and Ts2 as its left and right subtrees.+e weight
of Tnew’s root node is the sum of the weights of Ts1 and Ts2,
and LC, LP, RC, and RP of Tnew’s root node are assigned
corresponding values according to Ts1 and Ts2. (3) Remove
Ts1 and Ts2 and add Tnew to the set. (4) Repeat Steps 2 and 3
until there is only one tree in F. +is tree is a Huffman hash
tree.

3.3. Data Integrity Verification Process

3.3.1. HHT Scheme for Small Files. (1) Initialization Phase

Step 1. +e KMC uses the key generation algorithm. Let G1
be the multiplicative cyclic group of a large prime. p and g

are the generators of G1. Randomly select a SK∈RZp, and
calculate PK � gke.+en, the public parameter is PK, and the
system master private key is MSK. KMC generates the
tenant’s private key sk and the tenant’s public key according
to the tenant’s user i d. +e generated keys are sent to TVM.

Step 2. TVM establishes a hash tree HHT of integrity
measurements. +e generation of HHT is shown in Algo-
rithm 1. +e data stored in the leaf node of HHT is the hash
value of the initial small files of the system. +e internal
nodes are constructed according to the properties of the hash
tree and generated by hash operations. TVM sings the HHT
root node with the tenant private key, and a timestamp [19]
is added to the signature. Sigsk(Nodehashrootnode)
� H(Nodehashroot node node‖time stamp stamp)sk.

Step 3. TVM sends the file set that needs to be verified, its
HHTand sigsk(Nodehashrootnode), to CSS.+e data are saved
and maintained by CSS.

TVM

Query small file f1

H H

H H H
η

v1

v2v3
C C C

C C

H H H H
η η ηη

C C C C

H H

H H H

v1

v3

C C C

C C

v1

v2 v3

f1 f2 f3 f4

v1

v3

TVM

Response

Query big file F1

Response

CSS

Public/private key of Tenant A

f1

Tenant A Tenant B

Public/private key of Tenant B

public keys of Tenants

F1-1 F1-2 F1-3 F1-... F1-... F1-... F1-n

KMC

B+HT
MHT

•

• •

•

Figure 1: +e composition and principles of HB+-MHT.
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(2) Challenge Verification Phase. Challenge verification is
initiated by TVM or a third-party auditor (TPA) on behalf of
the tenant. TVM generates a query challenge about the file fi
and sets it to CSS. +en, CSS generates the authentication
path Ωi according to HHT and sends a proof
pro � Ωi, sigsk(Nodehashrootnode)􏼈 􏼉 to TVM. After receiving
the proof, TVM calculates the hash value of the file and uses
Ωi to calculate Nodehashrootnode′ . +e verification process
can be expressed as e(Nodehashrootnode

����timestamp) e

(sig(Nodehashrootnode), g).
If the verification is successful, the integrity of the file is

not damaged.

(3) Dynamic Data Update Phase. +e HHT integrity veri-
fication scheme supports file addition, deletion, and mod-
ification. +e operation flow of file-level data modification is
shown in Figure 4. First, TVM sends a request of modifying
the file fi to CSS and then uses the hash value of the original
file fi to verify the correctness of received Ωi. If it passes the
verification, TVM uses the updated file fi

′ andΩi to calculate
the new root node Nodehashrootnode′ of HHT and then up-
loads the new signature with a timestamp to CSS.

For the file insertion operation, since a newly added file
fnew has not been verified and has the lowest weight, a leaf

node flow with the lowest weight is selected, and flow is ex-
panded into a subtree fsubtree with only three nodes. Fsubtree’s
left child is fnew, and the right child is flow. Accordingly, all
nodes on the path from fsubtree’s root node to the root node of
the tree need to be updated, so the complexity of the in-
sertion update operation is the height of the tree.

For the file deletion operation, if the nodes with high
weight are deleted, the nodes with low weight need to move
up as a whole, which requires a lot of calculation. Mean-
while, CSS needs to interact with TVM for a lot of infor-
mation. Considering the overhead, this paper keeps the leaf
nodes corresponding to the deleted file and does not move
them, except that the hash values stored in them are cleared.
Accordingly, all nodes on the path need to be updated, so the
complexity of the deleting update is the height of the tree. In
the subsequent addition of files, these dummy node locations
are preferred.

(4) Verification Frequency Change. Tenants’ personalized
verification requirements may change dynamically and often
show local characteristics; i.e., some files are frequently
verified in a certain period. +e static HHTgenerated at one
time may not provide good verification services under dy-
namic changes. Also, regenerating the whole HHT might

H(v2) H(v3)

H(v4) H(v5) H(v6) H(v7) H(v8)
η

H(d1) H(d2)
η

H(d3) H(d4)
η

H(d5) H(d6) H(d7)
η

H(d8) H(d9) H(d10) H(d11)
η η ηη

H(d12) H(d13)
η

v1

v2
v3

v4 v5 v6 v7 v8

3 4 22 2

4 9

1 1 1 1 1 1 1 1 1 1 1 1 1

Sign(H(v2||v3))

d1 d2 d3 d4 d5 d6 d7 d8 d10 d11 d12 d13d9

•

•

• • • • •

• • •

•

Figure 2: B+HT data structure.
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Figure 3: HHTs with different AWPL.
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bring inconvenience and cost to tenants. +us, this paper
proposes the VFC mechanism that combines local updates
and global updates to deal with the change of verification
frequency. VFC records the verification history and counts
the verification frequency of each file in the latest period into
a vector Wcur. Meanwhile, it maintains a vector Whht that
denotes the verification probability of each file used in the
current HHT. +e elements in Wcur and Whht are arranged

in descending order. In the local update mode, when a file f
under verification is ranked in the top k ofWcur, that is, it is a
hot file, CSS will check whether f is ranked in the top k of
Whht. If not, CSS will seek a file f′ and exchange the positions
of f and f′ in HHT. f′ satisfies the following conditions: (1) in
the top k of Whht, (2) not in the top k of Wcur, and (3) f′ has
the lowest weight among the files satisfying conditions 1 and
2. After CSS exchanges f and f′, it updates their values in

Input: Fileinfoarray satisfying 􏽐
m
i�1 Fileinfoarray[i] · w � 1

Output: Nodelist
Begin

For each item f in Fileinfoarray {
//Initialization, each tree has only one root node
HHTNode n�new HHTnode ();
n.h� hash (f.data);
n.weight� f.weight;
n.lc� 0; n.rc� 0;
n.lp�null; n.rp� null;
Nodelist.equeue (n)

}
While (NodeList.size!� 1)

//Select two trees with the smallest AWPL from the queue
nl, nr←min (NodeList);
//Merge the two trees
HHTNode n� new HHTnode();
n.h� hash (nl.h || nr.h);
n.weight� nl.weight+ nr.weight;
n.lc� nl.lc+ nl.rc; n.rc� nr.lc+ nr.rc;
n.lp� nl; n.rp� nr;
//Add a new binary tree to the queue
Nodelist.equeue (n);
//Delete the analyzed two subtrees
Nodelist.deequeue (nl);
Nodelist.deequeue (n2);

end while
return Nodelist

end

ALGORITHM 1: Generation of HHT.

TVM CSS

mod ification (i)

pro (fi,Ωi,sigsk (Nodehashrootnode))

Compute Nodehashrootnode

using {fi,Ωi}

using {fi’,Ωi}}

Verify sigsk (Nodehashrootnode)

Verify sigsk (Nodehashrootnode’)

Compute sigsk (Nodehashrootnode’)

fi’,sigsk (Nodehashrootnode’)

update HHT

Figure 4: File modification process of HHT.
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Whht and requests the tenant to resign the relevant path.+is
operation occurs when TVM verifies f. +erefore, the evi-
dence information related to f can be reused and verified at
one time. In the global update mode, the Euclidean distance
between the vectors Wcur and Whht is calculated regularly.
When the distance is greater than the threshold, HHTwill be
regenerated and resigned. Considering the high overhead of
this method, the update interval is long, and the threshold is
high. Local update follows the locality principle so that the
hot files can always be verified quickly with a shorter au-
thentication path. Moreover, since the update occurs when
the tenant verifies the hot file, the reuse of evidence saves
communication bandwidth and computational overhead.
+e global update ensures that HHT will not fall into local
optimization and can maintain the adaptation of updated
HHT.

3.3.2. B+HT Scheme for Big Files

(1) Initialization Phase. Firstly, TVM divides the file into
fixed-size blocks to obtain the data block set

D � (d1, d2, d3 . . . dn) and hashes all blocks to obtain the
hash set μ � H(di)􏼈 􏼉1≤ i≤ n . +en, TVM randomly generates
φ←Zp and uses the tenant private key sk to sign each data
block dn, which obtains the signature set Φ � σi􏼈 􏼉1≤ i≤ n

through σi � (H(di) · φdi )sk. +en, TVM uses the elements
in μ as leaf node to construct the B+HTstructure C and signs
C with sk, i.e., sigsk(Nodehashrootnode) �

H(Nodehashrootnode
����timestamp)sk, where a timestamp is

added to the signature. Finally, TVM sends
D,Φ, C, sigsk(Nodehashrootnode)􏼈 􏼉 to CSS for saving.

(2) Challenge Verification Phase. Challenge verification is
initiated by TVM. TVM randomly selects the location set I of
data blocks to be verified. +en, it randomly generates
εi←Zp and sends a challenge message i, εi􏼈 􏼉i∈I to CSS. CSS
calculates μ � 􏽐i∈Iεidi ∈ Zp and ω � 􏽑i∈Iσi

εi . Next, it sends
μ, ω, and H(mi) of the target data block and auxiliary
authentication information Ωi of the data block as the proof
pro to TVM.

After receiving the verification, TVM uses Ωi, H(di)􏼈 􏼉i∈I
to calculate Nodehashrootnode′ and performs the verification:

e h Nodehashrootnode′‖timestamp, g
sk

􏼐 􏼑�
?

e sig Nodehashrootnode( 􏼁, g( 􏼁􏼒 􏼓. (1)

If the verification is correct, continue to judge:

e(ω, g)�
?

e 􏽙
i∈I

H di( 􏼁
εi · φμ

( 􏼁, pk⎞⎠.⎛⎝ (2)

If the verification is successful, the integrity of the file is
not damaged. +e whole process of challenge verification is
shown in Figure 5.

Correctness:

e(ω, g) � e ∐
i∈I

H di( 􏼁 · φdi􏼐 􏼑
sk·εi

, g􏼠 􏼡

� e 􏽙
i∈I

H di( 􏼁
εi · 􏽙

i∈I
φdiεi , pk⎛⎝ ⎞⎠,

� e 􏽙
i∈I

H di( 􏼁
εi · φμ

( 􏼁, pk⎛⎝ ⎞⎠

� e ∐
i∈I

H di( 􏼁
εi · φμ

( 􏼁, pk􏼠 􏼡.

(3)

+rough formula (1), TVM can verify the integrity of the
data block di of a file F stored in CSS without downloading di.
However, verifying the integrity of multiple data blocks in F
does not guarantee that F is not destroyed, even if TVM has
verified all data blocks. +is is because formula (1) does not
bind the location of the data block di in F and untrusted CSS
can use another data block dj in other locations. If the data of
dj is correct, this fake can pass the verification of (1). Formula
(2) limits the position of each data block with the hash tree.
Although the hash tree can verify the content, the

verification can only be conducted when the verified data
block di is loaded into TVM. +erefore, only the combi-
nation of formulas (1) and (2) can realize the PDP verifi-
cation of the content and location.

(3) Dynamic Data Update Phase. To make the B+HTscheme
more suitable for the cloud environment, the integrity
verification scheme must support the dynamic update of
data. +e block update operations include modification,
insertion, and deletion.

If the verification is correct, auxiliary informationΩi

and h(d′) are used to calculate sigsk

(Nodehashrootnode′ ), and CSS updates sigsk

(Nodehashrootnode′ ).

(b) Data insertion
Data insertion operation inserts a new data block.
Besides changing the physical structure of the file, this
operation may cause node splitting that does not meet
the structural properties of the B+ hash tree and change
the authentication structure C. We use the B+HT tree
in Figure 2 to illustrate the insertion operation.
Suppose TVM wants to insert a block dnew after a
block di. First, TVM generates signature σ′ corre-
sponding to dnew and then sends the insertion re-
quest message to CSS. After CSS receives the
message, it first finds the node nodeinvolve− i that
involves hash(di). Assume that the order of the
B+HTtree is k.+ere are two situations in the current
node, as shown in Figure 7.
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(1) +e number of subtrees of nodeinvolve− i is less than k.
In this case, H(dnew) is added to nodeinvolve− i, and the
involved nodes on the authentication path are
updated. Figure 7(a) shows the case of inserting a
new nodem after the block d1 in Figure 2. +en, CSS
will directly generate a proof pro(Ωnew, H(dnew)).

(2) +e number of subtrees of nodeinvolve− i is equal to k.
In this case, nodeinvolve− i needs to be split, and its
parent node nodeparent− involve− i whose subtrees
number is equal to k also needs to be split, etc.
Specifically, CSS splits nodeinvolve− i into
nodeinvolve− i− 1 and nodeinvolve− i− 2. nodeinvolve− i− 1 in-
volves the information of all subnodes before (in-
cluding) hash(di) in nodeinvolve− i，and
nodeinvolve− i− 2 involves the information of all subn-
odes after hash(di) in nodeinvolve− i. +e information
of dnew is appended to the end of nodeinvolve− i− 1.
+en, CSS updates the information of
nodeparent− involve− i. +e item about the subnode
nodeinvolve− i in nodeparent− involve− i is divided into two
items. +e hash values in the two items are, re-
spectively, hash (nodeinvolve− i− 1) and hash
(nodeinvolve− i− 2)，and their number of leaf nodes
and child pointers are assigned according to
nodeparent− involve− i and nodeinvolve− i− 2, respectively.
Figure 7(b) shows the case of inserting a new node n
after block d9 in Figure 2. CSS will generate proof
pro(Ωnew, H(dnew)) according to the new structure
of B+HT.
After receiving pro, TVM continues to calculate the
value of the nodes in the authentication path until
Nodehashrootnode′ is obtained. If the verification
passes, TVM updates the root signature and sends it
to CSS.

(c) Data deletion
Data deletion removes a leaf node, and it is the
opposite of data insertion. Assume the order of the
B+HT tree is k. If a node ddel is deleted, a simple case
is that the number of subtrees of the node dhash-del
involving hash (ddel) is greater than ⌈k/2⌉ − 1. In this

case, the item of ddel in dhash-del is deleted simply.
Taking the B+HT tree in Figure 2 as an example,
Figure 8(a) shows the processing of deleting node d5.
If the number of subtrees of dhash-del is less than
⌈k/2⌉ − 1. +e rest of dhash-del must regenerate new
nodes with its brother nodes to satisfy the properties
of the B+HT tree. Similarly, the related parent node
changes are processed. For example, Figure 8(b)
shows the process of deleting node d1 and merg-
ing its parent node with its peer neighbor node.

4. Analysis and Evaluation

4.1. Security Analysis. +e security of HB+ MHT is analyzed
from the aspects of integrity verification and data update,
including whether it can prevent untrusted CSS from
cheating tenants with incorrect data, and whether it can
prevent untrusted third parties from maliciously updating
authentication data in CSS.

Theorem 1. If the hash algorithm is collision-resistant and
the signature algorithm is unforgeable, no adversary against
the B+HT scheme could make the verifier accept in a data
verification protocol instance with a nonnegligible probability,
unless it responds by correctly calculating the value.

Proof. +e BLS signature scheme is adopted, whose
unforgeability is proved in [14]. +e security of HHT and
B+HT trees is mainly analyzed. It will be proven that if there
is an adversary A who can break the scheme with non-
negligible probability advantage, then A has an algorithm B
to find a pair of hash collisions with a nonnegligible
probability advantage.

Given a block di to be verified with its correct authen-
tication path pathi, and correct auxiliary authentication
information Ωi, TVM’s verification process can be denoted
as a Boolean function verify (i, H(di),Ωi) with parameters
(i, H (di), Ωi), and its calculation of path nodes starts from
the leaf node. +e analysis of the jth node on the path pathi

yields

pro ({Ωi,H(di)}i∈I, sigsk (Nodehashrootnode), µ, ω)

Compute Nodehashrootnode’
using {Ωi,H(di)}i∈I

and {di}i∈I

Verify sigsk (Nodehashrootnode)

TVM CSS

Compute µ and ω

Random select {(i,εi)}i∈I

challenge ({(i,εi)}i∈I)

Figure 5: Challenge verification process of B+HT.
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pro (Ωi,di, sigsk (Nodehashrootnode))

update (i,di’,σi’)

Compute sigsk (Nodehashrootnode’)

sigsk (Nodehashrootnode’)

Compute Nodehashrootnode
using {Ωi,H(di)}

using {Ωi,Nodehashrootnode’}

Verify sigsk (Nodehashrootnode)

TVM CSS

Compute

update file, Φ and C

σi’= (H(di’) φdi’)sk

Figure 6: Data modification process of B+HT.
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Figure 7: Data insertion in B+HT. (a) Insert new node m after block d1. (b) Insert new node n after block d9.

Security and Communication Networks 9



pathi[j].Hr � H Ωj− 1
i ||Ωj− 2

i || · · · ||Ωj− (r− 1)
i ||pathi[j − 1]|| · · · ||Ωj− K

i􏼐 􏼑, (5)

where the j-1th node on pathi is the rth child of the jnode,K is the
order of B+HT, andΩj− s

i is the hash value of the sth child of the
jth node on the path. Finally, the correctness of pathi[root]. sign
is verified and the verification result is obtained.
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Figure 8: Data deletion in B+HT. (a) Delete node d5. (b) Delete node d1.
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If A can construct a tuple (i, H(di)
∗,Ωi
∗) with di

∗ ≠di as
a proof to the TVM, and the function verify(i, H(di)

∗,Ωi
∗)

returns true, A wins the security game.

In this case, di and di
∗ have the same root node, while

di
∗ ≠di. +e authentication path of di

∗ is recorded as pathi
∗;

then, there must be u and v satisfying

pathi[u].Hr � H Ωu− 1
i Ω

u− 2
i

����
���� · · · Ωu− (r− 1)

i

�����

�����pathi[u − 1]‖ . . . ‖Ωu− K
i􏼒 􏼓,

path∗i � [v].HsH Ω
s− 1
i Ω

s− 2
i

����
���� · · · Ωs− (r− 1)

i

�����

�����pathi[v − 1]‖ . . . ‖Ωv− K
i􏼒 􏼓,

pathi[u].Hr � path∗i [v].Hs.

(6)

However, since pathi[u − 1] � pathi[v − 1], it is contra-
dictory to the collision-resistant characteristics of the hash
function. It can be concluded from the above discussion that
the probability the adversary A can destroy the data veri-
fication protocol of the B+HT is negligible. +erefore, the
data verification protocol of the B+HT is secure. □

Theorem 2. If the hash algorithm is collision-resistant and
the signature algorithm is unforgeable, no adversary against
the B+HT scheme could make CSS accept in a data update
protocol instance with a nonnegligible probability, unless it
responds by correctly calculating the value.

Proof. When an adversary A submits an update request of
inserting a block dmalice′ after the ith block to CSS, A will
receive a message (i, H(di),Ωi) from CSS. According to
dmalice′, Ωi and the current time timestampnow, A needs to
recalculate the root value hashroot of the tree and sign the
hash value of the concatenation of hashroot and time-
stampnow. Because the signature cannot be forged and A has
no private key, A can only reuse a previously signed message
signatureold. Assume signatureold � hash(hashroot-old||time-
stampold). +e current timestamp timestampnew is greater
than timestampold and Ωi cannot be changed. If A can
construct hashroot-new by adjusting dmalice′ that satisfies hash
(hashroot-new||timestampnew)� hash (hashroot-old||time-
stampold), then A wins the security game. However, due to
hashroot-new ≠ hashroot-old and
timestampnew ≠ timestampold, it is contradictory to the
collision-resistant characteristics of the hash function. It can
be concluded from the above discussion that the probability
the adversaryA can destroy the data insertion protocol of the
B+HT is negligible. +e analysis of the deletion and modi-
fication operations is similar. +erefore, the data update
protocol of the B+HT is secure.

From the perspective of security, HHT is a deformation
of MHT, and the security of the authentication structure of
the binary hash tree has been analyzed by [14].+erefore, the
analysis of HHT is omitted here. □

4.2. Performance Evaluation. Here, representative schemes
are compared to better evaluate the performance of HB+
MHT. More specifically, HHT is compared with MHT, and
B+HT is compared with Wang’s scheme [14] in terms of
space and time complexity.+e experiment is performed in a

simulation environment. TVM and CSS are, respectively,
run on two hosts, which are equipped with an Intel(R) Core
(TM) i7-8700k@ 3.70GHz CPU and 16.0GB RAM and run
Windows 10 operating system. +e two hosts are directly
connected through a gigabit network cable. B+HT is
implemented in C++ language, and the development tool is
Visual Studio 2019. +e hash operation uses SHA1. +e
signature operation uses BLS. Besides, a pairing-based
cryptography library [20] is adopted to implement these
cryptographic algorithms.

4.2.1. Space Complexity. In PDP integrity verification
schemes, TPA or TVM only stores a small amount of in-
formation such as signature and timestamp, which takes up a
small storage space. +e storage overhead of CSS is analyzed
in Table 1, where lG1 is the signature length, lH is the length
of hash, M is the number of files, itemhht is the size of the
node in HHT, itemmht is the size of the node in MHT, N is
the number of file blocks, and K is the order of B+HT tree.

As shown in Table 1, the storage overhead of CSS is
mainly related to the storage of tree nodes. For small file
verification, HHT occupies slightly more storage space than
MHT because the data of HHTnodes includes the number of
leaf nodes in its subtree with a size of 32 bits. However,
compared with the 160-bit size of the SHA’s hash value
stored in a tree node, the increment of storage space is small.
For large file verification, the storage overhead of B+HTand
Wang’s scheme [14] for storing block signature is the same.
However, B+HT occupies significantly less storage space
than Wang’s scheme for storing tree nodes. With the in-
crease of K, B+HT can save storage space logarithmically
than Wang’s scheme [14]. Of course, K cannot increase
infinitely, and it should not exceed the size of the disk block.

4.2.2. Time Complexity

(1) HHT Scheme. Because HHT is obtained by changing
MHT, their time complexity is evaluated and compared.
Integrity verification services are used more frequently than
data update services. Here, the time from the initiation of a
user request to the end of verification is analyzed. +e main
overhead includes CSS’s query evidence time Tquery, the
communication time Tcom, and TVM’s verification time Tver.
+e time cost of each phase of the two schemes is shown in
Table 2. It can be seen that whether HHT is superior to MHT
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mainly depends on whether HHT can provide an AWPL
lower than log2 M, where M is the number of the files.

+erefore, the value of AWPL is tested. During the
initialization stage, given M files with randomly allocated
weights, B+HTruns Algorithm 1 to establish an HHTtree. In
the verification stage, in order to simulate local selection, we
set up a set whose size is equal to 50. Only the files in the set
can be selected. After selecting a file in the set to verify at a
time, we randomly update a small number of files in the set.
According to their verification weights, the files to be verified
are selected by roulette-wheel. Meanwhile, a variation factor
is established to slightly adjust the weights during verifi-
cation. According to whether HHT enables the VFC
mechanism, HHT is divided into HHT-1 (disabled) and
HHT-2 (enabled). Let C be the number of tests and let L be
the average authentication path.+en, the value of L/log2 M

is recorded in Table 3 to intuitively reflect the performance
of HHT. +e test results show that the HHT scheme is
generally better than the MHT scheme. When M is small or
C is large, the HHT scheme has a better effect, which is
mainly attributed to the sampling variance. HHT optimizes
the authentication path of the tree according to the weight.
When the number of samples increases, sample indicators
can better reflect the real indicators of HHT. In addition, the
result that the HHT-2 scheme is better than the HHT-1
scheme shows that the VFC mechanism can better adapt to
the change of verification probability.

(2) B+ HT Scheme. B+HTand Wang’s scheme [14] adopt the
same signature scheme for the content verification of data
blocks. +e difference between them is the hash tree
structure for the location authentication of data blocks.
+us, this paper mainly compares the performance of their
hash trees. TVM’s verification time Tver is mainly related to
the number of hash calculations, which depends on the
height of the tree. +e communication time Tcom is mainly
related to the product of the node size and the height of the
tree. CSS’s evidence query time Tquery mainly depends on the
node query times, i.e., the height of the tree. +e complexity
of location verification for a single data block is shown in
Table 4. It can be seen that the verification performance of
TVM and CSS in our scheme is log2 K times higher than
that of Wang’s scheme [14]. When the order K of B+HT
equals 4, Tver and Tquery are reduced by two times. Of course,
this is accompanied by the increase of Tcom. Assuming that
the number of blocksM� 1204, K� 4, and the hash length is
20 bytes, B+HT only increases the traffic by 0.6 k more than
Wang’s scheme [14] for each verified data block. In fact, with
the development of communication technology, the in-
creased traffic can be negligible. +is scheme is suitable for
the case where the computing power of both TVM and CSS
is weak or the burden is heavy, and the communication
bandwidth is good. +is case is common in the cloud
environment.

From the perspective of tenant experience, the total
verification response time is further evaluated because the
tenant may be concerned about how long it can complete
verification after it sends a query request. +e total time Tsum
is equal to the sum of Tquery, Tcom, and Tver.+e experimental
parameters are as follows: K� 4, BLS signature, a block size
of 20 bytes, and 1G bandwidth. Figure 9 shows the time
overhead of the two schemes with the same detection

Table 1: Storage complexity comparison.

Entity Storage cost (bits) Entity Storage cost (bits)

Our HHT scheme O(lG1 + 􏽐
log2M
i�0 2i · itmehht · lH) Our B+HT scheme O((N + 1)lG1 + 􏽐

logK
N

i�0 Ki · lH)

Merkle Hash Tree O(lG1 + 􏽐
log2M
i�0 2i · itemmht · lH) Wang [14] O((N + 1)lG1 + 􏽐

log2N

i�0 2i · lH)

Table 2: Time complexity comparison between HHT and MHT.

Entity Tquery Tcom Tver
Our HHT scheme O (AWPL) O (AWPL) O (AWPL)
Merkle Hash Tree O(log2 M) O(log2 M) O(log2 M)
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Figure 9: Time overhead under different file sizes.

Table 3: Time overhead comparison between HHT and MHT.

HHT-1 HHT-2

C
M

64 256 512 1024 64 256 512 1024
100 0.98 1.00 1.02 1.06 0.84 0.92 0.99 1.02
200 0.90 0.95 0.99 1.03 0.75 0.82 0.91 0.99
300 0.77 0.89 0.94 1.00 0.58 0.70 0.83 0.94
400 0.60 0.79 0.90 0.98 0.48 0.60 0.78 0.88
800 0.49 0.65 0.75 0.88 0.32 0.50 0.62 0.79
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probability of 99% under different file sizes. It can be seen
that Tsum of our scheme is lower than that ofWang’s scheme.
When K� 4, the overhead of Tcom increases by 1.5x, while
the overhead of Tquery and Tver decreases by 2x. +e test
results show that the reduced time of Tquery and Tver exceeds
the increased time of Tcom. At this time, Tquery and Tver
become the performance bottleneck. Moreover, the larger
the file, the higher the height of the tree, and the more
complex the system management, resulting in a slower
search of disk I/O and a larger Tquery.

5. Conclusions

+is paper proposes a lightweight and efficient integrity ver-
ification method for cloud data file systems, which uses dif-
ferent integrity verification schemes for different file types to
improve the verification efficiency. +e Huffman Merkel tree
verification scheme is used for small files, which could shorten
the authentication path of small files according to the file
verification frequency or user-defined file verification weight.
Meanwhile, the B+ hash tree integrity verification scheme is
used to verify large files, which can effectively reduce the query
response time of nodes. Besides, Bilinear aggregate signature is
used to verify the existence of large files, which can effectively
reduce the requirements of user computing power and com-
munication bandwidth. +e experimental results indicate that
our scheme can perform data integrity verification well, with
less computation and communication overhead and higher
verification efficiency than the existing methods.
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Table 4: Time complexity comparison between B+HT and Wang’s
scheme about hash trees.
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