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Deep neural networks (DNN) with incomparably advanced performance have been extensively applied in diverse fields (e.g.,
image recognition, natural language processing, and speech recognition). Training a high-performance DNNmodel requires a lot
of training data and intellectual and computing resources, which bring a high cost to the model owners. )erefore, illegal model
abuse (model theft, derivation, resale or redistribution, etc.) seriously infringes model owners’ legitimate rights and interests.
Watermarking is considered the main topic of DNN ownership protection. However, almost all existing watermarking works
apply solely to image data. )ey do not trace the unique infringing model, and the adversary easily detects these ownership
verification samples (trigger set) simultaneously. )is paper introduces TADW, a dynamic watermarking scheme with tracking
and antidetection abilities in the deep learning (DL) textual domain. Specifically, we propose a new approach to construct trigger
set samples for antidetection and innovatively design a mapping algorithm that assigns a unique serial number (SN) to every
watermarked model. Furthermore, we implement and detailedly evaluate TADW on 2 benchmark datasets and 3 popular DNNs.
Experiment results show that TADW can successfully verify the ownership of the target model at a less than 0.5% accuracy cost
and identify unique infringing models. In addition, TADW is excellently robust against different model modifications and can
serve numerous users.

1. Introduction

In recent years, deep learning has achieved rapid devel-
opment and has shown great success in various domains,
such as computer vision [1–4], natural language processing
[5–8], and speech recognition [9–11]. Global well-known
companies such as Amazon, Google, Microsoft, and IBM
have already provided cloud-based Machine Learning as a
Service (MLaaS). According to a related report, machine
learning-related industries are expected to generate tril-
lions of dollars in business value by 2022. At the same time,
with the significant success of DNNs, the size of the dataset
used for the training is getting pretty enormous, and the
structure of models is also more complicated so that the

training cost of many models is incredibly high. For ex-
ample, Google’s C4 dataset based on around 20TB of
original Common Crawl’s web crawl corpus (https://
commoncrawl.org) takes 335 CPU-days to clean data.
Another example is that the models of text generation
CTRL containing 1.63 billion parameters were trained for
about two weeks on 2048 TPU cores. In addition, the
design of the DNN structure needs much mental work, and
many experiments are required to determine the optimal
parameters of the model.

)e growing value of DNN increased concerns about
model abuse. Nowadays, DL provides services to users
mainly in two ways: firstly, companies sell DNN models as a
product; secondly, users interact with these models that
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companies deploy in MLaaS platforms through the API. In
these situations, the adversary can acquire a model by legal
purchase or illegal channels (e.g., model inversion [12] and
inference attacks [13]) and then provide illegal services
(online services) to users for profit. In either case, it seriously
infringes the intellectual property (IP) of the legitimate
owners of models and even affects the market order of
MLaaS. )erefore, the IP of DNNs needs solid and lasting
protection.

Digital watermarking technology [14, 15] has powerful
anticounterfeiting and antitheft capabilities and has been
immensely leveraged to protect the IP of multimedia con-
tent. Motivated by such an intuition, DNN watermarking
[16] has been proposed to protect the IP of DNNs. )e
workflow of watermarking is generally divided into two
stages: watermark embedding and ownership verification. In
the watermark embedding stage, the model owner purposely
introduces the trigger set (i.e., watermarking is a trigger in a
backdoor) composed of some aberrant input-output pairs
(x, y) that only they know in the model’s training phase
(analog to poisoning or backdoor attacks [17]). In the
ownership verification stage, model owners query the sus-
picious model f on these specific inputs x and judge whether
the model is infringing by comparing f(x)� y returned by the
model.

So what requirements should an exemplary watermarking
meet? )e answer is feasibility, fidelity, undetectability,
uniqueness, robustness, and scalability. However, DNN
watermarking technology is still in the early stages of devel-
opment, and the existing watermarking schemes are immature
and flawed. DNN watermarking algorithms [16, 18, 19] are
designed in white-box ways, but the stolen models are usually
deployed on a remote server, indicating that the model owner
is unable to access the model parameters. )e trigger set
samples generated in [20] differ significantly from the clean
(unwatermarked) samples. )is means that the adversary can
easily detect these outlier samples. Reference [21] proposed a
blind-watermark framework aiming to amplify the feasibility
of watermarking, but it cannot guarantee the uniqueness of the
watermarked model. Moreover, the previous research is al-
most all limited to the DL image field. DL is also extensively
exploited in the text area, such as machine translation and
speech recognition. However, related watermarking studies
are incredibly scarce. Reference [22] introduced a textual
watermarking scheme that is not capable of uniqueness and
undetectability. In summary, no existing watermarking
schemes can meet all the requirements mentioned above.

)is paper proposed TADW, a new dynamic DNN
watermarking scheme that can fulfill all the requirements
mentioned above. Specifically, we innovatively collect many
texts from the real world as our trigger set sample pool and
select a specific number of samples from it according to the
filtering rules to form the final trigger set. We also employ a
multibit bit string as the distinctive mark of a watermarked
model, namely, the serial number. To assign a unique SN to
every model, we devised an ingenious mapping method
between trigger set and SN, representing different SN using
the same trigger set assigned different class labels. Fur-
thermore, we optimize the method for embedding

watermark based on an experimentally validated watermark
embedding scheme [17] and use the training set and trigger
set to train the model according to the set ratio. Finally, we
implemented TADW and evaluated it against the indicators
above. )e experiments show that TADW can successfully
verify the model’s IP and trace the unique infringing models.
What is more, the trigger set well avoids detection by ad-
versaries. TADW also achieves high performance on fidelity
and robustness. We summarize our contributions as follows:

(i) We propose a novel dynamic watermarking scheme
TADW for IP protection of DNN in the DL textual
domain. Our scheme can embed a unique SN for
each model to track and identify unique infringing
models from many infringing models using the
same IP.

(ii) We implemented TADW on 2 benchmark text
datasets and 3 popular text classification models.
Our experiments show that TADW enables suc-
cessfully verifying the DNN model’s IP.

(iii) We made a detailed evaluation to corroborate the
feasibility, fidelity, undetectability, uniqueness, ro-
bustness, and scalability of TADW.)e experiments
show that TADW can achieve remarkable perfor-
mance in these aspects.

2. Related Work

)e existing watermarking algorithms, which are mainly
based on black-box (only model outputs are obtainable) or
white-box (internal model parameters are accessible), have
been devised in the DL image field, but few watermarking
methods in the textual domain. We now summarize pre-
vious works on DNN watermarking.

2.1. Image Watermarking

2.1.1. White Box. Uchida et al. [16] first proposed a
framework to watermark models in a white-box way. )e
authors interpret the watermark as a T-bit string 0, 1{ }T and
impose a statistical bias on specific parameters to represent
the watermark by adding a new loss term to the loss
function. Existing works [18, 19] make the improvements
inheriting their work and adopt adding new loss items to
embed the watermark. However, these schemes all have a
common disadvantage; that is, anyone knowing the meth-
odology can remove the watermark without knowing the
watermarking information leveraged to inject it. For in-
stance, Wang et al. [23] have proved that these watermarks
can be detected and removed by overwriting the statistical
bias. Fan et al. [24] added a particular “passport” layer to the
model for the model IP verification, such that the model
performs poorly when passport layer weights are not
present. Nevertheless, the author himself of the article also
said that the adversary could claim ownership by finding
other available passports using reverse engineering. How-
ever, these algorithms have an inherent limitation, that is,
needing to access the distrustful model’s internal parame-
ters, which is deeply difficult to achieve in reality.
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2.1.2. Black Box. Zhang et al. [20] used three trigger patterns
(content, unrelated image, and noise) to construct trigger set
samples. But these samples are easily detected by the ad-
versary because these trigger patterns are all visible so that
the adversary can make a defense (invalidate the query for
ownership verification). Guo et al. [25] designed an invisible
watermarking algorithm by adding a message mark based on
the n-bit signature to the images. Li et al. [21] also proposed a
blind-watermark-based framework, using a discriminator
network to smooth out the difference between trigger set
samples and clean samples. Nevertheless, these super-
imposed images for certain types of trigger set samples are
also at risk of being detected by the adversary.

Namba et al. [26] took some original training samples as
trigger set samples assigned wrong labels and increased the
weights of the parameters that significantly contribute to the
prediction exponentially to enhance the robustness of
watermarking. Adi et al. [17] sampled some abstract images
as the trigger set samples randomly selected a target class.
However, these schemes cannot identify the unique
watermarked model.

Jia et al. [27] introduced an innovative watermarking
technology called “entangled watermarks.” )ey ensure that
the original and the watermarking task have a special en-
tanglement by applying the soft nearest neighbor loss. Re-
moving the watermark results in a decrease in model
performance on the original task. Similarly, Li et al. [28] used
a “null embedding” method that takes a bit string as input
and builds strong dependencies between the model’s pri-
mordial classification accuracy and the watermark. )is
manner cuts down the substantial capability of the DNN
after removing the watermark and compels the tremen-
dously high cost of the new watermark embedding. How-
ever, these two watermarking algorithms are flawed in
undetectability and uniqueness. )ey only enable ambigu-
ous user identification and face the risk of watermarks being
detected.

2.2. Text Watermarking. Unlike many image watermarking
schemes in DL, research in the textual field is scarce. As far as
we know, the work [22] is the only textual watermarking
method for classification tasks we have found. )is paper
proposed a framework to watermark a DNN model that is
trained with textual data. Combining the term frequency and
inverse document frequency of a particular word, the
method generates trigger set samples by exchanging the
selected words and swapping the labels of two documents.
However, these trigger set sentences are pretty different from
clean samples because these sentences consist of seriously
inexact semantics and wrong syntax sentences. So this
scheme cannot ensure the undetectability of watermarking
and cannot also trace unique IP infringers.

3. Threat Model

3.1. Watermark Requirements. We describe the require-
ments (Table 1) that a perfect watermarking strategy should
satisfy. Our research mainly focuses on the feasibility,

undetectability, uniqueness, robustness, and scalability of
the watermarking algorithm because these requirements are
difficulties existing studies do not concurrently solve or
ignore.

3.2. Attack on Watermark

(I) Attacks on Robustness. For attacks against water-
marking robustness, we mainly consider two pri-
mary attacks: model fine-tuning and parameter
pruning.
Fine-Tuning. Fine-tuning is routinely applied in
transfer learning. It consists of retraining with
small-scale data a model initially trained to solve an
original task so that the fine-tunedmodel can better
adapt to the new task. Since fine-tuning alters the
model’s weights to some extent, it can be employed
for the adversary to modify the watermarked model
to invalidate the watermark.
Pruning. Parameter pruning regularly cuts some
redundant parameters to save computational re-
sources, reduce the computing power demand,
and obtain a new model that still has a similar high
performance as the original model when the DNN
structure is considerably complex. Of course,
pruning changes the model’s internal parameters,
and if the parameters embodying the watermark
are cut, the embedded watermark may become
invalid.

(II) Attacks on Undetectability. )e trigger set applied
in the erstwhile watermarking schemes is mainly
devised by some operations on the clean samples,
such as superimposing noise or content to an image
and replacing words in a sentence. However, this
method is flawed; that is, the adversary identifies
these aberrant samples for ownership verification
queries from the obvious difference between the
trigger set and clean samples. In paper [26], a
technique called “autoencoder” has been employed
to successfully detect trigger set images used for
remote queries by the legitimate model owner.
)ereby, the adversary invalidates the owner’s re-
mote queries (e.g., returns the wrong confidence
score).

(III) Attacks on Uniqueness. )e adversary can provide
illegal services on the Internet and resell the model
to other people after stealing a DNN. If the others
do the same, many infringing models appear on the
Internet. In this case, the model owner cannot trace
unique models using the same IP and determine
which person has misused the model, that is, failure
to trace the source of the infringement. Uniqueness
is also an important feature to be considered in the
work of anti-infringement in other fields, such as a
unique serial number in every computer software.
)erefore, ensuring the uniqueness of water-
marking is also a key point we consider.
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4. TADW Methodology

)is section introduces the overall framework of TADW in
detail, which mainly comprises three modules: watermark
generation, watermark embedding, and IP verification.

4.1. Watermark Generation. As we introduced in the last
section, the adversary is likely to detect trigger set samples
due to the difference from clean samples. Furthermore,
training a model with the trigger set that follows the dis-
tribution of the training set can significantly affect the
model’s performance. We follow two rules for constructing
the trigger set to fill these gaps: neutrality and cleanness.

4.1.1. Neutrality. Neutrality refers to the text samples near
the classification boundary of the model owner’s classifier
(i.e., the class label of a sample is not very clear). Since the
trigger set samples mainly originated from lightly altered
original training samples in existing research, their feature
distributions are highly similar. Consequently, watermark
embedding significantly degrades the model’s predictive
performance (original task) trained with the trigger set se-
lected incorrect labels. However, our solution is first to
collect many text samples from real-world websites as the
trigger set sample pool for watermarking and then select an
appropriate number of samples from these samples to form
the final trigger set to be used. Filtering rule: for an n-class
(n≥ 2) classification task, if a sample in the pool satisfies
formula (1), the sample is used as a trigger set sample.

|Cfirst − Csecond|≤
1
n

· α, (1)

where Cfirst and Csecond are the two largest classification
confidences of this sample, respectively, and α is a hyper-
parameter. In our experience, if n� 2, set α � 1/5; if n> 2, set
α � 1/4.

4.1.2. Cleanness. Cleanness means that TADW does not
perform any processing or change on the text sentences to
ensure trigger set samples of exact semantics and correct
syntax. )e trigger set samples adopted in most previous
studies are chosen by modifying and processing original
training data, while these common changes are distin-
guishable and detected by the adversary. )erefore, unau-
thorized service providers cannot recognize trigger set

samples using unmodified sentences from clean samples
when legitimate model owners confirm a target model’s
ownership by the remote query. Table 2 shows examples of
the original and watermarked text sentence.

4.2. Watermark Embedding. Watermark embedding mainly
includes two steps: mapping constructing andmodel training.

4.2.1. Mapping Constructing. We adopt a multibit binary
string (e.g., SN� 1111100000) as a unique mark of a
watermarked model because of the simple structure and
robust scalability of the binary string. If the bit length of SN
SNlen � 10, that is, 1023 (210-1, except the string that does
not contain “0”), different SNs can be assigned the water-
marked models in total. SNlen affects the performance of the
watermarked model and also determines the number of
available users. We combine SNlen and the number of the
trigger set samples mapped by each bit (BSnum) to select the
appropriate number of trigger set samples. )e number of
trigger set samples is defined by

TSnum � SNlen · BSnum, (2)

where TSnum is the number of all trigger set samples.
Since SN is a binary string, a suitable approach is needed

to represent these two cases of 0 or 1. Our solution is as
follows: if the bit� 0, change the label of each of the group of
the trigger set samples mapped by this bit to a label that is
different from the original; that is, assign an incorrect label
for every trigger set sample. Please note that, instead of
randomly assigning an incorrect label to a trigger set sample,
we choose the class with the second-largest classification
confidence as the sample’s final label. Contrarily, if the
bit� 1, keep the original label of this group of trigger set
samples. )at is, using these samples with original labels
trains the watermarked model.

4.2.2. Model Training. We use the training set and trigger set
to train the model from scratch together in batches. To
improve the robustness of watermarking, we set each
training batch to be divided into three parts in order and set
the ratio of samples in each batch as 1.5 (trigger set): 7
(training set): 1.5 (trigger set). Please note that the two parts
of the trigger set samples are the same. )e reason for this is
as follows: firstly, the model adjusts the parameters in the

Table 1: Requirements for watermarking techniques.

Requirements Explanation

Feasibility )e model owner is usually unable to access the suspicious model parameters. Compared with white-box watermarking,
black-box watermarking has better feasibility in the real environment.

Fidelity Prediction accuracy of the original task in the watermarked model should not significantly degrade.

Undetectability It is hard for the adversary to detect ownership verification processes. For black-box watermarking, the trigger set samples
are indistinguishable from the clean samples.

Uniqueness Each watermarked model should be unique; that is, the model owner can track and identify a unique infringing model
when many infringing models are using the same IP.

Robustness )e embedded watermark must be resistant to model modification attacks to prevent the watermark from being invalid.
Scalability )e watermarking scheme should support commercial operation and can serve numerous users.
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direction of the trigger set, then captures the features of the
training set, and finally uses the trigger set for fine-tuning;
that is, based on ensuring the performance, we make the
internal parameter distribution of the model as close to the
trigger set as possible. Finally, we select the model with the
smallest loss of the trigger set as the watermarked model.
Figure 1 shows the workflow of watermark embedding.

4.3. IPVerification. )e extraction process of SN is the reverse
process of its mapping. After getting the query result of all
trigger set simples from the suspicious model, the model owner
compares the predicted labels of each group of samples with
their correct labels according to the mapping relationship. For
each group of trigger set samples, initialize a counterCNT� 0; if
L

pre d
i � Lreal

i (0< i≤BSnum), where Lreal
i is the real label of the

i-th sample in this group and L
pre d
i is the predicted label of the

i-th sample, then CNT+1; if L
pre d
i ≠ Lreal

i , then CNT−1. After
all the samples of this group (BSnum samples) are calculated in
this way, if theCNT≥ 0, the bit in SN to be extracted is recorded
as 1, and if the CNT<0, the bit is recorded as 0.)e owner can
extract the final SN from the target model by analogy. Taking
the pretrained SN� 1111100000 as an example, it is not difficult
to imagine that SN� 1111111111 (extracted from the unwa-
termarked model) and SN� 1111100000 (only extracted from
the watermarked model); that is, if the extracted SN contains
“0,” the target model is a watermarkedmodel (i.e., infringing on
the legitimate owner’s IP). Otherwise, this model is clean. Please
note that we also can set the minimum number of “0” in SN to
reduce false negatives of IP verification. Figure 2 shows the
workflow of extracting SN from a model.

5. Experiment and Evaluation

5.1. Experimental Setup

Dataset. Classification tasks are usually divided into two types:
binary classification and multiclassification. To evaluate the
universality of TADW, we choose SST-2 and AG-News for
experiments. We use BERT [29] to generate sentence tokens
and the vectors for representing those tokens.

SST-2 [30] is a dataset about movie reviews (2 classes).
It contains 6920 training samples, 1821 testing samples,
and 872 validating samples.
AG-News [31] is a dataset about news topic classifi-
cation (4 classes), consisting of 120,000 training sam-
ples and 7,600 testing samples.

Network. To fully evaluate the performance of TADW, we
built 3 prevalent text classification models, including
TextCNN [32], TextRNN [33], and BERT [29].

5.2. Valuation. To fully evaluate the performance of TADW
under different SNs, we set SNlen � 10, and the SNs are
1111111110, 1111111100, 1111111000, . . ., 0000000000
(represented by “SN-10-1” to “SN-10-10”), respectively.
)ese SNs include all cases of “0” numbers and can represent
the performance of TADW under various SNs. According to
our experience, the performance of TADW is approximately
the same under different SNs with the same number of “0”
(e.g., 1000000000 and 0000000001). )en, we set BSnum � 11
to carry out experiments; that is, the correct SN bits can be
extracted as long as more than half (more than 5) of the
sample labels are predicted correctly.

5.2.1. Feasibility. Compared with white-box watermarking,
TADW mainly verifies IP through SN extracted from the
target model based on black-box, so it meets the require-
ments of feasibility. For different SNs, our experiments show
that the trigger set samples are all wrongly classified, and the
SNs are all 1, excluding 0 on the unwatermarked model. In
contrast, the accuracy on the watermarked model is 100%,
and we can successfully extract the preembedded SNs. So
TADW can successfully verify the ownership of the target
model.

5.2.2. Fidelity. To measure the side effects of the embedding
watermark on the original task, we implemented a com-
parative assessment of the accuracy between the unwa-
termarked and watermarked models. Experiments show
that, under different SNs, all the watermarked models still
have the same level of accuracy as the clean model. Com-
pared with the original model, the accuracy drop of all
watermarked models on the test set is all less than 0.5% (see
Table 3). )at means that TADW only has slightly and
entirely ignorable effects on the original task. Compared
with previous watermarking schemes [17, 20–22, 25–27], the
fidelity of our scheme is very superior. )us, TADW ex-
cellently meets the fidelity requirement.

5.2.3. Undetectability. As mentioned in Section 4.1, the
trigger set texts adopted by TADW originate from natural
and unmodified texts, which are crawled from real
websites (e.g., Facebook, Twitter, Times, and BBS News)

Table 2: Comparison of the text between the training set and the trigger set.

Dataset Sentence Class

Training
set

)is film is so different from the apple and so striking that it can only encourage us to see SamiraMakhmalbaf as a
very distinctive sensibility, working to develop her own film language with conspicuous success. “Positive”

It is a hellish, numbing experience to watch, and it does not offer any insights that have not been thoroughly
debated in the media already, back in the Dahmer heyday of the mid-90s. “Negative”

Trigger set )e scenery was good.)e acting was just ok though.)e story was a little slow and lacked a real peak or reveal or
anything. Just a meh. It was not bad but was not good. “Neutral”
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containing lots of text data. Hence, the trigger set samples
generated in this manner become utterly indistinguish-
able from training samples. )is method fundamentally
solves the adversary’s problem of detecting the trigger set
samples.

Textual Backdoor Defense. ONION [34] is a tech-
nique that defends against textual backdoor attacks in
DNNs. It is motivated by the fact that almost all existing
textual backdoor attacks insert a piece of context-free text
(word or sentence or special character) into original
normal samples as triggers. )e inserted contents would
break the fluency of the original text, and their constit-
uent words can be easily identified as outlier words by
language models. )e fluency of a sentence can be

measured by the perplexity computed by a language
model. When the model owner uses the trigger set to
query the suspicious model remotely, the adversary can
filter the abnormal words by calculating the difference
between the perplexities of sentences before and after
deleting a word to reduce the success rate of the trigger set
query, thereby making the backdoor invalid. We set the
threshold of this difference to the default value of 0 in this
paper to evaluate our scheme. As can be seen from Ta-
ble 4, the filtering of ONION has only a slight influence
on serial number extraction, and we can still successfully
extract the preembedded SN, but the model’s accuracy of
normal test samples on SST-2 and Ag-News decreased by
5.38% and 2.63%, respectively. “[11,11,11,11,11,11,11,
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11,11,11]” means that all 10 groups of 11 samples are
accurately predicted. “[11,11,11,11,11, 11,10,11,11,11]”
means that the 7th group of samples has a sample class
that is predicted incorrectly. Overall, our scheme has
remarkable undetectability.

5.2.4. Uniqueness. We trust that uniqueness is an essential
requirement for all watermarking algorithms. As described
in Section 3, although the model legitimate owner can verify
the ownership by watermarking when different infringing
users use the same IP, the owner cannot determine which
person has misused the model; that is, it cannot track or
identify unique users. However, TADW can allocate a
unique SN to every watermarked model using a dynamic SN
mapping algorithm and then identify illegal models by
extracting SN.

5.2.5. Robustness. TADW has excellent robustness against
fine-tuning attacks and pruning attacks. Detailed evaluation
results are as follows:

(i) Fine-Tuning. In this experiment, we divide the test
set into two halves (50% used for 80 epochs of fine-
tuning and the second half used for evaluating new

Table 3: Testing accuracy on clean models and watermarked models.

Model
SST-2 AG-News

TextCNN (%) TextRNN (%) BERT (%) TextCNN (%) TextRNN (%) BERT (%)
Clean 89.07 88.19 91.49 93.88 93.30 94.25
SN-10-1 88.58 87.75 91.05 93.66 93.87 93.87
SN-10-2 88.58 87.75 91.10 93.55 92.99 93.87
SN-10-3 88.91 87.75 91.05 93.43 92.97 93.79
SN-10-4 88.58 87.70 91.05 93.39 92.80 94.01
SN-10-5 88.63 87.70 91.27 93.63 92.84 93.78
SN-10-6 88.85 87.70 91.05 93.45 92.83 93.84
SN-10-7 88.58 88.25 91.21 93.39 92.86 94.11
SN-10-8 88.58 87.70 91.65 93.38 92.84 94.01
SN-10-9 88.58 87.70 91.32 93.39 92.80 94.17
SN-10-10 88.63 87.81 91.27 93.47 92.87 93.92

Table 4: Query results of trigger set and test set before and after ONION filtering.

ONION
SST-2 AG-News

Testing acc (%) WM query Testing acc (%) WM query
Before filtering 88.63 [11,11,11,11,11, 11,11,11,11,11] 93.66 [11,11,11,11,11, 11,11,11,11,11]
After filtering 83.25 [11,10,11,11,11, 11,10,10,11,11] 91.03 [11,11,11,11,11, 11,10,11,11,11]

Table 5: )e query results of the trigger set after 80 epochs of fine-
tuning on SST-2.

SN TextCNN TextRNN BERT
SN-10-1 Lossless [11,11,11,11,11,10,11,11,11,11] Lossless
SN-10-2 to
SN-10-4 Lossless Lossless Lossless

SN-10-5 Lossless [11,11,11,11,11,10,11,11,11,11] Lossless
SN-10-6 to
SN-10-10 Lossless Lossless Lossless 85.00
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Figure 3: )e testing accuracy of the watermarked model under
different pruning rates (SST-2).
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Figure 4: )e testing accuracy of the watermarked model under
different pruning rates (AG-News).
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models) and adopt the last learning rate (other
parameters keep constant) during previous training
DNNs. It can be seen from Table 5 that all embedded
SNs can be successfully extracted on SST-2, and
almost all extraction is lossless. While TADW can
extract the embedded SN losslessly on all models for
AG-News. “Lossless” indicates that all trigger set
sample labels are correctly predicted. When
SNlen � 10, it means
“[11,11,11,11,11,11,11,11,11,11]”. In summary,
TADW can powerfully resist fine-tuning attacks.

(ii) Pruning. We use the pruning method proposed in
paper [35], which mainly sparsifies the redundant
weights of the convolution layer in the target
watermarked DNN. During the pruning, for
watermarked TextCNN, we remove 10% to 90% of
parameters with the lowest absolute values by
setting them to zero. )en, we compare the testing
accuracy and the query result of the trigger set.
Experiments show that, under different pruning
rates, we successfully extract the embedded SNs in

all watermarked models. From Figures 3 and 4, we
can see that even if 90% of parameters are pruned,
the testing accuracy shows a downward trend on
the AG-News, and the performance of the model
drops by 12.3% in the worst case, while under
different pruning rates, whether SST-2 or AG-
News, we can still extract the preembedded SN
without loss.

5.2.6. Scalability. Scalability determines whether the
watermarking scheme can support numerous users in the
distributed system. If SNlen � 10, TADW can be able to serve
1023 users. Similarly, if SNlen � 15, it supports 32767(215-1)
users, and if SNlen � 20, it can serve 1048575 users. To
evaluate the scalability of TADW, we added related ex-
periments with SNlen � 15 and SNlen � 20. As the length of
SN increases, the amount of related experiments increases
exponentially, so we choose two extreme cases of SN (such as
111111111111110 and 000000000000000) and two common
cases (such as 111111110000000 and 111111111111100);

Table 6: Testing accuracy on clean models and watermarked models under different SNlen.

Model
SST-2 AG-News

TextCNN (%) TextRNN (%) BERT (%) TextCNN (%) TextRNN (%) BERT (%)
Clean 89.07 88.19 91.49 93.88 93.30 94.25
SN-15-1 88.58 88.19 91.16 93.42 92.82 93.89
SN-15-2 88.69 87.86 91.10 93.45 92.86 93.93
SN-15-7 88.63 87.70 90.99 93.59 93.04 93.99
SN-15-10 88.58 88.03 90.99 93.45 92.91 94.05
SN-20-1 88.58 87.75 91.05 93.57 92.87 93.87
SN-20-2 88.63 87.70 91.38 93.39 92.84 93.97
SN-20-10 88.69 88.08 90.99 93.46 92.80 94.14
SN-20-20 88.80 87.70 91.32 93.49 92.80 93.87

Table 7: )e query results of the trigger set after 80 epochs of fine-tuning when SNlen � 15 or SNlen � 20.

SN Dataset TextCNN TextRNN BERT

SN-15-1 SS2 Lossless Lossless Lossless
AG-News Lossless Lossless Lossless

SN-15-2 SST-2 Lossless Lossless [11,11,11,11,11, 10,11,11,11,11, 11,11,11,11,11]
AG-News Lossless Lossless Lossless

SN-15-7
SST-2 Lossless Lossless [11,11,11,11,11, 10,11,11,11,11, 11,11,11,11,11]

AG-News Lossless [11,11,11,11,11, 11,11,11,
11,11, 11,11,11,10,11] Lossless

SN-15-10 SST-2 Lossless Lossless Lossless
AG-News Lossless Lossless Lossless

SN-20-1 SST-2 Lossless Lossless [11,11,11,11,10, 11,11,11,11,11,
11,11,11,11,11, 11,11,11,11,10]

AG-News Lossless Lossless Lossless

SN-20-2 SST-2 Lossless Lossless Lossless
AG-News Lossless Lossless Lossless

SN-20-10 SST-2 Lossless Lossless Lossless
AG-News Lossless Lossless Lossless

SN-20-20 SST-2 Lossless [11,11,11,11,11, 11,11,11,11,
11, 11,11,11,11,11, 10,11,11,10,11]

[11,11,11,11,10, 11,11,11,11,11,
11,11,11,11,11, 11,11,11,11,10]

AG-News Lossless Lossless Lossless
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according to the experimental results of SNlen � 10, the
performance of TADW under these SNs basically represents
the performance of the entire scheme. We mainly evaluate
the fidelity and robustness of TADW under different SNs.
“SN-15-1” means SNlen � 15, contains a 0 (i.e.,
111111111111110), and others are similar. Table 6 indicates
that, compared with the clean model, the performance loss
of the watermarkedmodel on the test set also remains within

0.5% on SNlen � 15 and SNlen � 20 for 2 datasets and 3
DNNs. )erefore, SNlen has little effect on the performance
of the watermarked model. As can be seen from Table 7, the
embedded SNs can be successfully extracted after 80 epochs
of fine-tuning whether SNlen � 15 or SNlen � 20. For pa-
rameter pruning, we extract all the preembedded SNs
losslessly when SNlen � 15. Table 8 shows that all SNs can
also be successfully extracted when SNlen ≤ 20. )erefore, it

Table 9: Testing accuracy on clean models and watermarked models under different BSnum.

Model
BSnum � 21 BSnum � 31

TextCNN (%) TextRNN (%) BERT (%) TextCNN (%) TextRNN (%) BERT (%)

Clean 93.88 93.30 94.25 93.88 93.30 94.25
SN-10-1 93.46 92.80 93.83 93.46 92.83 93.91
SN-10-2 93.47 92.97 93.83 93.42 92.80 93.82
SN-10-5 93.59 92.86 94.00 93.39 92.88 93.78
SN-10-10 93.39 93.03 93.75 93.39 92.80 93.80

Table 10: )e query results of the trigger set after 80 epochs of fine-tuning on AG-News under different BSnum.

Model
BSnum � 21 BSnum � 31

TextCNN TextRNN BERT TextCNN TextRNN BERT

SN-10-1 Lossless Lossless Lossless Lossless Lossless Lossless
SN-10-2 Lossless Lossless Lossless Lossless [31,31,31,31,31,31,31,31,30,30] Lossless
SN-10-5 Lossless Lossless Lossless Lossless [31,31,31,30,31,31,31,31,31,31] Lossless
SN-10-10 Lossless [21,21,20,21,21,21,21,21,21,21] Lossless Lossless Lossless Lossless

Table 8: )e performance of watermarking under pruning when SNlen � 20.

SN Pruning rate (%)
SST-2 AG-News

Testing acc (%) WM query Testing acc (%) WM query

SN-20-1
0 88.58 Lossless 93.57 Lossless

90 88.96 Lossless 85.49 [11,11,11,11,11,10,11,11,11,11,
11,11,11,11,11,10,11,11,11,11]

SN-20-2
0 88.63 Lossless 93.39 Lossless

90 87.48 Lossless 84.67 [11,11,11,11,11,11,10,11,11,11,
11,11,11,11,11,11,11,11,11,11]

SN-20-10
0 88.69 Lossless 93.46 Lossless

90 88.66 Lossless 86.97 [11,11,11,11,11,11,10,11,11,11,
11,11,11,11,11,11,11,11,11,11]

SN-20-20 0 88.80 Lossless 93.49 Lossless
90 88.41 Lossless 87.26 Lossless

Table 11: )e performance of test set and trigger set under pruning for different BSnum.

Model Pruning rate (%)
BSnum � 21 BSnum � 31

Testing acc (%) WM query Testing acc (%) WM query

SN-10-1 0 93.46 Lossless 93.46 Lossless
90 87.41 [21,21,20,21,21, 21,21,21,21,21] 87.57 [31,30,31,31,30, 30,31,30,31,31]

SN-10-2 0 93.47 Lossless 93.42 Lossless
90 85.75 [21,21,21,20,19, 21,21,21,21,21] 86.20 [31,30,31,30,31, 31,30,31,30,30]

SN-10-5 0 93.59 Lossless 93.39 Lossless
90 88.66 [21,19,20,21,21, 19,21,20,21,21] 83.67 [31,30,30,29,31, 30,31,29,30,30]

SN-10-10 0 93.39 Lossless 93.39 Lossless
90 82.95 [21,19,21,21,21, 20,21,21,21,21] 85.70 [30,31,30,31,29, 30,31,31,30,31]
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can be concluded that TADW has excellent scalability and
can serve a large number of users.

6. Discussion

To measure the impact of BSnum on TADW, we set SN as
1111111110, 1111111100, 1111100000, and 0000000000,
respectively, and added related experiments with BSnum � 21
and BSnum � 31 on AG-News. Similarly, the performance
loss of the watermarked models also remains within 0.5% for
different BSnum (see Table 9). For model fine-tuning, the
preallocated SNs all can be extracted losslessly on TextCNN
and BERT. For TextRNN, only when BSnum � 31 has the
extraction of SN a slight loss, and the rest are lossless ex-
traction (see Table 10). Table 11 shows that whether BSnum �

21 or BSnum � 31, the embedded SNs can still be successfully
extracted under model pruning, although the increase of
BSnum will make the watermarked model slightly more
sensitive to the pruning operation. Generally speaking, when
BSnum ≤ 31, TADW can successfully verify IP and have re-
markable performance.

7. Conclusions

)is paper proposes a novel dynamic watermarking
framework TADW with the serial number to protect the
IP of DNN that can identify unique infringing models and
primely conceal trigger set samples applied to query the
remote model for IP verification. Again, we innovatively
establish a mapping relation between SN and trigger set
that leverages the same batch of samples to represent
many different SN. We implement TADW on two
benchmark datasets of text classification and 6 popular DL
models. )e experiments indicate that TADW can verify
the models’ ownership with remarkable robustness and
fidelity.

(I) More General Watermarking. As mentioned above,
most of the current research on watermarking
neural networks is focused on the image field, while
other areas such as text and speech are very lacking.
Besides, the existing watermarking methods are
mainly used in classification tasks, and the research
on other tasks such as text generation and image
denoising is also lacking. Ideally, generality requires
that watermarking algorithm should be independent
of the dataset and the DL algorithms used; that is, it
can adapt to different scenes (such as image rec-
ognition, image denoising, text classification, and
text generation). We think that generality is the
biggest challenge that watermarking will face in the
future.

(II) Public Watermarking . We suppose that, compared
with the present concealed watermarking, the future
development should be toward public water-
marking. Just like coins in various countries, anti-
counterfeiting marks are public and cannot be
forged. )at requires the watermarking to be
unforgeable even if it is made public. In conclusion,

the publication of watermarking is helpful to solve
the problem of watermark rewriting, and it is also
beneficial to combat the model infringement and
provide support for the verifiability of
watermarking.

Data Availability

)e datasets and codes used to support the findings of this
study are available from the corresponding author upon
request.

Conflicts of Interest

)e authors declare that they have no conflicts of interest.

Acknowledgments

)is work was supported by the Guangxi Key Laboratory of
Cryptography and Information Security (No. GCIS202123),
the Natural Science Basic Research Program of Shaanxi (No.
2021JQ-192), and the Fundamental Research Funds for the
Central Universities (No. JB211508).

References

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet
classification with deep convolutional neural networks,”
Advances in Neural Information Processing Systems, vol. 25,
2012.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” CoRR abs/,
vol. 1409, p. 1556, 2015.

[3] K. He and X. Zhang, “Shaoqing Ren and Jian Sun. “Identity
Mappings in Deep Residual Networks,” ArXiv abs/
1603.05027, 2016.

[4] C. Szegedy, W. Liu, Y. Jia et al., “Vincent vanhoucke and
andrew rabinovich. “Going deeper with convolutions,” in
Proceedings of the 2015 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 1–9, Boston, MA, USA,
June 2015.

[5] Y. Goldberg, “A Primer on Neural Network Models for
Natural Language Processing,” ArXiv abs/1510.00726, 2016.

[6] D. Bahdanau, K. Cho, and Y. Bengio, “Neural Machine
Translation by Jointly Learning to Align and Translate,”
CoRR abs/1409, 2015.

[7] R. Zellers, A. Holtzman, H. Rashkin et al., “Defending against
Neural Fake News,” 2019. ArXiv abs/1905, Article ID 12616.

[8] A. Vaswani, N. M. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,
and A. N. Gomez, “Lukasz Kaiser and Illia Polosukhin.
“Attention Is All You Need,” ArXiv abs/1706.03762, 2017.

[9] A. Graves, Abdel-rahman Mohamed, and G. E. Hinton,
“Speech recognition with deep recurrent neural networks,” in
Proceedings of the 2013 IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 6645–6649,
Vancouver, BC, Canada, May 2013.

[10] A. Y. Hannun, “Carl case, jared casper, bryan catanzaro,
gregory frederick diamos, erich elsen, ryan J. Prenger, sanjeev
satheesh, shubho sengupta, adam coates and A. Ng. “Deep
speech: scaling up end-to-end speech recognition,” ArXiv
abs/1412.5567, 2014.

[11] G. Hinton, L. Deng, D. Yu et al., “Deep neural networks for
acoustic modeling in speech recognition: the shared views of

10 Security and Communication Networks



four research groups,” IEEE Signal Processing Magazine,
vol. 29, no. 6, pp. 82–97, 2012.

[12] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion
attacks that exploit confidence information and basic coun-
termeasures,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security,
Denver, CO, USA, October 2015.

[13] B. Wang and N. Z. Gong, “Stealing Hyperparameters in
Machine Learning,” in Proceedings of the 2018 IEEE Sym-
posium on Security and Privacy (SP), pp. 36–52, San Francisco,
CA, USA, May 2018.

[14] G. C. Langelaar, I. Setyawan, and R. L. Lagendijk, “Water-
marking digital image and video data. A state-of-the-art
overview,” IEEE Signal Processing Magazine, vol. 17, no. 5,
pp. 20–46, 2000.

[15] P. Singh and R. Singh Chadha, “A survey of digital water-
marking techniques, applications and attacks,” International
Journal of Engineering and Innovative Technology (IJEIT),
vol. 2, no. 9, pp. 165–175, 2013.

[16] Y. Uchida, Y. Nagai, S. Sakazawa, and S.’ichi Satoh, “Em-
bedding watermarks into deep neural networks,” in Pro-
ceedings of the 2017 ACM on International Conference on
Multimedia Retrieval, Paris, France, April 2017.
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