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Network anomaly detection system (NADS) is one of the most important methods to maintain network system security. At
present, network anomaly detection models based on deep learning have become a research hotspot in the area because of their
advantage in processing high-dimensional data and excellent performance on detecting anomaly. However, most of the related
research studies are based on supervised learning, which has strict requirements for dataset such as labels with high accuracy.
However, there are some difficulties in obtaining a large amount of data with complete label message, thus seriously hindering the
development and deployment of NADS based on DL. In this paper, we propose an unsupervised learning method to detect
network anomaly, contrastive representation for network data (CRND). Based on contrastive learning, without label message, a
qualified model is trained, providing more possibilities for the field. On CICIDS2018, the evaluation experiment proves that
CRND can achieve 96.13% accuracy with only 200 items, and its F1-score reaches 0.96, which is far higher than that of other
existing unsupervised learning methods. As fine-tuning is carried out, F1-score can reach a convergence level of 0.99, and the
detection performance is the same as that of the detection model based on supervised learning.

1. Introduction

According to the 2021 China Internet Security Report [1],
the number of network attacks monitored in 2021 has in-
creased significantly compared with that in 2020, including
60% year-on-year increase in DDoS attacks and 241% year-
on-year increase in web attacks, three times as many APT
attacks as in 2020, and other attacks have also increased to
different degrees. .ese statistics show that network attacks
are increasing day by day. How to detect network anomaly
efficiently and accurately is an important issue to ensure
network security.

With the popularity of network applications and the
continuous increase of network users, the current network
environment gets large amount of data and is evolving at
high speed. In order to cope with network characteristics of
the new era, network anomaly detection systems based on
deep learning have become a hotspot in the field [2].
However, most of the existing methods in the field are based

on supervised learning, which has requirements for the
structural characteristics of datasets, that is, the datasets
need to be annotated manually. At the same time, deep
learning also has a requirement for the data volume. In-
sufficient data lead to the models with poor performance.
Building a well-labelled dataset with sufficient data capacity
is costly and error prone, requiring a lot of human labour
and time, which greatly hinders the development and it-
eration of network anomaly detection models based on deep
learning [3]. Meanwhile, the network behaviour is in-
creasingly diverse, and new malicious behaviours emerge
endlessly. .e development process of network anomaly
detection model based on supervised learning is too lengthy
to adapt to the evolution speed of the current network
environment.

Unsupervised learning/self-supervised learning can
avoid the cost of building large-scale and well-structured
datasets, reduce the workload to get deep learning-based
models, and shorten the development cycle. Self-supervised
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learning is a subclass of unsupervised learning, which
completes model training by using a self-defined pseudo-
label as a supervised signal. Unsupervised learning focuses
on representation learning, which aims at learning an effi-
cient, accurate, and universal potential representation. It is
often used to construct pretrained models, which is the key
support for the convenience and industrialization of models
based on deep learning. At present, unsupervised learning
has achieved great success in the area of natural language
processing and image recognition, such as GPT [4, 5], BERT
[6], and the contrastive learning frameworkMoCo [7]..ese
achievements have brought revolutionary changes to their
respective areas.

Comparative learning, one of the mainstream methods
in the area of unsupervised learning [8], gets the potential
representation of data by learning the differences before the
samples in the form of dynamic dictionary query. Based on
the idea of comparative learning, this paper proposes an
unsupervised representation learning method of network
data, contrastive representation for network data (CRND).
In the evaluation on CICIDS2018, our model gets 96.13% on
accuracy with only 200 rows of data, and the detection
performance is equal to or even better than that of the
traditional supervised learning method..e contributions of
this paper can be summarized as follows:

(1) We apply comparative learningmethod to the area of
network security, and an unsupervised learning
method for network data representation is proposed.
On this basis, a network anomaly detection model is
constructed, which avoids the huge cost of con-
structing a large-scale training dataset annotated by
humans.

(2) We design a data augmentation algorithm based on
autoencoder (AE), named as sparse augmentation
network (SAN), to serve as the transformer in
contrastive learning framework, which can provide a
referable choice for data augmentation methods in
nonimage data.

(3) We propose the model CRND, which is trained on
data without label message. In the target environ-
ment, with CRND, only a small amount of data is
needed for fine-tuning, and an excellent detection
model can be obtained, providing a method to
construct pretrained model for network researchers.

2. Related Works

.e work of this paper mainly involves network anomaly
detection and contrastive learning. Next, related works in
the two areas are reviewed.

2.1. Network Anomaly Detection. Network anomaly detec-
tion is an important topic in network security. In recent
years, influenced by the success of deep learning [9] in the
area of image [10] and natural language processing [11], the
network anomaly detection models based on deep learning
have become a research hotspot.

In [12], a model based on long short-term memory
(LSTM) is proposed, which is trained on the normal network
traffic data. .e model judges whether the network envi-
ronment is abnormal by comparing the predicted value of
the model for the next state with the true value. In [13], Yang
and Wang proposed an intrusion detection model IBIDM
based on improved convolutional neural network (ICNN),
reaching 92.94% on accuracy in the five classification tasks of
NSL-KDD. In [14], Shone et al. constructed a deep anomaly
detection model based on nonsymmetric deep autoencoder
(NDAE), which achieved 87.37% F1-score and 100% ac-
curacy on the five classification tasks of NSL-KDD dataset.
Kim et al. [15] built an anomaly detection model based on
multilayer perceptron (MLP) with statistical network se-
curity data. On 10% KDD CUP99, it has achieved 99.3% on
accuracy and 0.12% on false-alarm rate. To avoid ambiguity,
the calculation method of the abovementioned metrics is
shown in equations (1)–(3), and the meaning of variables in
the equations is shown in Table 1.

Recall �
TP

TP + FN
, (1)

F1 − score �
2∗ precision∗ recall
precision + recall

, (2)

false − alarm �
FP

FP + TN
. (3)

It can be seen that network anomaly detection models
based on deep learning have reached a satisfactory level in
detection performance. It is worth noting that most of the
current mainstreammethods are based on supervised learning,
and thesemethods rely heavily on large-scale well-labelled data.
In [3], the authors reviewed more than thirty papers related to
machine learning published in top-level conferences or jour-
nals in the area of network security in the past decade and
summarized the pitfalls of the existing network anomaly de-
tection models based on machine learning. Among them, the
problem of data collection and labelling is the one that exists in
most of the studies and gets potentially devastating effects. In
addition to the workload and cost, data acquisition and la-
belling are also faced with difficulties such as sampling bias and
label inaccuracy. Meanwhile, supervised learning itself also
faces potential dangers such as generalization error, spurious
correlations, and adversarial attacks [16]. .erefore, building a
deep learning model based on unsupervised learning method
to avoid data problems is a research direction with prospect,
innovation, and application value.

2.2. Contrastive Learning. .e goal of contrastive learning is
to gather samples sharing the same type and discrete those
with different types. .e difference between contrasting
learning and other algorithms mainly lies in pretext task and
loss function, and there is a correlation between them. From
the two perspectives, we will review the previous research.

Pretext task is usually not the original target of models,
but it can help models better complete the target task. .eir
proposal can enable models to learn a data representation that
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can efficiently serve the final purpose, such as denoising
autoencoder (DAE) [17], instance discrimination [18], and so
on..e contrastive learning method proposed in this paper is
based on instance discrimination, as shown in Figure 1. .e
data after data augmentation are regarded as a positive ex-
ample of the original sample, and other samples in the same
batch are regarded as negative examples. After that, the model
will learn to distinguish the difference between positive and
negative examples. In order to achieve this effect, it is nec-
essary to define the corresponding loss function.

Different pretext tasks need to define corresponding loss
functions. .e loss functions of contrastive learning can be
divided into three categories: predictive loss function,
contrastive loss function, and adversarial loss function. .e
predictive loss function is a relatively common loss function,
which aims at measuring the distance between the output
and the established facts, such as the reconstruction error in
[17] and the cross entropy in [19]. .e contrastive loss
function [20] is mainly used to measure the similarity be-
tween pairs of samples in the feature space. Taking instance
discrimination [18] as an example, the loss function needs to
have the ability to comprehensively consider the distance
between the original sample and the positive sample (O-P
distance) and the distance between the original sample and
negative sample (O-N distance). With O-P distance de-
creasing or O-N distance increasing, the loss should be
smaller, such as NCE [21]. .e adversarial loss function [22]
mainly calculates the difference between probability distri-
butions, and the literature [23] summarizes and reviews its
related research.

3. Method

3.1.Overall Architecture. .e goal of this research is to avoid
the cost of collecting data with complete labels, thus
obtaining a reliable network anomaly detection model
conveniently. In order to achieve this goal, this paper
completes the representation learning of network security
data on the unlabelled data X � x0, x1, . . . , xn  by using the
contrastive learning method with instance discrimination as
pretext task, converts the network security data into low-
dimensional feature vectors fθ(xi) ∈ Rd, and then con-
structs CRND. Finally, in the target network environment, a
reliable model can be obtained by fine-tuning. .e overall
flow is shown in Figure 2.

Based on contrastive learning, the architecture of CRND
is shown in Figure 3. .e design of each part will be de-
scribed in detail in the following.

According to [7], the contrastive learning problem can
be modelled as a dictionary look-up task. A certain feature
vector ki inQ is regarded as a query vector, and other vectors

k0, . . . , ki−1, ki+1, . . . , kbatchsize−1  in the set and the feature
vectors d0, . . . , dbatchsize−1  in D are regarded as the keys of a
dictionary. Consider ki as the feature vector of data i and di

as the feature vector of data i′, which is the version of data i

after augmentation. .en, the model can be regarded as a
query for di that matches with ki in the dictionary. .e goal
is to make ki and di as similar as possible and make ki as
different as possible from other vectors, and then the model
gets the ability to distinguish these samples and completes
the task of representation learning.

3.2. Loss Function Based on Softmax. Under the above
problem modelling, the loss function should meet the fol-
lowing requirements. .e closer ki is to di, the less the loss
should be. Meanwhile, the more different ki is from other
vectors, the less the loss should be. In order to meet this
requirement, with similarity measured by dot product, on
the basis of NCE [21], the calculation formula of the loss of ki

is designed as follows:

Lki
� −log

exp ki · di/τ( 


batchsize−1
j�0,j≠i exp ki · kj/τ  + 

batchsize−1
j�0 exp ki · dj/τ 

, (4)

where τ is a temperature parameter, which is consistent with
previous work [18]. In the equation, the denominator is the
sum of the similarity of ki with all vectors in the dictionary,
and the numerator is the similarity of ki with di. Actually, the
loss function is a log loss based on the softmax classifier with
the number of categories of 2∗ batchsize − 1.

On this basis, the average loss of each calculated batch is
shown in the following equation:

Loss �


batchsize−1
i�0 Lki

batchsize
. (5)

3.3. Data Augmentation Algorithm Based on Dimensionality
Reduction and Sparsity Constraint. Data augmentation is an
indispensable part in contrastive learning framework.
.rough appropriate information processing, it is ensured
that the converted data version retains the essential char-
acteristics of the original data and has the value of identi-
fication andmatching..e vector after data augment is often
regarded as a positive example of the original vector, and the
two can be viewed as different perspectives of the same
object. A reasonable data augment algorithm can lead to a
model with outstanding performance.

Currently, those augmentation algorithms used in con-
trastive learning are proposed for image data, such as color
conversion [24] and spatial transformation [25]. However,
there are many forms of network security data, such as the

Table 1: .e meaning of TP, FP, TN, and FN in this paper.

Name Meaning
True positive (TP) .e number of malicious samples classified as malicious
False positive (FP) .e number of benign samples classified as malicious
True negative (TN) .e number of benign samples classified as benign
False negative (FN) .e number of malicious samples classified as benign
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original packets and traffic statistical characteristics..e above
data augmentation algorithms cannot handle network security
data well. In the paper, a data augmentation algorithm based
on dimensionality reduction and sparsity is designed for
network security data.

Autoencoder (AE) is a common generative model, which
aims at making the output as close as possible to the input
[26]. In this process, the relevant algorithms need additional
constraints to avoid the emergence of shortcut, so that the
model can get meaningful result. Without these constraints,
the identity operation is the most likely outcome. Dimension
constraint [27] forms a bottleneck structure by compressing
the dimensions of the middle layer, so that the model can
learn effective data representation. .e sparsity constraint
[28] can force the model to learn meaningful output by
setting the threshold for the sparsity of the intermediate
expression without changing dimensions.

In order to obtain the augmented version of samples, it is
necessary to ensure the dimensional consistency and content
difference after the operation. Based on dimensionality re-
duction and sparsity constraint, sparse augmentation net-
work (SAN) is designed as shown in Figure 4.

In Figure 4, 76D and 38D refer to the feature dimensions
of the data samples during the experiment. In this paper, the
relevant experiments are based on CICIDS2018 [29], in
which the data samples are the statistical characteristics of a
certain network flow.

.e loss function of SAN is composed of reconstruction
error and sparsity item. .e reconstruction error is used to
measure the distance between the output and the input. In
this case, it indicates that the intermediate expression still
has the ability to represent the original data. .e sparsity
item is used to restrict the sparsity of the middle layer. In this
paper, the reconstruction error is calculated by mean square
error (MSE), and the sparsity item is calculated by the
Kullback–Leibler divergence (KLD). .e loss function is
shown in equations (6)–(8).

Loss � MSE + KLD, (6)

MSE � E x′ − x( 
2
, (7)

KLD � − 
x

p(x)log
q(x)

p(x)
. (8)

In equations (7) and (8), x represents the input, x′
represents the output of SAN, p(x) represents the distri-
bution of the intermediate expression, and q(x) represents
the expected distribution of the intermediate expression,
which is determined by the threshold in SAN.

4. CRND

Based on the loss function and data augmentation algorithm
proposed above, according to the construction process
shown in Figure 3, CRND is trained with CICIDS2018 as the
benchmark dataset.

.e selection of encoder can be adjusted according to the
target data. For example, in [7], the research team selected

ResNet-50 [30] as the encoder network corresponding to
image data with higher dimensions. In subsequent studies,
ViT [31] with better performance became mainstream. But
the statistics on network flow, such as CICIDS2018, gets
fewer dimensions and has no temporal relationship, making
multilayer perceptron (MLP) with faster training speed and
less parameters become a good choice . In order to prevent
overfitting, dropout [32] is attached to the network as shown
in Figure 5.

5. Experiment

5.1. Experimental Setup. .e experimental part of this study
is mainly carried out on CICIDS2018 [29]. It is developed by
the Communications Security Establishment (CSE) in co-
operation with the Canadian Institute for Cybersecurity
(CIC), containing benign behaviours and most of the
existing abnormal behaviours, which are highly similar to
the real environment, thus making experiments prove the
validity of our method to a certain extent. In addition,
CICIDS2018 meets the 11 indicators for constructing a
benchmark dataset proposed in [33], having advantages over
other datasets.

We extract 521,969 items from CICIDS2018, in which
each one represents the statistics for a network flow defined
by five-tuple. It should be noted that in order to be com-
patible with SAN, nominal features should be deleted such as
Dst Port and Protocol. .en, these data are divided into
training set and test set at a ratio of 4 :1. .e final shapes of
these datasets are shown in Table 2, in which the first number
represents the number of items and the second number
represents the number of features contained in an item.

In the follow-up experiments, all experiments are carried
out on binary-class task. In addition, only the training set
was involved in training process to ensure the effectiveness
of these experiments. .e other settings are shown in Ta-
ble 3, in which temperature parameter remains consistent
with previous work [5, 18].

5.2. Linear Classification Protocol. Linear classification
protocol refers to training a linear layer to complete the
classification task with the weights in CRND frozen, which is
often used to evaluate the effectiveness of models in the area
of unsupervised learning. During this process, little labelled
data are needed to complete training on the linear layer. .e
amount of labelled data and the evaluation performance of
the corresponding models in the test set are shown in
Table 4.

From the results, it can be seen that little data are needed
to get a reliable model based on CRND. .e experiment
based on linear classification protocol can prove the effec-
tiveness of CRND and the possibility of CRND as a pre-
trained model.

Meanwhile, it can be found from the results that with the
amount of data used for fine-tuning gradually increasing, the
improvement of model detection performance is not as
expected. Under the constraint of linear protocol classifi-
cation, its backbone network parameters are fixed, which
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limits the learning ability of the whole model, making the
detection performance of the model have a superior limit,
and there is resistance to subsequent performance
improvement.

5.3. CRND as a Pretrained Model. On the basis of the net-
work in linear classification protocol, unfreeze the backbone
network of CRND so that its network parameters are
updated along with the classifier and evaluate the detection
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Table 2: .e shape of datasets during experiments.

Dataset Shape
Training set [417576, 77]
Test set [104393, 77]

Table 3: .e settings during experiments.

Parameters Value
Optimizer Adam
Learning rate in SAN 0.001
Learning rate in CRND 0.001
Batch size 4096
Epochs 200
Temperature parameter 0.7
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performance of CRND as a pretrainedmodel..e amount of
data used in fine-tuning and the corresponding model
performance are shown in Table 5.

From the results, it can be seen that with CRND as a
pretrained model, a detection model with excellent detection
performance can be obtained based on little samples. Among
them, when 200 rows of data are used for fine-tuning, the
model is acceptable in terms of cost, and the performance is
relatively excellent. In subsequent experiments, this model is
used as a baseline to compare with other methods, which is
called CRND-200. In addition, we found that with the in-
crease of the amount of data for fine-tuning, the im-
provement of the model performance is persistent without
saturation phenomenon. To prove this point, CRND-10000
and CRND-100000 are constructed, and the results are
shown in Table 5. Such a large amount of fine-tuning data
may not be practical, but it is enough to prove that CRND
gets the same continuous learning ability as deep unsu-
pervised models in other fields.

When the amount of fine-tuning data reaches 10000, the
F1-score index representing the comprehensive perfor-
mance of the model reaches 0.98, and there is room for
further optimization. When the amount of fine-tuning data
reaches 100000, the F1-score of the model reaches 0.9954,
which indicates that the CRND method has one of the most
important characteristics of deep unsupervised learning.

With the increase of the amount of fine-tuning data, the
model can evolve continuously without premature
convergence.

Based on the model in [15], the whole training set is used
to construct a network anomaly detection model based on
supervised learning. .e evaluation results are shown in
Table 6.

It can be seen that when only 200 five-tuples are used,
CRND’s F1-score has approached that of the supervised
model trained by more than 400,000 five-tuples. In ad-
dition, with the increase of the data used for fine-tuning,
the CRND method has the ability to match or even
exceed the performance of the supervised learning
method.

6. CRND and Other Unsupervised
Learning Methods

In previous studies, there are few network anomaly de-
tection models based on deep unsupervised methods.
Most of the existing unsupervised methods applied in the
area of network anomaly detection are based on machine
learning [34–36]. Among them, the anomaly detection
algorithms based on PCA and so on are mainstream.
Now, a network anomaly detection model is built based
on other unsupervised methods [37]. .e results are

Table 4: .e evaluation results during linear classification protocol.

Number of five-tuple Accuracy (%) Precision (%) Recall (%) False-alarm (%) F1-score
10 82.35 89.67 68.84 6.53 0.78
50 90.49 98.17 90.46 1.24 0.88
100 88.85 98.73 76.29 0.81 0.86
10,000 91.94 98.93 83.03 0.72 0.91

Table 5: .e evaluation results with CRND as a pretrained model.

Number of five-tuple Accuracy (%) Precision (%) Recall (%) False-alarm (%) F1-score
10 90.07 98.76 79.01 0.81 0.88
50 92.06 99.24 83.06 0.53 0.90
100 95.49 97.73 92.14 1.76 0.95
200 96.13 99.45 91.94 0.42 0.96
500 96.49 99.37 92.83 0.49 0.96
10,000 97.18 99.66 94.08 0.26 0.98
100,000 99.59 99.83 99.26 0.14 0.99

Table 6: .e evaluation results of CRND-200 and supervised method.

Model Accuracy (%) Precision (%) Recall (%) False-alarm (%) F1-score
CRND-200 96.13 99.45 91.94 0.42 0.96
MLP-based 99.78 99.99 99.49 0.01 0.99
CRND-100000 99.59 99.83 99.26 0.14 0.99

Table 7: .e evaluation results of CRND-200 and K-means method.

Model Accuracy (%) Precision (%) Recall (%) False-alarm F1-score Time (s)
CRND-200 96.13 99.45 91.94 0.42% 0.96 13.10
PCA [37] 86.37 87.52 94.81 — 0.91 13.83
Isolation forest [37] 87.90 92.23 91.07 — 0.88 79
Autoencoder [37] 87.66 91.44 91.64 — 0.92 18.62

Security and Communication Networks 7



shown in Table 7. .ese papers do not get false-alarm
involved, so the values of the method in Table 7 are
denoted as —.

It can be seen from the results that the performance of
the K-means method on high-dimensional datasets is poor,
and it has no detection ability. Meanwhile, CRND handles
high-dimensional data well based on deep learning, thus
getting a more extensive practical value.

7. Conclusions

In this paper, an unsupervised learning method is proposed
to assist in the construction of network anomaly detection
model. Based on contrastive learning, CRND is designed.
Meanwhile, SAN that can be widely used in various data is
proposed. Experiments on CICIDS2018 prove the effec-
tiveness of CRND. .e results show that CRND can fully
learn the potential characteristics of network security data,
and qualified performance can be achieved through fine-
tuning in the target network environment. Taking it as a
pretrained model can greatly accelerate the development of
the network anomaly detection model. At the same time, it
does not rely on annotated datasets, which contributes to the
promotion and production application of network anomaly
detection model greatly. At the same time, CRND can be
widely used as a feature extractor, which may be better used
to solve the target problem when combined with the related
research of outlier detection [38, 39].
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