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Fast cross-modal retrieval technology based on hash coding has become a hot topic for the rich multimodal data (text, image,
audio, etc.), especially security and privacy challenges in the Internet of (ings and mobile edge computing. However, most
methods based on hash coding are only mapped to the common hash coding space, and it relaxes the two value constraints of hash
coding. (erefore, the learning of the multimodal hash coding may not be sufficient and effective to express the original
multimodal data and cause the hash encoding category to be less discriminatory. For the sake of solving these problems, this paper
proposes a method of mapping each modal data to the optimal length of hash coding space, respectively, and then the hash
encoding of eachmodal data is solved by the discrete cross-modal hash algorithm of two value constraints. Finally, the similarity of
multimodal data is compared in the potential space. (e experimental results of the cross-model retrieval based on variable hash
coding are better than that of the relative comparison methods in the WIKI data set, NUS-WIDE data set, as well as MIRFlickr
data set, and the method we proposed is proved to be feasible and effective.

1. Introduction

With the advent of the big data era, the different types of
modal data, e.g., text, image, and audio for the Internet of
(ings and Mobile Edge Computing, are dramatically in-
creasing [1]. (e traditional single-mode data retrieval
methods, e.g., text retrieval text, image retrieval image, and
audio retrieval audio, are gradual shift to cross-modal re-
trieval, e.g., text retrieval image, text retrieval audio, image
retrieval text, which makes the retrieval return with the
characteristics of diverse information and rich content [2].
Over the last few years, the cross-modal retrieval algorithms
have been recently receiving significant attention and
progress due to the application research of guaranteed data
privacy and privacy-preserving cooperative object classifi-
cation [3, 4].

(ere are twomain categories in these research methods.
One is the potential subspace learning-based method [5–8],
among which the canonical correlation analysis (CCA) is the

most commonly used model [5]. (e CCA mapped the two-
modal data into a potential subspace to achieve the corre-
lation maximization of the associated data pairs, and then
directly retrieves the similarity query in the subspace. Given
the paramount idea of the correlation maximization of
relevant data in subspace, some experts have proposed other
deformationmodel algorithms similar to the CCAmodel. Fu
et al. proposed the generalized Multiview analysis (GMA) to
maximize the subspace correlation of multimodal data and
achieve the class-discriminant via adding label information,
which is conducive to further boosting the accuracy of the
cross-modal retrieval [6]. Costa Pereira et al. first projected
the original feature data of each mode into their respective
semantic feature space, and then mapped the semantic
features of multimodes into a unified subspace via applying
CCA or kernel CCA. (e proposed model utilized the label
information of the data to improve the classification area
analysis, meanwhile avoiding the direct mapping of the
original multimodal features into the unified subspace so
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that the cross-modal retrieval performance is notably im-
proved [7]. Mandal and Biswas proposed the generalized
dictionary pair algorithm and achieved good results via
learning unified sparse coding subspace [8]. Although some
progress has been made in unified subspace learning-based
cross-modal retrieval algorithms, there are still some
problems in cross-modal retrieval of large-scale multimodal
data scenarios, e.g., high computational cost, high data
storage resource consumption, and weak stationarity.
(erefore, another kind of cross-modal retrieval algorithm
based on hashing coding has stimulated a lot of interest in
the research community.

With the characteristics of storage consumption and
efficient retrieval speed, the Hash coding technology is very
suitable for large-scale data trans-modal and trans-media
tasks, e.g., real-time multimodal data personalized recom-
mendation [9], hot topic detection, and trans-media re-
trieval. In the Hash coding-based cross-modal retrieval
method [10–13], for maintaining the connection between
multimodal data, the multimodal data was projected into
low-dimensional Hamming space through linear mapping,
and then an XOR operation was performed to measure the
similarity distance. (us, the speed problem of large-scale
data retrieval was solved effectively. However, most of the
prior arts are only suitable for scenarios of the single label
and paired training data. (erefore, Mandal et al. first
proposed a hashing cross-modal retrieval model for multiple
training scenarios [14]. However, this model is similar to the
method presented in Refs. [15, 16] that maps multimode
data into equal-length hash coding, so that the data of
various modes may not be well represented. In addition, the
solution of binary hash coding is an NP-hard problem,
which relaxes the binary constraint of hash coding, so that
the learned hash coding is not accurate enough. For ana-
lytical simplicity, this paper first proposed a cross-modal
retrieval model based on variable-length hash coding and
added binary constraints in the process of solving hash
coding. (erefore, the learned variable-length hash coding
can better represent the original multimodal data and
achieve higher accuracy. (e main highlights of this paper
are organized as follows.

(1) To combat the issue caused by the same length, we
propose a variable-length hash coding-based cross-
modal retrieval model in this paper, i.e., all modal data
are projected into the hash coding space of the optimal
lengths. (erefore, compared with the hash coding
space of the fixed length, the original multimodal data
can be represented more easily, and the model in this
paper is more flexible in debugging experiments.

(2) We propose a more generalized multiscene cross-
modal retrieval. (e great majority of the existing
cross-modal retrieval models, based on single label
and pairwise multimodal dataset scenarios, cannot
be applied to multilabel and unpaired multimodal
dataset scenarios. In addition, the cross-model re-
trieval in this paper has good adaptability to single
label or multilabel, paired, or unpaired multimodal
dataset scenarios.

(3) Based on the single-modal data hash method, we
propose a variable-length discrete hash coding-based
cross-modal retrieval algorithm, and the validity of
the algorithm is verified on several public data sets.

2. Related Works

(is section mainly introduces several related hash coding
cross-modal retrieval algorithms, which are also served as
benchmark algorithms in the experimental process. Any
reader who has a great interest in other cross-modal retrieval
models, such as incorporating feedback technology and deep
learning, can refer to Ref. [17].

2.1. Hashing Cross-Modal Retrieval Based on Semantic Cor-
relation Maximization. Taherkhani et al. proposed a Se-
mantic Correlation Maximization (SCM)-based cross-modal
hash retrieval model. Meanwhile, compared with other su-
pervised hash cross-modal retrieval models, this model has
the advantages of lower training time complexity, better
adaptability, and more stability for large-scale data sets [10].
(e main highlights are as follows. (1) (e calculation of the
complex pin-to-pair similarity matrix can be avoided directly
via applying label information of the training data set to
calculate the similarity matrix, thus only small linear time
complexity can be achieved, which also makes the model
more stable. (2) (e serialization solution method of hash
coding is proposed via the computation code of bit by bit on
the closed interval. (erefore, there is no need to set
hyperparameters and stop conditions. To use label semantic
information, cosine similarity between label vectors is used to
construct the similarity matrix, and the similarity between the
data object i and the data object j is defined as follows.

Sij �
〈li, lj〉

li
����

����2 lj

�����

�����2

, (1)

where 〈li, lj〉 represents the inner product of the corre-
sponding label vector and ‖l‖2 describes the binary norm of
the label vector. To achieve a cross-modal similarity query,
the hash function should maintain the semantic similarity of
multimodal data. More specifically, the hash coding of each
modal data can reconstruct the semantic similarity matrix.
(e specific objective function of the SCM model is defined
as follows:

min
Wx,Wy

sign XWx( sign YWy  − cS
�����

�����
2

F
, (2)

where X and Y represent the data of the two modes, W defines
the linear transformation matrix, c describes the equilibrium
parameter, and S defines the similarity measurement between
two data among different modalities. (ere is a symbolic
function in (2), so it is obvious that the optimization solution is
an NP-hard problem, which relaxes the constraints of the
symbolic function and adds the constraints between the bits of
the hash coding. Finally, the transformation matrixes Wx, Wy

of each modal data can be calculated, so that the hash coding of
new data can be resolved.
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2.2. Hashing Cross-Modal Retrieval Based on Semantic
Preserving. Chen et al. proposed a Semantic Preserving
Hash cross-modal retrieval (SEPH) model, which converts
the similar association information of data into the form of
the probability distribution and then approximates hash
coding via minimizing the Kullback–Leibler (KL) divergence
distance [11]. (e whole objective function model is effec-
tively guaranteed in mathematical theory. As with the SCM
model, the similarity matrix is first constructed to provide
supervisory information for the learned hash coding. (is
model mainly includes two steps, i.e., hash coding solution
and learning of kernel logic Sti regression function. When it
comes to the process of solving the hash coding, the simi-
larity matrix is first transformed into the form of probability
P, and the semantic probability distribution Q on the unified
hash coding is calculated, then the KL distance between the
two distributions is minimized, and the semantic preserving
hash coding is resolved.

Pij �
Sij

i≠jSij

,

Qij �
1 + h Bi, Bj  

− 1

t�1 1 + h Bi, Bt( ( 
−1,

(3)

where h(, ) represents the Hamming distance function of
hash coding; learning the best hash coding B aims to make
the distribution between P and Q as similar as possible. (e
KL distance between the distributions is measured as
follows:

DKL(PQ) � 
i≠j

Pijlog
Pij

Qij

 . (4)

In all, a better unified semantically preserving hash
coding can be calculated according to the solution steps, and
then the logistic regression mapping function of each modal
data mapped to the unified hash coding is learned. (e
representation of learning the k(1≤ k≤K)-th Logistic re-
gression function for X mode data is defined as follows:

min
wk



n

i�1
log 1 + e

− bk
i
xiw

k

  + λ w
k

�����

�����
2

2
, (5)

where bk
i ∈ −1, +1{ }n×1 defines the column vector on the k-th

bit attribute of the common binary code, and the trans-
formation matrix wk can be solved. (en, the probability
that the value b belongs to −1 and +1 at the k-th bit of the
binary code of the new sample xq data in X mode can be
calculated as follows:

P c � b|x
q

(  � 1 + e
− bxqwk

 
− 1

. (6)

(erefore, the value at the k-th bit of data binary coding
is selected as the value corresponding to the high probability,
which is defined as follows:

c
k

� sign P c � 1|x
q

(  − P c � −1|x
q

( ( . (7)

Finally, the k-th logistic regression function on the X

mode data can be learned, and then the new sample xq is

mapped into the binary coding with the growing degree of
K. (e final hash coding can be achieved by changing the
element with the value of −1 into 0.

2.3. Hashing Cross-Modal Retrieval Based on Generalized
Semantic Preserving. Because most of the existing cross-
modal retrieval methods require multimodal data to appear
in pairs, i.e., another modal data corresponding to text or
image exists in training set data, Mandal et al. proposed a
Generalized Semantic Preserving Hashing model (GSPH)
for N-label cross-modal retrieval, which is suitable for a
single label or multilabel, paired or unpaired multimodal
data application scenarios [14]. (e GSPH model first learns
the optimal hash coding of each modal data, meanwhile the
hash coding preserves the semantic similarity between the
multimodal data and then learns the hash function of
multimodal data mapped to the hash coding space.(emain
highlights are as follows. (1) A hash model that can deal with
single-label paired data and single-label unpaired data is
proposed for the first time. (2) (e generalized hash cross-
modal retrieval model is proposed, which can be applied to
the scenarios of single-label paired data, single-label un-
paired data, multilabel paired data, as well as single-label
unpaired data. Meanwhile, the semantic similarity of data is
maintained by the common hash coding. As with SCM and
SEPHmethods, the GSPH algorithm also needs to define the
similarity matrix S ∈ RN1×N2 between multimodal data,
where N1 and N2 are the sample numbers of X and Y modal
data, respectively, so the objective function of the GSPH
model is defined as follows:

min S −
1
q

 BxB
T
y

��������

��������

2

F

s.tBx ∈ −1, +1{ }
N1×q

, By ∈ −1, +1{ }
N2×q

. (8)

(e binary coding Bx and By of the X and Y modal data
can be calculated by the GSPH method, and then the
mapping function of the original data for each modal into
hash coding needs to be learned. Just like the SEPH method,
the logistic regression function is selected as the mapping
function. (erefore, readers can refer to Section 2.2 for
learning the mapping hash function and generating the hash
coding of new samples.

3. Cross-Modal Retrieval Based on Variable-
Length Hash Coding

In this section, the cross-modal retrieval algorithm of var-
iable-length hash coding is presented, and the optimization
process of the objective function and time complexity of the
algorithm is analyzed. To facilitate the analytical simplicity
and reduce the experimental operation, this paper mainly
studies the case of two-modal data and gives the algorithm
model extended to three or more modal data in Section 3.5.

3.1.AlgorithmicModel. (e variables presented in this paper
are defined as follows. X ∈ Rd1×n1 and X ∈ Rd2×n2 represent
the original feature data sets of the two modes, respectively,
BX ∈ Rq1×n1 and BY ∈ Rq2×n2 are the corresponding variable-
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length hash coding, where each column represents a sample
and each row represents attribute features. In addition, PX

and PY are the projection matrixes, and W is the association
matrix of two modes. (e similarity matrix S ∈ Rn1×n2 be-
tween multimode data is constructed as follows:

Sij �

〈lix, l
j
y〉 I,

e
− lix− l

j
y

����
����
2
/δ

II,

1, if lix � l
j
y; 0, if lix ≠ l

j
y III,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)

where l defines the label vector of the sample, and each
element Sij of the similarity matrix represents the similarity
between X modal data i and Y modal data j. (e next goal of
this paper is to learn the compact hash coding of the optimal
length for each model, so that these hash coding can per-
fectly represent the original multimode data and maintain
the semantic similarity of multimode data sets. (is paper
calculates the similarity of different modal data in potential
space by referring to Ref. [7] and assumes that there is a
common potential abstract semantic space V between
multimodal data, in which multimodal data can be queried
and retrieved directly. And, each modal hash coding is
projected into the potential abstract semantic space in the
following form:

M1: BX⟶
W1

VXM2: BY⟶
W2

VY. (10)

In the space V, the similarity between data can be cal-
culated according to the relation of the inner product, which
is defined as follows:

S � V
T
XVY � W1BX( 

T
W2BY(  � B

T
XW

T
1 W2BY. (11)

Remembering W � WT
1 W2, we do not need to explicitly

solve the existing form of each mode data in the potential
abstract semantic space V, but only calculate the similarity
W between the varied-length hash coding of each mode.(e
cross-modal retrieval objective function of the specific
variable-length hash coding is defined as follows:

min
BX,BY,W,PX,PY

BX − PXX
����

����
2
F

+ BY − PYY
����

����
2
F

+ S − B
T
XWBY

����
����
2
F
s.t.BX ∈ [−1, +1]

q1×n1 , BY ∈ [−1, +1]
q2×n2 .

(12)

(e first two terms of (12) are applied to, respectively,
project the two-modal data into the hash coding space of the
optimal lengths, and the last term indicates that the variable-
length hash coding in the potential space still maintains the
semantic similarity relation of the original multimodal data.
(e corresponding projection matrixes PX, PY, hash coding
BX, BY, and correlation matrix W can be solved simulta-
neously through optimization.

3.2. Model Solution Procedure. To simplify the difficulty of
solving hash coding, the prior art converts binary constraint
conditions of hash coding into solving continuous real-valued
problems and then obtains approximate hash coding through
symbolic functions [10–12]. However, the solved hash coding
has essential defects and cannot represent the original

multimodal data effectively.(e binary constraint condition of
hash coding is always maintained in the solving process of this
subsection.When the objective function is solved, the variables
BX, BY, W, PX,PY of simultaneous solution are nonconvex and
difficult to solve. (erefore, this paper first solves one of the
variables and fixed the remaining variables, and then solves the
other variables in this way. All variables are solved by iteration
until the objective function tends to converge.

(a) Fix other variables and resolve PX, PY. (erefore, the
objective function can be simplified in the following
form:

min
PX

BX − PXX
����

����
2
F
min

PY

BY − PYY
����

����
2
F
. (13)

(erefore, the analytical formulae can be calculated
by regression formula, respectively,

PX � BXX
T

XX
T

 
− 1

.

PY � BYY
T

YY
T

 
− 1

.

(14)

(b) Fix other variables and resolve W. (e objective
function can be simplified in the following form:

min
W

S − B
T
XWBY

����
����
2
F
. (15)

It is obvious that (15) is a bilinear regression model,
and the analytical formula is as follows:

W � BXB
T
X 

− 1
BXSB

T
Y BYB

T
Y 

− 1
. (16)

(c) Fix other variables and resolve BX. (e objective
function can be simplified in the following form:

min
BX

BX − PXX
����

����
2
F

+ S − B
T
XWBY

����
����
2
F
s.t.BX

∈ [−1, +1]
q1×n1.

(17)

Because of the two-value constraint, it is complicated
to resolve directly. (erefore, in this paper, the
variable BX is solved successively, i.e., when solving a
row vector of BX, the remaining row vectors are fixed
first, and then the other row vectors are solved it-
eratively. (17) can be further transformed into (18).

min
BX

BX

����
����
2
F

− 2Tr B
T
XPXX  + PXX

����
����
2
F

+‖S‖
2
F

− 2Tr B
T
XWBYS

T
  + B

T
XWBY

����
����
2
F
s.t.BX

∈ [−1, +1]
q1×n1.

(18)

Because of the binary constraint, it is obvious that the
first term is a constant, i.e., ‖BX‖2F � q1 ∗ n1. If con-
stant terms and irrelevant variables BX are removed,
(18) can be rewritten into a more concise form.

min
BX

DBX

����
����
2
F

− 2Tr B
T
XQ s.t.BX ∈ [−1, +1]

q1×n1, (19)

where D � BT
YWT, Q � (WBYST + PXX) and

Tr(. . .) are the trace of the solution matrix. After
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deformation, the solution of (19) has a relationship
with the solution of the objective function in Ref.
[16], so this paper refers to its solution process.
When solving the i-th row vector zT of BX, let BX

′ be
the matrix BX after row vector deletion zT, pT de-
fines the i-th row vector of Q, Q′ represents the
matrix Q after row vector deletion pT, d defines the
i-th column vector of D, and D′ represents the
matrix D after column vector deletion d, and then
refer to the solution results in Ref. [16].

z � sign p − BX
′D’Td . (20)

(e i-th row vector of BX can be resolved, and then
the remaining row vectors can be solved via a similar
procedure.

(d) Fix other variables and resolve BY.

In the process of solving BY, it is similar to solving BX, so
readers can refer to the solution method of BX for a detailed
solution of BY.

3.3. Algorithm Description. To project hash coding into the
optimal space for comparison, measurement, and retrieval,
the associated transformation matrix W is introduced into
the cross-modal retrieval model of variable-length hash
coding on the base of the GSPH model, and then the
similarity between data can be compared in the potential
space through W. Subsection 2.2 provides the solution
process of each variable in the model, and the overall
training steps for the model are shown in Algorithm 1.

According to the proposed training process, the pro-
jectionmatrix of eachmode can be calculated separately, and
then the corresponding hash coding can be solved by a
symbolic function. For query sample x′ or y′, the corre-
sponding hash coding generation method is b′ � sign(PXx′)
or b′ � sign(PYy′). To improve the accuracy of generating
corresponding hash coding, the query sample pair infor-
mation (x′, y′) of these two modes can be used to generate
hash coding simultaneously. If the final hash coding is
expected to exist in the hash coding space of the X mode,
then b′ � sign(PXx′ + θWPYy′). If the final hash code is
desired to exist in the hash coding space of the Y mode, then
b′ � sign(PYy′ + θWTPXx′), where θ is a non-negative
equilibrium parameter. (e overall testing steps for the
model are summarized in Algorithm 2.

3.4. Time Complexity. (e time complexity of the cross-
modal retrieval algorithm in this section is mainly composed
of computation-related variables. In the training phase, the
time of each iteration is consumed in updating the pro-
jection matrixes PX, PY, transformation matrix W, and
corresponding hash coding matrixes BX, BY, in which these
variables are calculated by (14) and (16), and (17), respec-
tively, and the corresponding calculation time complexity is
Ο(d2qn),Ο(q2n2),Ο(dq2n). (erefore, the total time
complexity of the proposed model is Ο((d2 + qn + dq)qnT),
where T represents the total number of iterations, where

d � max(d1, d2), q � max(q1, q2), n � max(n1, n2). More
specially, d1, q1, and n1 are the original dimension, hash
length, and the total number of samples of X mode data,
respectively, and d2, q2, and n2 are the original dimension,
hash length, and the total number of samples of Y mode
data, respectively. Once the training process is end, the time
and space complexity for generating a new sample is Ο(dq).

3.5. Application Scenario. (e cross-modal retrieval model
can be easily extended to the scenarios of three or more
modal data, assuming that m(m > 2) modal data, then the
cross-modal retrieval model of variable-length hash coding
for m modal data is defined as follows:

min
Bi,W

(i,j) ,Pi



m

i�1
Bi − PiXi

����
����
2
F

+ 
m

i,j

S
(i,j)

− B
T
i W

(i,j)
Bj

�����

�����
2

F

s.t.Bi ∈ [−1, +1]
qi×ni .

(21)

(e first item in (21) represents the hash code mapping
of all modal data into the optimal length, and the second
item represents the semantic relationship preservation be-
tween the hash coding of eachmode and another modal hash
coding.(e process of model optimization and query sample
hash coding generation can follow the way of two-modal
data scenarios.

4. Results and Discussion

4.1. Data Sets andPerformanceMetrics. To verify the validity
of the model, the commonly used WIKI data set, NUS-
WIDE data set, and MIRFlickr data set are selected for the
cross-modal retrieval. In addition, the precision-recall and
Mean Average Precision (MAP) index are used to measure
model performance as shown in Refs. [11–13].

WIKI data set is collated from Wikipedia page [7], and
each image has the corresponding description text, in which
each text contains no less than 70 words.(e data sets belong
to a single-label data, and there are 10 categories, each image
or text belongs to one of these categories, and images or texts
belonging to the same category are considered to have
similar semantic information. (ere exist 2866 samples
(2173 training sets and 693 test sets), in which image data is
represented by 128-dimensional Scale Invariant Feature
Transform (SIFT) features and text data by 10-dimensional
Latent Dirichlet Allocation (LDA) features.

NUS-WIDE data set is collected and sorted from the
Internet by the National University of Singapore [18], which
regulates 269,648 images and explanatory annotations ac-
complished by about 5,000 people. Each sample belongs to
multilabel data, which is eventually divided into 81 cate-
gories. Due to the sample numbers of some categories differ
greatly in this paper, just as Refs. [10, 11], the top 10 cat-
egories with many samples are firstly selected, and finally
186,577 text-image pairs have been achieved. Text and image
are considered similar, if there is at least one of the same
category attributes. Subsequently, 1% of the data (about
1866) are randomly selected as the test set and 5000 samples
as the training set.(e images of the NUS-WIDE data set are
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represented by 500-dimensional SIFT features and the text
data by the word frequency of 1000 dimensions.

MIRFlickr data set originated from the Flickr website,
which contains 25000 images and corresponding manually
annotated text information [19]. Just as Ref. [11], we have
deleted some data without labels or with less than 20 times of
labeled words, and finally 16,738 samples are divided into 24
categories. Each image text pair belongs to multicategory
data, which contains at least one category label. (is paper
selects 5% data as a test set and 5000 samples as the training
set. Images in the data set are represented by 150-dimen-
sional edge histograms and text by 500-dimensional vectors.
(e evaluation criteria are defined as follows:

Accuracy: P(N) �
n

N
× 100%,

Recall: R(N) �
n

Nr

× 100%,

(22)

where n represents the number of relevant samples among N

results stemming from the retrieval andNr defines the number
of samples related to query samples in the whole database.

Average Precision (AP) indicator calculation: Given a
query sample and the first R returned results, the AP cal-
culation equation of this sample is defined as follows:

AP �
1
K



R

r�1
P(r)δ(r), (23)

where K represents the number of retrievably returned
results related to query samples, and P(r) defines the ac-
curacy of the returned first r retrieval results. If the r-th
retrieval result is related to the query sample, δ(r) is 1;
otherwise, δ(r) is 0. Finally, the AP average value of all query
samples is solved, which is the MAP index to evaluate the
overall search performance.

4.2. Benchmark Algorithm. In this subsection, the various
multimodal data are preprocessed according to the method
represented in Ref. [16], i.e., the distance between sample
points and randomly selected reference points is calculated.
(en the discrete supervised hash model is used to initialize
the hashing coding of each mode. To highlight the impor-
tance of the label matrix in the process of optimization, the

Input: Training datasets X/Y and label matrix LX/LY; Initialized association matrix W; Initialized variable-length hash BX, BY;
Initialized iteration control parameter T

Output: Variables BX, PX, BY, PY, W

Procedure:
(0) Applying label matrix LX, LY and (9) to construct a semantic similarity matrix S

(1) iter � 0;
(2) while iter<T do
(3) According to (14), update the dictionary projection matrix PX, PY;
(4) According to (16), update the association matrix W;
(5) According to equation (18) and the detailed solving process in Ref. [14], the hash code of variable length is updated one line at a

time and finally updated as a whole BX, BY;
(6) If the objective function (12) tends to converge, and stop the iteration; otherwise, skip to step (2);
(7) End while

ALGORITHM 1: Training produce of proposed method.

Input: Testing datasets X′/Y′; trained f(·), g(·) and W.
Output: (e top n cross-modal data matching the samples to be retrieved.
Procedure:

(1) if input independent x′ or y′ then
(2) compute the corresponding hash code by b′ � sign(f(x′)) or b′ � sign(g(y′));
(3) end if
(4) if input paired (x′, y′)x′ then:
(5) if hash code exists in space of Y data:

b′ � sign(g(y′)) + WTf(x′);
(6) else:

b′ � sign(f(x′)) + WTg(y′);
(7) end if
(8) end if
(9) Calculate the Hamming distance between the hash code b’ and the hash codes of all samples in the retrieval database
(10) Sort the distances calculated in ascending order, and return the first n samples.

ALGORITHM 2: Testing produce of the proposed method.
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Figure 1: Continued.
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label matrix of all data is enlarged by 10 times. In addition,
CCA, a typical correlation analysis method commonly used
in the field of cross-modal retrieval, and the cross-modal
retrieval algorithm based on semantic correlation hash
coding in recent years are selected as a comparative ex-
periment. (ese hashing cross-modal retrieval models are
SCM, SEPH, and GSPH, respectively, and the comparison
experiments proposed in this paper are implemented in
MATLAB with the help of the parameters set in the original
text. Both SEPH and GSPH models include two methods to
learn hash functions: (1) training hash functions SEPH_rnd
and GSPH_rnd based on randomly selected samples; (2)
training hash functions SEPH_knn and GSPH_knn based on
selecting samples through clustering. (e experiment shows
that the performance of the hash function obtained by these
two training methods is the same. (erefore, the first
method, randomly selected samples, is selected to train the
hash functions of both SEPH and GSPH models in the
comparative experiment. Moreover, the two different
methods in the SCM model are SCM_seq and SCM_orth,
and the experiment results show that the former is generally
superior to the latter; therefore the former is used as a
comparative experiment [10].

4.3. Experimental Results. (is subsection presents the ex-
perimental results of cross-modal retrieval on the WIKI
dataset, NUS-WIDE dataset, and MIRFlickr dataset. (e
following cross-modal retrieval tasks include image retrieval
text and text retrieval image, and these two retrieval tasks are
analyzed in detail. Figure 1 shows the curves of retrieval
accuracy rate and recall rate on three kinds of data sets. To
facilitate the comparison with the benchmark algorithm,
both image and text are projected into equal-length hash

coding space (64 bits). It can be seen from Figure 1 that the
performance of the method proposed in this paper is
generally superior to that of the comparison method, al-
though the front part of the curve (subgraph (a) of Figure 1)
in the image retrieval text task on theWIKI dataset is slightly
lower than that of SEPH and GSPH methods. However, it
can be seen from the subgraph (a) of Figure 2 that the effect
of the optimal hash coding combination length in this paper
is slightly higher than that of SEPH and GSPH methods. It
can also be seen from Figure 1 that for the other two groups
of multilabel data, the effect of this paper has been improved
more than that of the comparisonmethods, due to the model
in this paper beingmore suitable for multilabel data sets than
the CCA, SCM, SEPH, and GSPH models.

(e MAP index of image retrieval text and text retrieval
image of eachmethod is presented in detail in Tables 1 and 2,
respectively, and the highest MAP value of each column is
marked black. To compare the effects of CCA and other
methods, this paper projected data into subspaces of dif-
ferent dimensions to observe the influence of CCAmethods.
Tables 1 and 2 show that the MAP value of the proposed
method and other hash coding methods increases slightly as
the length of hash coding increases. As can be seen from the
numerical part marked black in the table, the MAP value of
the proposed method is superior to that of the comparison
method, no matter in the image retrieval text task or the text
retrieval image task. Given that the hash coding length is
64 bits, this paper improves about 15%, 10%, and 13% in the
image retrieval text task on WIKI, NUS-WIDE, and MIR-
Flickr data sets, and about 12%, 11%, and 5% in the text
retrieval image task compared with the GSPH method.

Figure 2 shows the experimental results of different
length combinations for the hash coding proposed in this
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Figure 1: Precision rate and recall rate of different methods for the different data sets: (a) WIKI (img2txt), (b) WIKI (txt2img), (c) NUS-
WIDE (img2txt), (d) NUS-WIDE (img2txt), (e) MIRFlickr (txt2img), and (f) MIRFlickr (txt2img).
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Figure 2: Precision rate and recall rate of different hash coding length combinations: (a) WIKI (img2txt), (b) WIKI (txt2img), (c) NUS-
WIDE (img2txt), (d) NUS-WIDE (img2txt), (e) MIRFlickr (txt2img), and (f) MIRFlickr (txt2img).
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Table 1: MAP image retrieval text img2txt.

WIKI data set NUS-WIDE data set MIRFlickr data set
16 32 64 128 16 32 64 128 16 32 64 128

CCA 0.184 0.170 0.150 0.140 0.373 0.366 0.361 0.358 0.579 0.574 0.571 0.568
SCM 0.234 0.241 0.246 0.257 0.501 0.542 0.553 0.551 0.610 0.631 0.647 0.641
SEPH 0.276 0.296 0.300 0.313 0.560 0.578 0.582 0.581 0.671 0.652 0.681 0.648
GSPH 0.272 0.290 0.305 0.307 0.571 0.582 0.585 0.593 0.665 0.676 0.687 0.692
VHC 0.271 0.368 0.351 0.369 0.627 0.632 0.644 0.656 0.766 0.772 0.778 0.779
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Figure 3: Continued.

Table 2: MAP text retrieval image txt2img.

WIKI data set NUS-WIDE data set MIRFlickr data set
16 32 64 128 16 32 64 128 16 32 64 128

CCA 0.168 0.159 0.154 0.150 0.371 0.365 0.362 0.360 0.579 0.574 0.572 0.570
SCM 0.226 0.246 0.249 0.253 0.535 0.540 0.542 0.539 0.615 0.624 0.628 0.631
SEPH 0.631 0.658 0.659 0.669 0.683 0.695 0.693 0.708 0.710 0.744 0.727 0.744
GSPH 0.645 0.663 0.671 0.674 0.681 0.697 0.686 0.714 0.726 0.742 0.748 0.764
VHC 0.487 0.748 0.751 0.757 0.686 0.715 0.761 0.776 0.766 0.780 0787 0.791
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paper (image hash coding length ∗ text hash coding length).
To show the variation tendency of different hash length
combinations, the curve colors of hash coding length
combinations from 16 ∗ 16 to 128 ∗ 128 gradually change
from dark blue, light blue, light red, and then dark red as
shown in Figure 2. Generally speaking, with the growth of
image hash coding, the cross-modal retrieval effect also
becomes better, especially for the subgraphs (d) and (f ) of
Figure 2. In addition, Figure 2 also shows that the cross-
modal retrieval model of variable-length hash coding in this
paper has a more significant impact on WIKI data sets.

From theMAP three-dimensional histogram in Figure 3,
it can be seen that the same and fixed hash code length
cannot be set for all datasets. To be special, the optimal hash
code combination is 48 ∗ 64(text ∗ image) for the img2txt
task on the NUS-WIDE dataset. But the optimal hash code
length combination is 32 ∗ 64 (text ∗ image) for the
img2txt task on the MIRFlickr dataset to implement the
img2txt task.(e reason is that the text information of NUS-
WIDE is richer and more hash codes are needed to represent
text features. From another point of view, for some retrieval
tasks, using a shorter hash code length can also achieve a
comparable retrieval effect.(us, we can conclude that using
a variable-length hash code can balance the data redundancy
and retrieval accuracy.

5. Conclusion

In this paper, a variable-length hash coding-based cross-
modal retrieval algorithm is first proposed, which projects
multimodal data into the optimal hash length space of each
modal data. (e similarity matrix of multimodal data is
constructed according to the label matrix of each mode, and
the semantic similarity relationship of the original data is
still guaranteed after the multimodal hash coding is pro-
jected into the potential abstract semantic space. (en the
binary constraint condition of the hash coding is always
maintained in the process of optimizing the model, so that
the learned multimode hash coding can better represent the
original multimode data. A wide variety of experiments on
WIKI datasets, NUS-WIDE datasets, andMIRFlickr datasets

show that the performance of the proposed method is
generally superior to that of the correlation benchmark
algorithms. (erefore, the method in this paper is feasible
and effective. Compared with the deep learning-based
hashing methods, the retrieval performance is relatively low.
(us, in our future work, we will embed the proposed
similarity matrix into the deep learning-based method to
further improve the retrieved accuracy and effectively
measure the relationship among multiple source data.
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