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As COVID-19 continues to spread around the world, the healthcare industry has accelerated the transformation to digital
healthcare services. In the era of big data, many hospitals prefer to use remote cloud servers to store andmanagemassive electronic
medical data. However, cloud-assisted medical data systems cannot guarantee the confidentiality, integrity, and availability of
data. Searchable encryption can effectively address the above challenges by enabling data search on the ciphertext, which achieves
the availability of medical data while ensuring data security and privacy. However, the search server may return mismatched
search results due to economic interests or single points of failure. Blockchain is a decentralized computing paradigm with public
verifiability, which provides an efficient solution to this problem. However, the existing blockchain-based searchable encryption
solutions do not consider the flexible search function of multiple users and the restriction of encrypted data for medical scenarios.
&erefore, we propose a blockchain-based multiuser normalized searchable encryption (BNSE) scheme and design a blockchain-
based normalized searchable encryption system for medical data (BNSEM) based on the scheme. To verify the practicality of the
system, we evaluate the performance from both theoretical and experimental aspects.

1. Introduction

With the rapid spread of COVID-19 around the world, the
healthcare industry has accelerated the shift to digital
healthcare services [1, 2]. In the era of big data, many
hospitals prefer to use remote cloud servers to store and
manage huge amounts of electronic medical data. However,
due to the inherent properties of the cloud such as cen-
tralization and openness, cloud-assisted medical data
systems will face new privacy and security challenges [3].
Firstly, medical data outsourced to cloud servers may be
accessed or tampered with by unauthorized users. &e
confidentiality and integrity of the medical data cannot be
guaranteed. Secondly, centralized cloud servers may suffer
from a single point of failure, which will result in the
unavailability of medical data. Although the traditional

encryption technology can ensure security, it is difficult to
take into account the availability of outsourced medical
data.

Searchable encryption (SE) is a critical cryptographic
technique to achieve the availability of data while ensuring
security and privacy, which enables users to search ci-
phertext data [4]. In a searchable encryption scheme, the
data owner uploads the encrypted data to the cloud server.
&en, the user needs to construct a trapdoor and submit it to
the cloud server to search for data containing the target
keywords. In most cases, the server is regarded as a semi-
honest third-party entity [5, 6]; i.e., the server will perform
the search operation correctly according to the protocol.
However, in practical scenarios, the server may return
mismatched search results due to economic interest or single
point of failure.
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Blockchain is a decentralized computing paradigm with
public verifiability and tamper-proof features [7]. Applying
blockchain to searchable encryption can effectively solve the
problem of untrustworthy search results from the central-
ized servers [8–10]. Smart contracts deployed in the
blockchain can perform search functions instead of third-
party servers and automatically execute search protocols
based on trigger conditions to produce correct results. In
addition, blockchain nodes record transaction results in an
immutable ledger, which guarantees the integrity of the
results and eliminates the need for further validation of the
results. Even if one or more nodes fail or are corrupted by
malicious adversaries, the correctness of the results will not
be affected due to the fault tolerance of the blockchain.

In the blockchain-based searchable system, data and
search structure are stored in a ciphertext state, and thus, the
legality of the data in the system cannot be guaranteed. In the
medical scenario, the necessary supervision of encrypted
medical data is needed to ensure the legality of medical data.
For example, supervisors need to filter the search requests
that contain illegal keywords to prevent the spread of false
medical information. In addition, supervisors are supposed
to check the legality of ciphertext data in the remote cloud
when they suspect illegal data or when a user files a com-
plaint with the supervisors. &e controllability of medical
data is key to maintaining a stable healthcare system, yet
there is a lack of research related to the supervision of ci-
phertext data.

1.1. Motivation and Contributions. Inspired by the work
[11], a blockchain-based searchable public key encryption
with forward and backward privacy can be used to design
a searchable encryption system for medical data. In
medical scenarios, multiuser search functions and dy-
namic updates for authorized users need to be supported
with data sharing requirements. In addition, to ensure the
stability of the medical searchable encryption system, the
ciphertext data in the system need to be legally supervised.
As for the blockchain platform, the consortium chain
hyperledger fabric is a good option considering the
practicality and privacy. Based on the above analysis and
practical application scenarios of the medical data, we
propose a blockchain-based multiuser searchable en-
cryption scheme supporting supervision and design a
searchable encryption system for medical data based on
the scheme. &e main contributions of this study are as
follows:

(i) We propose a blockchain-based multiuser nor-
malized searchable encryption (BNSE) scheme,
which achieves efficient retrieval of ciphertext data
in multiuser scenarios and supports the supervision
on the ciphertext data

(ii) We design a blockchain-based normalized search-
able encryption system for medical data (BNSEM)
based on the above scheme, which realizes the
application of retrieval on the encrypted medical
data

(iii) We evaluate the theoretical performance of the
scheme and test the practical performance of the
system to verify the availability

1.2. Organization. In Section 2, we review the existing re-
search work related to the security and functionality of
searchable encryption. In Section 3, we introduce the
blockchain technology and broadcast encryption, as well as
security definition. In Section 4, we describe the specific
construction of our proposed scheme BNSE and prove its
security. In Section 5, we present the design of our system
BNSEM. In Section 6, we provide the security analysis of
BNSEM. In Section 7, we conduct a performance evaluation
of the system. Section 8 makes a conclusion of this study.

2. Related Work

In 2000, Song et al. [4] proposed the first SE scheme, which is
a noninteractive single-keyword search scheme. &e draw-
back of the scheme is that it is extremely inefficient when the
number of documents is large. However, this pioneering
work still greatly contributed to the research and develop-
ment of searchable encryption. Later, many works [12, 13]
focus on designing efficient security mechanisms to enhance
the security. Meanwhile, some works also introduce
searchable encryption schemes for functional extensions,
including the multiuser SE scheme [14] and the dynamic SE
scheme [15].

To balance security and efficiency, a practical SE scheme
will leak some information to the adversary. However, the
information leakage attack undermines the security of SE
schemes [16]. Adaptive leakage exploit attacks have brought
more attention to forward privacy [17]. Song et al. [12]
proposed two schemes FAST and FASTIO, both of which
have forward privacy. In addition, Bost et al. [6] presented a
formal definition of backward privacy, and backward pri-
vacy gradually became a major security property of interest.
Chamani et al. [18] proposed improvements in various
aspects of performance to the work [6].

To avoid the problem of key management and distri-
bution restrictions prevalent in symmetric searchable en-
cryption (SSE) schemes, Boneh et al. [19] proposed the first
searchable public key encryption (SPE) scheme, which is a
noninteractive single-user search scheme. However, a sig-
nificant limitation of SPE is that it contains a large number of
time-consuming operations, such as bilinear pairs and ex-
ponential operations. In 2020, Chen et al. [11] proposed a
lightweight SPE scheme with search performance close to
the efficient SSE. However, the scheme does not implement
multiuser search and cannot share data in multiuser
scenarios.

From a functional point of view, most of the current
research efforts focus on symmetric searchable encryption
schemes that support only single-user search mode; i.e., the
data user is the data owner. &e few SSE schemes that
support multiuser search also require the owner to calculate
a search trapdoor [20] online. Multiuser searchable en-
cryption (MUSE) [21] is a significant research content of SE
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with practical research significance. In MUSE, a data owner
uploads data to a cloud server and wants to share the data
with multiple users. Attribute-based searchable encryption
(ABSE) [22] can manage the retrieval of ciphertext data in a
multiuser scenario, but it is computationally inefficient and
lacks practicality.

Broadcast encryption (BE) [23] enables multiuser data
sharing and is suitable for scenarios where data users are
relatively fixed. Liu et al. [24] designed a multiuser
searchable encryption scheme based on a single-user system
prototype and inherited the functionality of adding, mod-
ifying, and deleting documents from the original dynamic
scheme. However, scheme [24] requires online search
trapdoor generation and multiple rounds of client-server
interaction, which increases the communication overhead.
Later, Liu et al. [25] combined public key authenticated
encryption supporting keyword search with broadcast en-
cryption BE and proposed a broadcast authenticated en-
cryption primitive BAEKS supporting keyword search, while
the scheme reaches a performance bottleneck when the
number of users increases to a certain number.

In most existing schemes, the search server is regarded as
an honest third party that performs the prescribed search
protocol [26]. However, the search server may be amalicious
third party that returns partial or even mismatched search
results due to profit or random failures. &e main reason for
these problems is that centralized servers have complete
control over the data and execute the protocols indepen-
dently without supervision. In view of this, blockchain
technology [7], a decentralized computing paradigm with
public verifiability and invariance characteristics, combined
with searchable encryption [14] can effectively solve the
problem of untrustworthy third-party search results.

&ere are two ways to combine blockchain with
searchable encryption, one of which is to use the blockchain
for storing credentials and the other is to use the block-
chain’s smart contract to perform the search function. &e
first approach still follows the traditional server-side search
by storing the transaction credentials on the blockchain [27].
Cai et al. [8] designed a dynamic and efficient searchable
encryption scheme using blockchain. Tang [28] extends
searchable encryption by saving essential messages on the
blockchain and the scheme performs only a small number of
operations on the blockchain, thus reducing the burden on
the blockchain. When there are disputes and controversies,
the misconduct of participants can be revealed through
transactions on the blockchain. However, using the block-
chain to store credentials still does not prevent the malicious
behavior of servers.

&erefore, researchers have also proposed an alternative
construction method to design smart contracts that include
search functions instead of cloud servers to perform key-
word search operation [14]. Chen et al. [29] used electronic
medical record EHR file indexes to construct complex logical
structures and store them on a blockchain so that data users
can search the file indexes using these logical expressions.
Hu et al. [20] enabled users to search private databases in a
blockchain environment and implement dynamic access
control for searches. However, all of the above schemes

outsource complex operations or encrypted data to the
blockchain, which greatly degrades the performance of the
system. Chen et al. [11] designed a blockchain-based
searchable public key encryption scheme with only light-
weight hash operations.

3. Preliminaries

In this section, we introduce the blockchain technology,
broadcast encryption, systemmodel, security definition, and
design goals.

3.1. Blockchain Technology. In 2008, blockchain technology
received widespread attention following the publication of
the Bitcoin white paper [7]. Blockchain provides a distrib-
uted, immutable, secure, transparent, and auditable ledger.
&e blocks in a blockchain store transactions at a specific
time, and their hash values are recorded by a Merkle tree.
&e transaction data on the blockchain are shared in a P2P
(peer-to-peer) network, and the security of the transaction
data is ensured by cryptographic primitives (Merkle tree,
asymmetric encryption, and digital signatures).

Since blockchain operates on a P2P network, a P2P
network including a number of blockchain nodes (peer
nodes, orderer nodes, etc.) needs to be created before
deploying a blockchain platform. Each node provides two
keys that can be used for encryption and signature. When a
transaction is initiated, one node signs the transaction and
broadcasts it to other peer nodes. When another node re-
ceives the signed transaction, it needs to verify the validity of
the transaction before broadcasting it. &e peer nodes (also
known as miners) collect enough signatures of this trans-
action to pack it into a block and store it on the blockchain
after passing consensus.

Smart contract: a smart contract contains a set of rules
and logic, which is a decentralized, information-sharable
program code deployed on the blockchain. &e parties in-
volve in signing a contract agree on the content of the smart
contract and deploy it on the blockchain, which can auto-
mate the execution of the contract without relying on any
third authority [30]. Smart contracts run automatically once
started without the intervention of any contract signatory.

3.2. Broadcast Encryption. A public key broadcast encryp-
tion scheme consists of four algorithms, namely system
setup (Setup), key generation (KeyGen), encryption
(Encrypt), and decryption (Decrypt), defined as follows:

(i) Setup(κ)⟶ (N,EK): with the security parameter
κ as input, the maximum capacity N of the
broadcast receiver group and the initial encryption
key list EK are output.

(ii) KeyGen(κ,EK)⟶ (pk, sk): with the security pa-
rameter κ and the encryption key list EK as input,
the user’s public-private key pair (pk, sk) is output
and the public key pk is added to the key list EK.

(iii) Encrypt(EK, S, m)⟶ Cm: the algorithm takes a
subset of users S⊆ 1, 2, . . . , n{ }, encryption key list
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EK, and a plaintext message m to be broadcast as
input. &e public keys PK � pk1, . . . , pkn􏼈 􏼉 corre-
sponding to the users in the subset S from the
encryption key list EK are selected. &e broadcast
ciphertext Cm of the message m under encryption
using the key set PK is output. Note that the
broadcast ciphertext can only be correctly decrypted
by the receiver in S.

(iv) Decrypt(sk, Cm)⟶ m: taking user’s private key sk
and broadcast ciphertext Cm as input, if user ui ∈ S

who has the private key sk, then the user ui can use
his private key sk to decrypt the broadcast ciphertext
Cm and output the broadcast message m.

3.3. SystemModel. &e systemmodel of our BMNSE scheme
is shown in Figure 1. It consists of six entities: trusted in-
stitute (TI), cloud server (CS), blockchain (BC), data owner
(DO), data user (DU), and supervisor (SUP). Although the
TI and SUP are not involved in the main process of data
search, they are still two indispensable entities that play an
important role in the execution of the scheme and the
maintenance of the ecosystem. Before running scheme, TI
first generates the parameters required for system initiali-
zation and issues public key certificates for users who join
the system, and TI is offline the rest of the time.

After the initialization is completed, the program needs
to perform five main steps, which are described as follows:

(1) Encrypt File. &e DO first encrypts the data file using
a symmetric encryption algorithm and then encrypts
the symmetric key using a public key cryptography
algorithm. Finally, DO uploads the ciphertext to CS.

(2) Generate Searchable Encrypted Data Structures. &e
DO extracts keyword-index pairs from files and
generates searchable encrypted data structures.
&en, DO uploads the structures to BC.

(3) Search for the Files that Contain the Target Keyword.
DU generates a search trapdoor containing the target
keyword and then sends the search request con-
taining the trapdoor to a nearby blockchain node.
&e search request triggers the search process of the
smart contract, which then returns the index of all
matching encrypted files.

(4) Access the Files. &e DU first decrypts the encrypted
file index returned by the smart contract in step 3
and then accesses the data in the CS after getting the
plaintext index.

(5) Return the Encrypted Data. Based on the file indexes
submitted by DU, CS returns the corresponding files.

To ensure the legitimacy of the transactional data in the
program, the necessary supervision of data cryptography
by SUP is required. SUP has two main tasks: first, carrying
out periodic audits of cryptographic data stored on CS, and
second, scrutinizing the search requests of DU. &e pur-
pose of cryptographic data audit is to detect data files that
contain illegal or sensitive keywords, timely revoke illegal
files hosted on CS, and alert, warn, or punish the

corresponding DU. &e purpose of scrutinizing search
requests is to monitor keyword search requests sent by DOs
to the BC in real time and to intercept and warn the
noncompliant search requests.

Based on the above system model, the following eight
algorithms are defined in our scheme:

(i) Setup (κ)⟶ Param: it is executed by TI and takes
the security parameter κ as input and the system
public parameter Param as output.

(ii) KeyGen (Param)⟶ (Qu, du): it is executed by TI
and takes the public parameter Param as input and
outputs the user’s public-private key pair (Qu, du).

(iii) Encrypt (Param, Qui
􏽮 􏽯, DB,Σ)⟶ EDB: this al-

gorithm is executed by DO. &e input parameters
contain the system public parameters Param, the
public keys Qui

􏽮 􏽯 of the authorized DUs, the da-
tabase DB, and an empty mapping Σ. &e algo-
rithm outputs the searchable encrypted database
EDB and the initialized mapping Σ.

(iv) Update (Param, Qu
i′

􏼚 􏼛, Z
→

, wk, r, s)⟶ Z′
�→

: this
algorithm is executed by DO with input parame-
ters including system parameter Param, public key

set Qui
′

􏼨 􏼩 of the users to be authorized, original

broadcast cipher Z
→
, target keyword wk, and secret

values r, s saved by DO, where r is the secret value
associated with version information and s is the
secret value involved in the encryption calculation.
&e algorithm outputs the updated broadcast ci-

pher Z′
�→

.
(v) Trapdoor (Param, dui

, wk)⟶ Twk
: this algorithm

is executed by DU with the input of public pa-
rameter Param, authorized user’s private key dui

and target keyword wk, and the output of search
trapdoor Twk

.
(vi) Search (Param, Twk

,EDB)⟶ RS(wk): it is au-
tomatically executed by the smart contract, takes
the system parameter Param, the search trapdoor
Twk

for the keyword wk, and the encrypted data-
base EDB as input, and outputs the matched search
results RS(wk).

(vii) Decrypt (Param, dui
, wk,RS(wk))⟶ indwk

􏽮 􏽯:
this algorithm is executed by DU, which takes the
private key dui

and the search result set RS(wk) as
inputs and outputs the decrypted file index set
indwk

􏽮 􏽯.
(viii) Supervise (Param, Qui

􏽮 􏽯, dsup, wk)⟶ Twk
: this

algorithm is executed by SUP with input param-
eters including system parameter Param, public

keys Qui
′

􏼨 􏼩 of authorized users, illegal or sensitive

keyword wk and private key dsup of supervisor, and
outputs search trapdoor Twk

of sensitive words.
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3.4. Security Definition. Similar to [12], we demonstrate the
confidentiality of our BMNSE scheme with a real/ideal
simulation paradigm. To achieve higher operational effi-
ciency, searchable encryption schemes will disclose some
information to the server. &e leakage information of our
scheme is described by the leakage function L � LSetup,􏽮

LKeyGen,LEncrypt,LTrapdoor,LSearch,LSupervise}. &e non-
formal definition of the confidentiality of searchable en-
cryption scheme is that no information about the database
should be revealed other than the information leaked in the
leak functionL. &e formal definition of confidentiality can
be presented by a reality/ideal simulation paradigm con-
taining the game RealSE and IdealSE.

Definition 1. Let Π � (Setup, KeyGen, Encrypt, Trapdoor,
Search, Supervise) denote the BMNSE scheme,A denote the
adversary, and S be a simulator with a leakage functionL �

LSetup,LKeyGen,LEncrypt,LTrapdoor,LSearch,LSupervise􏽮 􏽯 as
an parameter. &e following two probabilistic game ex-
periments are defined:

(i) RealΠA(κ): the game runs the system setup algorithm
Setup (κ) to generate system parameters Param and
the key generation algorithm KeyGen (Param) to
generate the user’s public-private key pair (Qu, du).
&e game publishes the public message (Param, Qu)

and keeps the private key du secretly. &en, the
adversary A selects a database DB and performs an
encrypted query based on the information
(Param, Qui

). Next, the game runs the encryption
algorithm Encrypt(Param, Qu, DB,Σ � EDB) and
returns the encrypted database EDB toA.A chooses
a keyword wk for the trapdoor query, and the game
runs the trapdoor generation algorithm
Trapdoor(Param, dui

􏽮 􏽯, wk) � Twk
and returns the

trapdoor Twk
to A. &en, A selects a trapdoor Twk

for the search query and the game runs the search
algorithm Search(Param, Twk

,EDB) � RS and
returns the result set RS to A. &e adversary A can

repeat the above steps several times and finally
output a bit b ∈ 0, 1{ }.

(ii) IdealΠA,S(κ): the simulator S generates the system
public parameter Param←S(LSetup) using the leak
function of system setup.&en, S generates the user’s
public-private key pair (du, Qu)←S(LKeyGen) based
on the public parameter Param and the leak function
LKeyGen and publishes the public key list Qui

􏽮 􏽯. Next,
the adversary A launches an encrypted query and
the simulator S generates an encrypted database
EDB←S(LEncrypt) and returns it to A. &en, the
simulator S uses the leak function of the trapdoor to
generate a search trapdoor Twk

←S(LTrapdoor) in
response to a trapdoor query from A. After the
adversary issues a search query, the simulator
returns the result RS←S(LSearch) using the leak
function of the search. Finally, the adversary A

outputs a bit b ∈ 0, 1{ }.

Scheme Π satisfies L-adaptive security if for any
probabilistic polynomial time (PPT) adversary A, there
exists a PPT simulator S such that

Pr RealΠA(κ) � 1􏽨 􏽩 − Pr IdealΠA,S(κ) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤negl(κ), (1)

where negl(κ) is a negligible function.

3.5. Design Goals. Combining the above system model and
practical application requirements, our scheme should meet
the following functional objectives:

(i) Supervisibility. Supervision can ensure the con-
trollability of the cryptographic data.&e SUP needs
to supervise the encrypted data in the CS and the
DU’s search requests to ensure that the data can be
stored and used in a legal and compliant manner.

(ii) Multi-user Search. Multiuser search is a basic function
in data sharing scenarios. In this scenario, multiple
DUs need to be authorized to access the encrypted
data to provide easier data retrieval services.

Data Owner

Blockchain Cloud Server

Data User

2. Searchable structure

1. Encrypted data

3. Keyword search

4. Data access 5. Matched data 
ciphertext

Trusted Institute

Supervisor

Supervise

Supervise

Figure 1: System model of BNSE.
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(iii) Dynamic Update. It is an important function of the
dynamic searchable encryption scheme. First, after
DO generates data files containing preexisting
keywords, the encrypted data structure corre-
sponding to the keywords in BC and the data files in
CS need to be updated. Secondly, in the multiuser
scenario, dynamic update of authorized user DU
needs to be implemented.

4. A Multiuser Normalized Searchable
Encryption Scheme via Blockchain

In this section, we describe the specific construction of BNSE
in detail and present its security proof. &e algorithms are
constructed as follows.

Setup (κ): the setup algorithm takes the security pa-
rameter κ as input. It generates parameters (G1,G2, q, P, e)

for the bilinear map system, where G1 is an additive group
andG2 is a multiplicative group with the same prime order q,
P is a generator of G1, and e: G1 × G1⟶ G2 is a bilinear
map.&en, the algorithm picks several secure hash functions
(H0, H1, H2, H3, H4, h1, h2, h3, h4), where H0, H1, H2,

H3, H4 involve the elements on G1 or G2, H0: G1⟶ Z∗q ,
H1: 0, 1{ }∗ ⟶ G1, H2: 0, 1{ }∗ × 0, 1{ }∗ ⟶ 0, 1{ }κ+1, H3:

G2⟶ 0, 1{ }2κ, H4: G2⟶ 0, 1{ }κ, h1: 0, 1{ }κ⟶ 0, 1{ }2κ,
h2: 0, 1{ }κ⟶ 0, 1{ }2κ+log Mmax , h3: 0, 1{ }κ× 0, 1{ }log Mmax⟶
0, 1{ }2κ, and h4: 0, 1{ }κ × 0, 1{ }log Mmax⟶ 0, 1{ }κ+log Mmax+1.
&en, the algorithm selects a pseudorandom function
F: 0, 1{ }κ × 0, 1{ }κ⟶ 0, 1{ }κ, with the inverse permutation
F− 1. Finally, it outputs the public parameter

Param � G1,G2, q, P, e, H0,1,2,3,4, h1,2,3,4, F, F
− 1

􏼐 􏼑. (2)

KeyGen (Param): du ∈ Z∗q is generated randomly, and
Du � du · P is computed. &e private key of date user is du,
and Du is a secret value to derive the public key. Given the
public key of supervisor Qsup, tu ∈ Z∗q is randomly selected
and Q1

u � tu · Du, Q2
u � du · tu · Qsup + Du, and Q3

u �

H0(Du) · P are computed. &en, the key generation algo-
rithm outputs the user’s public key

Qu � Q
1
u, Q

2
u, Q

3
u􏼐 􏼑. (3)

Encrypt (Param, Qui
􏽮 􏽯, DB ,Σ): the input parameters of

the encryption algorithm contain the system public pa-
rameter Param, the authorized data users’ public key
Qui

􏽮 􏽯
i∈[1,n]

, where n is the number of authorized users,
DB � OP, IND, W{ }, where OP � add, del{ }(add means add
file and del means delete files), IND � ind1, ind2, . . . , indm􏼈 􏼉,

W � w1, w2, . . . , wD􏼈 􏼉, Indwk
� ind1wk

, . . . , ind
mwk
wk

􏽮 􏽯(mwk
is

the number of files containing the keyword wk), and
Σ[key] � value is a mapping that stores the keyword state
pointer, which is able to trace back to the last update of the
files including the keyword. &en, the following steps are
performed:

(1) r ∈ Z∗q is randomly selected, and the version infor-
mation VI � r · P is computed for the encrypted
database.

(2) Knowing that the authorized users of the encrypted
data are ui􏼈 􏼉i∈[1,n] and each user’s public key is
Qui

� (Q1
ui

, Q2
ui

, Q3
ui

), s ∈ Z∗q is chosen at random,

and let the vector Z
→

� (zn, . . . , z0), where zi is the
coefficient of zi in the polynomial 􏽑

n
i�1(z − H

(r · Q3
ui

)) + s.
(3) For each keyword wk in the keyword set W:

(1) &e state pointer map Σ[wk]⟶ (ptc
wk

, c) of the
keyword wk is retrieved. If the retrieval result is
empty, then the state of the current keyword is
initialized. Let c←0 and ptc

wk
← 0, 1{ }κ, where

pt0wk
is not involved in information storage and c

is the number of times the keyword wk is
updated. If the retrieval result is not empty, no
initialization is required. &e pseudorandom
permutation key kc+1

wk
← 0, 1{ }κ is randomly gen-

erated, and ptc+1
wk

� F(kc+1
wk

, ptc
wk

) is calculated.
Subsequently, the local mapping Σ[wk] �

(ptc+1
wk

, c + 1) is updated.
(2) Given the current keyword’s state pointer ptc+1

wk

and the symmetric key key of the encrypted file,
refptc+1

wk

� h1(ptc+1
wk

) and incptc+1
wk

� (mwk
‖kc+1

wk
‖key)

⊕ h2(ptc+1
wk

) are computed, where mwk
� |Indwk

|.

(3) For each file index indj
wk

in Indwk
, j ∈ [1, mk], the

encrypted index EI
j
wk

� H2(s,wk

����j)⊕(op
�����ind

j
wk

)

is computed, and then, ref indj
wk

� h3(ptc+1
wk

,j) and

incindj
wk

� (j
�����EI

j
wk

)⊕h4(ptc+1
wk

,j) are computed.

(4) &e trapdoor twk
� e(H1(wk), s · P) is computed,

and then, ref twk

� H3(twk
) and inctwk

�

ptc+1
wk
⊕H4(twk

) are computed.

(4) &e encrypted database is obtained through the
above calculation.

EDB � 〈refptc+1
wk

, incptc+1
wk

〉, 〈ref indj
wk

, incindj
wk

〉􏼚 􏼛
j∈ 1,mwk

􏽨 􏽩
, < ref twk

, inctwk

>
⎧⎨

⎩

⎫⎬

⎭. (4)

&e encrypted database is uploaded in the form of key-
value pairs EDB[refptc+1

wk

] � incptc+1
wk

, EDB[ref indj
wk

] � incindj
wk

,

6 Security and Communication Networks



and EDB[ref twk

] � inctwk

to the blockchain ledger via the
smart contract as a searchable cryptographic data structure
of keywords.

Update (Param, Qui
􏽮 􏽯, ui′

􏼚 􏼛, wk, r, s): the input param-
eters include the system parameter Param, the set of users to

be authorized ui′
􏼚 􏼛

i′∈[n,n′]
, where n′ is the number of all

authorized users, and the secret values r, s saved by the data
owner, where the random number r involves the version
information of keyword wk and the secret value s is used to
generate the trapdoor and encrypted index. Authorization
update is performed on the file index set Indwk

containing

the keyword wk. &e vector Z′
�→

� (zn
′, . . . , z0′) is computed,

where zi
′ is the coefficient of zi in the polynomial 􏽑

n′
i�1(z −

H0(r · Q3
u

i′
)) + s and n′ is the total number of all authorized

users.
To improve the computation efficiency, the original

polynomial ciphertext f(z) can be used to perform the
computation by first subtracting the polynomial f(z) from
the secret value s and then multiplying f(z) − s with the
term generated by the public keys of the users to be au-
thorized to get a new polynomial. Finally, the secret value s is
embedded into this polynomial to get a new authorized
polynomial f′(z). &e update process only needs to cal-
culate the relevant terms of the user to be authorized based
on the original secret text. In addition, the previously au-
thorized users can still use the original vector Z

→
to compute

the trapdoor and decryption.
Trapdoor (Param, dui

􏽮 􏽯, wk): with the system parameter
Param as input, only the authorized user ui􏼈 􏼉i∈[1,n] can use
his private key dui

to compute the trapdoor of the keyword
wk. &e steps of the trapdoor calculation are as follows:

(1) &e version information VI � r · P of the keyword
wk is obtained. Dui

� dui
· P is computed such that

V � H0(Dui
) · VI, and H0(V)0, H0(V)1, . . . ,

H0(V)n are computed.
(2) Since H0(V) is a root of the polynomial

􏽑
n
i�1(z − H0(r · Q3

ui
)), 􏽐

n
i�0 zjH0(V)i � s is com-

puted to get the secret value s.
(3) &e trapdoor of the keyword wk is output.

Twk
� e H1 wk( 􏼁, s · P( 􏼁. (5)

Search (Param, Twk
,EDB): the search algorithm is the

inverse process of the encryption algorithm, with the public
parameter Param, the trapdoor Twk

of the keyword wk, and
the encrypted database EDB as input parameters. An empty
setRS(wk)←∅ is initialized to store the search results.&en,
the following steps are performed:

(1) Given the trapdoor Twk
, ref twk

′ � H3(Twk
) is com-

puted. inctwk

′ � EDB[ref twk

′ ] is retrieved from the
encrypted database. If inctwk

′ � ⊥, then the search
algorithm is terminated and the search result
RS(wk) � ∅ is returned. Otherwise, ptc+1

wk
�

H4(Twk
)⊕inctwk

′ is computed.

(2) refptc+1
wk

′ � h1(ptc+1
wk

) is computed, and
incptc+1

wk

′ � EDB[refptc+1
wk

′ ] is retrieved. If incptc+1
wk

′ � ⊥,
the search algorithm is terminated and the search
result set RS(wk) is returned. Otherwise,
(mwk

‖kc+1
wk

‖key) � incptc+1
wk

′ ⊕h2(ptc+1
wk

) is computed.

(3) For each j ∈ [1, mwk
], ref indj

wk

′ � h3(ptc+1
wk

, j) is
computed and incindj

wk

′ � EDB[ref indj
wk

′ ] is retrieved.

(j, EI
j
wk

) � incindj
wk

′ ⊕h4(ptc+1
wk

, j) is computed, and

then, (j, EI
j
wk

) is inserted into the search result set
RS(wk).

(4) Using the state pointer ptc+1
wk

of the keyword wk and
the pseudorandom permutation key kc+1

wk
obtained in

step 2, the previous state pointer ptc
wk

�

F− 1(kc+1
wk

, ptc+1
wk

) is computed. Let ptc+1
wk

� ptc
wk
, and

then, step 2 is proceeded.

Decrypt (Param, dui
, wk,RS(wk)): the decryption algo-

rithm is used to decrypt the encrypted indexes in the search
results RS(wk). Using the secret value s computed in step 2
of the trapdoor algorithm Trapdoor, for each record
(j, EI

j
wk

) of the result set RS(wk), (op
�����ind

j
wk

) � EI
j
wk
⊕H2

(s, wk

����j) is computed. If op � add, the index indj
wk

is used to
access the corresponding data ciphertext from the cloud
server CS and decrypt the ciphertext using the key key
obtained in step 2 of the search algorithm to get the plaintext
data file. If op � add, it means this file index has been deleted
and there is no need to access this file in the cloud server.

Supervise Param, Qui
􏽮 􏽯, dsup, W∗}: the input parameters

include system parameter Param, public keys Qui
�

(Q1
ui

, Q2
ui

, Q3
ui

) of authorized users, the private key dsup of
supervisor, and the set of sensitive wordsW∗.Q2

ui
− dsup · Q1

ui

is computed to obtain Dui
, and the steps are subsequently

performed in the trapdoor algorithm Trapdoor to compute
the secret value s. After obtaining a set of secret values
S � s{ }, the supervisor generates search trapdoors Twk

for
each secret value s of the sensitive word wk ∈W∗. &en, the
hash value H4(Twk

) of the trapdoor is calculated and the
hash values in the list Lh are stored and uploaded to the BC
through the smart contract to realize the supervision of
search requests. Second, the trapdoor set Twk

􏽮 􏽯 is used to get
the matching file index ciphertext by executing the search
smart contract and the ciphertext is decrypted using the
secret value s to get the file index. Finally, the index is used to
locate the illegal file containing the sensitive word wk ∈W∗

in CS to achieve the supervision of the ciphertext data in CS.
Correctness analysis: when generating the searchable

encrypted data structure, a broadcast polynomial f(z) �

􏽑
n
i�1(z − H0(r · Q3

ui
)) + s is constructed. &e authorized

user ui ∈ u1, . . . , un􏼈 􏼉 is able to use his private key dui
to

compute

H0 H0 dui
· P􏼐 􏼑 · VI􏼐 􏼑 � H0 H0 Dui

􏼐 􏼑 · r · P􏼐 􏼑

� H0 r · Q
3
ui

􏼐 􏼑.
(6)

After obtaining the secret value s by substituting H0(r ·

Q3
ui

) into the broadcast ciphertext, the search trapdoor Twk
�
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e(H1(wk), s · P) is computed. &e trapdoor search steps are
described in the soundness proof of the security proof
subsection. As for the ciphertext data supervision, given the
private key dsup of the supervisor and the partial public key
(Q1

ui
, Q2

ui
) of the authorized user, Dui

is computed as follows:

Q
2
ui

− dsup · Q
1
ui

� dui
· tui

· Qsup + Dui
− dsup · tui

· Dui

� dui
· tui

· Qsup + Dui
− dui

· tui
· Qsup

� Dui
.

(7)

After getting Dui
, the secret value s used for searching

and decryption can be calculated as formula (1).

Theorem 1. 
e BMNSE scheme Π is a L-adaptive secure
searchable encryption if F is a pseudorandom permutation
function, the hash function is collision-resistant, the DBDH
difficulty problem holds, and the polynomial-based broadcast
encryption algorithm is adaptively secure.

Proof. We demonstrate the adaptive security of the scheme
through a sequence of games similar to reference [11]. &e
first game G1 is the real-world game RealΠA(κ). Each game is
slightly different from the previous one, but they are in-
distinguishable from the adversary, finally reaching the last
ideal world game IdealΠA,S(κ). According to the transmission
property of indistinguishability, it can be concluded that
RealΠA(κ) is indistinguishable from IdealΠA,S(κ), thus com-
pleting the proof of confidentiality.

In the second gameG2, it maintains a list of state pointers
PList for storing state pointers; i.e., PList[w, c] � ptc. &e
state pointers are used in the encryption algorithm, and the
game G2 randomly chooses a string ptc←

R
0, 1{ }κ to generate

the state pointers instead of using the pseudorandom per-
mutation function F. Because the pseudorandom substitu-
tion function F is indistinguishable from the actual random
function, the games G2 and G1 are indistinguishable.

Pr G1 � 1􏼂 􏼃 � Pr G2 � 1􏼂 􏼃. (8)

In the third game G3, it models all hash functions as
random oracles, where each oracle maintains a list to store
input/output pairs. For example, given a random oracle H1
with input x, the oracle randomly selects a string y←R 0, 1{ }l

as output, where l is the output length of the hash function,
and stores (x, y) in the list H1-List. Because the hash
function is collision-resistant, the games G2 and G3 are
indistinguishable.

Pr G2 � 1􏼂 􏼃 � Pr G3 � 1􏼂 􏼃. (9)

In the fourth game G4, it computes stwk
∈ G2 on the basis

of twk
� e(H1(wk), s · P) by randomly choosing a secret

value s in the encryption phase. Also, the game G4 needs to
maintain a list TList for storing (wk, stwk

) in response to the
trapdoor query from the adversaryA. (P, sP, H0(wk), twk

) is
a tuple based on the DBDH problem, and
(P, sP, H0(wk), twk

) is a random tuple. If the adversary A

can distinguish the games G3 and G4, it means that the

adversary is able to distinguish the two tuples, i.e., solve the
DBDH problem, which is contrary to the assumption of the
hard problem. &us, the games G3 and G4 are
indistinguishable.

Pr G4 � 1􏼂 􏼃 − Pr G3 � 1􏼂 􏼃
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌≤AdvDBDHA (κ). (10)

In the last game G5, the simulator S maintains two lists,
one for simulating random oracle queries and another
counter that keeps track of the number of encryption up-
dates since the system was initialized. For each encryption
query, two random strings are selected. &e simulator uses
the encryption history to determine the encryption queries
for the keyword w. Based on the encryption history, state
pointers and keys can be generated and then the random
oracle is updated. In the adversary’s perspective, the view
generated by the simulator S is completely indistinguishable
from the view in the game G4.

Pr G4 � 1􏼂 􏼃 � Pr G5 � 1􏼂 􏼃 � Pr IdealΠA,S(κ)􏽨 􏽩. (11)

Summing up, we can get

Pr RealΠA(κ) � 1􏽨 􏽩 − Pr IdealΠA,S(κ) � 1􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Adv
DBDH
A (κ), (12)

where the advantage of solving the difficult DBDH problem
AdvDBDHA (κ) is negligible, so our proposed scheme Π is a
L-adaptive secure searchable encryption scheme. □

5. A Blockchain-Based Normalized Searchable
Encryption System for Medical Data

In this section, we present our design of the BNSEM system
based on the BNSE scheme presented in the preceding
section.

5.1. SystemArchitecture. We divide the BNSEM system into
three layers: data collection layer, medical data processing
layer, and medical data access layer. &e system architecture
is shown in Figure 2. &e entities in the system are roughly
the same as those in the BNSE scheme, and the difference is
that the entities in the medical system are all medical service
providers/users, including the medical data owner (MDO),
medical data user (MDU), medical cloud server (MCS), and
medical consortium blockchain platform (MCB).

In the medical data collection layer, medical data are
mainly generated by doctors and patients. On the one hand,
patients will generate corresponding medical data when they
visit hospitals. On the other hand, the health data will be
generated when patients use home medical tools or wearable
medical monitoring devices, which can be used as reference
indicators for the diagnosis of doctors.

In the medical data processing layer, the patients need to
preprocess the data before uploading, including encrypting
the medical data, establishing the index of medical file,
extracting the keywords in the medical file, and constructing a
searchable structure based on the file index and the keywords.
Finally, the ciphertext of medical records are uploaded to
MCS and the searchable structure are uploaded to MCB.
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In the medical data access layer, only authorized medical
data users can access the patient’s medical data. First, the
MDU generates a trapdoor for the target search keyword and
sends the search request containing the trapdoor to MCB.
&en, the smart contract matches the trapdoor with the
searchable structure and returns the corresponding medical
file index. Finally, the MDU uses the file index to access
medical data in MCS and MCS returns the corresponding
data to the MDU.

5.2. Medical Data Preprocessing. When a patient goes to the
hospital, the doctor makes a diagnosis and generates an
electronic medical record.&e record includes the diagnosed
disease, examination results (medical images, laboratories,
etc.), medication prescriptions, and personal information
(such as name, age, and gender). Each electronic medical
record is treated as a file and has a unique file identifier. &e
doctor synchronizes the generated medical records to the
patient to complete a disease diagnosis process.

5.2.1. Building the Indexes of Medical Records. When
owning a specific number of medical data records, the
patient can upload the record files. Before uploading, in-
dexes corresponding to the files need to be constructed. For
example, when the patient, i.e., MDO, receives m medical
files D � D1, D2, . . . , Dm􏼈 􏼉, several indexes will be con-
structed for these files. &e information related to the files
can be embedded into the indexes according to the actual
situation, such as the date and size of the files. &e file
indexes built for m medical data files D are
IND � ind1, ind2, . . . , indm􏼈 􏼉.

5.2.2. Extracting Keywords from Medical Records. MDO
performs keyword extraction for the keywords contained in
each file in D. For medical data files, we mainly consider the
keyword extraction of name, gender, and age in basic in-
formation, disease name, drug prescription in medical in-
dicators, and doctor, hospital, and visit time in treatment
information.

Hospitals

Diagnostic
records

Clinical
treatments

Drug
prescriptions

Patients

Wearable medical
monitoring devices

Symptoms

Patients (medical data owner)

Encrypted medical data

Building indexes of
medical records

Extracting keywords
from medical records

Constructing searchable
structures

Medical records

Medical data

Storage
resources

Medical cloud

Medical consortium
blockchain

Blocks

Doctors

File index File index

Data collection
layer

Data processing
layer

Data access
layer

Medical records
ciphertext Trapdoor

…Insurance companiesFamiliesResearchers

Figure 2: System architecture of BNSEM.
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5.2.3. Constructing the Inverse Indexes. &e keywords
Wind1, Wind2, . . . , Windm

extracted from different medical data
files in D were integrated to obtain the keyword dictionary
W � w1, w2, . . . , wD􏼈 􏼉. &en, for each keyword wk in the
keyword dictionary W, the inverse index Indwk

containing the
keyword is constructed. A specific construction of the inverse
index of medical record files is shown in Figure 3.

5.3. Medical Consortium Block Chain Platform. In BNSEM
system, Hyperledger Fabric is chosen as the medical con-
sortium blockchain (MCB) platform. Because Fabric has a
strict accessmechanism, it can bemanaged collaboratively in
a polycentric manner by entities from multiple organiza-
tions. In addition, the consortium blockchain can best
balance the security and efficiency of the system compared
with public and private blockchains. Initial access control
can be achieved through the access mechanism of Fabric. By
deploying smart contracts of Fabric, more fine-grained data
access control can be realized.

MCB is a federation of multiple healthcare providers,
which is built and maintained by different entities such as
hospitals, research institutions, regulatory bodies (e.g.,
healthcare commissions), and insurance and pharmaceutical
companies. Organizations with high trust level preselect
some peer nodes as consensus nodes according to their
management policies (e.g., supervision institutions and
hospital management nodes). &ese designated consensus
nodes are responsible for managing and updating the dis-
tributed ledger, while other peer nodes can only generate or
contribute healthcare data transactions. Consensus nodes
require a certain amount of computing power to perform
consensus algorithms on transactions. In addition, if the
number of consensus nodes increases, the degree of de-
centralization of the system increases and security and
scalability can be improved.

MCB enables search structured storage and encrypted
medical data retrieval by invoking predesigned and deployed
smart contracts. Before MCB operates, the consortium
members need to define a number of contracts developed by

different organizations covering common terminology, data,
rules, and processes to specify the model of data storage and
sharing. A client application invokes a smart contract to
execute the search protocol. When the execution is complete,
the smart contract records the results (i.e., state changes) in
the distributed ledger ofMCB. Together with the ledger, smart
contracts form the core part of the MCB system.

5.4. System Design

5.4.1. System Setup. Before the system runs, TI sets security
parameters κ and generates system public parameters Param.
&e system parameters Param include bilinear operation
parameters (G1,G2, q, P, e), hash functions H/h with dif-
ferent output lengths, and pseudorandom permutation
functions F/F− 1 with reference to the setup algorithm in
Section 4. &e system selects AES algorithm as the pseudo-
random permutation function to excrypt medical data. &e
medical data users in the systemmainly include the data users’
MDUs and the supervisory institution SUP. Before the users
join the system, they need to generate a set of public-private
key pairs for data authorization.&e public-private key pair of
SUP is (dsup, Qsup). &e public-private key pair of MDU is
(du, Qu), which is computed in the setup algorithm.

5.4.2. Encryption and Updating of Medical Data. After the
system is initialized, MDO will store the encrypted medical
data and the corresponding searchable structure to authorize
access by multiple MDUs. When patients visit the hospital
and get multiple electronic medical records, these medical
records will be preprocessed as described in subsection
B. Next, MDO gets the file index set
IND � ind1, ind2, . . . , indm􏼈 􏼉, the keyword dictionary
W � w1, w2, . . . , wD􏼈 􏼉, and the file index set
Indwk

� Ind1wk
, Ind2wk

, . . .􏽮 􏽯. Let the database

DB � IND, W, Indwk
􏽮 􏽯

wk∈W
􏼚 􏼛, and a mapping Σ stored lo-

cally for keeping the latest status of keywords (i.e., status

Medical file D1

Medical file D2

Medical file Dm

...

Build the indexes

ind1

ind1

ind1

ind2

ind2

ind2

ind2

indm

indm

indm

indm

w1

w1

w2

w2

w3

w3

w4

w5

w6

w6

w7

w8

w8

w9

w10

w1

w1

w10

w2

w2

w3 w5 w8 w10

...

...

...

... ...

Medical data owner

Inverse indexes

Figure 3: Process of constructing the inverse indexes.
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pointer) is initialized. &en, n MDUs are specified to be
authorized, denoted as ui􏼈 􏼉i∈[1,n], whose public key is Qui

􏽮 􏽯.
Taking the above parameters as input, the Encrypt data

encryption algorithm in Section 4 is invoked to encrypt the
medical record database DB to obtain the encrypted database;

i.e., searchable data structure EDB � 〈refptc+1
wk

, incptc+1
wk

〉,􏼚

〈ref Indj
wk

, incIndj
wk

〉􏼚 􏼛
j∈[1,mwk

]
, 〈ref twk

, inctwk

〉}, where the var-

iable ref is a reference to the subscript value and inc hides the
information of the medical file indexes. After generating the
encrypted database EDB, the key-value pairs EDB[refptc+1

wk

] �

incptc+1
wk

,EDB[ref indj
wk

] � incIndj
wk

,EDB[ref twk

] � inctwk

are
uploaded to MCB through a smart contract.

Updates include medical data update and authorized
user update. &ere are two types of medical data update:
adding and deleting medical record files. When adding
medical record files, MDO obtains the state pointer ptc

wk
for

the same keyword wk
′ as in the previous keyword dictionary

W and invokes the Encrypt encryption algorithm in Section
4 to encrypt the newly addedmedical record database DB′ to
update it. When deleting medical record files, MDO per-
forms the operation differently by selecting the del option
fromOP � add, del{ }. &e update of authorized medical data
users is achieved by reconstructing the broadcast ciphertext.
MDO adds the specified medical data user MDUs as
ui
′􏼈 􏼉i′∈[n+1,n′], where n′ is the total number of new and old

authorized users, and the calculation method refers to the
Update algorithm.

5.4.3. Retrieval of Encrypted Medical Data. When a patient
(MDO) goes to another hospital for treatment, the autho-
rized doctor (MDU) reviews the patient’s past medical
records to assist in the diagnosis. &e search process for
medical records is as follows:

Step 1. MDU selects a keyword wk (e.g., hypertension)
and generates the search trapdoor Twk

by invoking the
trapdoor algorithm using his private key.
Step 2. MDU sends a search request containing the
search trapdoor Twk

to the smart contract.
Step 3. &e smart contract matches the trapdoor Twk

with the search structure EDB stored in the blockchain
to obtain the encrypted medical indexes EI

j
wk

􏽮 􏽯

according to the search algorithm.
Step 4. MDU uses the secret value s to decrypt the
ciphertext index EI

j
wk

􏽮 􏽯 to get the plaintext index
ind

j
wk

􏽮 􏽯 and the option (add/del) corresponding to the
index and the file decryption key, key.
Step 5. If the option is del, it indicates that the file has
been deleted and no access is needed. On the contrary,
MDU will access the medical data stored in the MCS
with the indexes.
Step 6. MDU decrypts the medical record ciphertext
returned from MCS to get the medical record file D

using key.

5.4.4. Supervision of Medical Data and Search Requests.
To ensure that the data in BNSEM system can be stored and
used legally, supervisors such as the healthcare commission
are required to regularly review the encrypted medical data
in MCS and monitor the search requests of MDUs in real
time. First, SUP maintains a sensitive word dictionary W′,
which includes sensitive keywords such as prohibited drugs,
illegal hospitals, and fake doctors. Next, SUP invokes the
supervise supervisory algorithm to locate the illegal files
containing sensitive words in MCS using the private key
dsup. &en, SUP generates trapdoors for each sensitive word
in W′, and after hash calculation, a trapdoor hash list is
obtained. Finally, SUP uploads the hash list to MCB through
smart contracts to filter trapdoors in search requests and
intercept the illegal requests containing sensitive words.

6. Security Analysis

6.1. Forward Privacy. &e requirement of forward privacy is
that given a previous search trapdoor, the update query does
not reveal information about the keywords that were
searched in the past; i.e., the previous keyword trapdoor
cannot be used to search medical records newly added after
the trapdoor was released. In the BNSEM system, the
trapdoor Twk

is equivalent to a state pointer of keyword wk.
With the help of this pointer, the smart contract will find the
latest state ptc+1

wk
of the keyword wk, which is used to locate

the corresponding encrypted medical file index EIindwk
j
,

where j � 1, . . . , mwk
􏽮 􏽯. &e smart contract then computes

the last updated state ptc
wk

� F− 1(kc+1
wk

, ptc+1
wk

) to search the
previously updated medical files.

When updating the medical files containing the keyword
wk, MDO will compute a new status pointer ptc+2

wk
�

F(kc+2
wk

, ptc+2
wk

), which is used to encrypt the file indexes and
generate the searchable structure 〈ref twk

, inctwk

〉 corre-
sponding to the latest version information VI. Due to the
security of the pseudorandom permutation function VI, the
adversary cannot predict the next state pointer based on the
current state pointer ptc+1

wk
and the version information.

&erefore, the previous search trapdoor cannot be used to
search the medical data updated afterward, so forward
privacy is guaranteed. &e BNSEM system that implements
forward privacy can effectively resist file injection attacks
and avoid adversaries from inferring the keyword contained
in a trapdoor.

6.2. Backward Privacy. Backward privacy limits the updated
information of a keyword w that an adversary can obtain
during a search query on the keywordw.&at is, a searchable
encryption system satisfies backward privacy if after a
keyword-file index pair (w, ind) is added to the database and
then deleted, and a search query on the keyword w will not
disclose the index ind. In BNSEM system, encrypting a
medical file index yields EI

j
wk

� H2(s, wk

����j)⊕(op
�����ind

j
wk

),
where the secret value s is broadcast encrypted using the
authorized MDUs’ public key and can only be decrypted by
the authorized MDUs. Since the search result is in the form
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of ciphertext, even if it is stored publicly on the MCB, the
adversary cannot decrypt the broadcast ciphertext to recover
the secret value s and cannot learn any useful information
about the indexes of medical files. &erefore, the backward
privacy of BNSEM can be achieved.

6.3. Distribution. Although BNSEM requires the use of a
centralized MCS to store encrypted data, the search process
is accomplished by smart contracts, which ensures the re-
liability and correctness of search results. First, to achieve the
retrieval of encrypted medical data, the MDO uploads the
searchable data structure to the distributed MCB platform
by invoking the smart contract with storage function. Sec-
ond, the MDU runs the trapdoor algorithm and uploads the
trapdoor to trigger the smart contract with the search
function. &e correctness of the whole search process does
not rely on the MCS, enabling decentralized search.

&e blockchain is distributed, and each blockchain node
is relatively independent and must be authenticated to join
the system. It is difficult for the adversary to manipulate a
large number of nodes at the same time to change the
network rules and damage the blockchain system, which can
effectively resist Sybil attack. In addition, since each search is
recorded as an immutable transaction on the blockchain, the
number of search requests sent by each MDU cannot be
tampered with. &e online keyword guessing attack (KGA)
can be effectively resisted by setting an upper limit on the
number of MDU’s requests.

7. Performance Analysis

7.1. Performance Comparison. We compare the theoretical
performance of our scheme with other multiuser searchable
encryption schemes, where theMVSSE [24] and BAEKS [25]
schemes are both based on public key cryptography, and
Π+[20] is a symmetric searchable encryption scheme. In this
study, we compare the computational overheads of the main
algorithms of searchable encryption schemes, including
encryption algorithm, trapdoor algorithm, and search al-
gorithm. &e results of the performance comparison are
given in Table 1.

&e notations in Table 1 are explained as follows: n

denotes the number of authorized MDUs and m denotes the
number of indexes containing the keyword w. Symbols h,
exp, sm, mul2, e, and mtp denote general hash functions
(e.g., SHA-256 and SHA-3), exponential operation, scalar
multiplication on the group G1, multiplication on the group
G2, a bilinear pair from groupsG1 toG2, and a map-to-point
map. Although the hash functions H0,2,3,4,, h1,2,3,4 used in our
scheme differ in input/output lengths, they can all be ob-
tained by simple transformations of the general hash
functions and will not add additional complexity. In addi-
tion, F/F− 1 denotes pseudorandom permutation function
(i.e., symmetric cryptography, e.g., AES and DES algo-
rithms). &e time overhead of the above operations is shown
in Table 2.

It shows that the computational overhead of encryption
algorithm in most schemes is linearly related to the number

of indexes m in Table 1. &e BAEKS scheme does not
consider the number of indexes containing the keywords. In
addition, the encryption computational complexity of
BAEKS is linearly related to the number of users, so it is not
shown in the computational overhead graph.&e schemeΠ+

does not describe the broadcast encryption algorithm it uses,
so the broadcast encryption overhead cannot be calculated.
&e encryption computation overheads of our scheme and
the MVSSE scheme are 2∗ sm + e + mtp + F + (2m + 4)∗ h

and sm + (2m)∗mul2 + (2 + m)∗F + (2m)∗ h, respec-
tively. Although our scheme contains additional time-
consuming operations, they are independent of the number
of indexes. &e theoretical computational overhead of en-
cryption algorithm for each scheme with respect to the
number of file indexes is shown in Figure 4.

As for trapdoor algorithm, the computation overheads of
MVSSE, Π+, and our scheme are 2∗ sm + 2∗mul2 + 2∗F,
5∗F, and 3∗ sm + e + mtp + h, respectively. Although the
trapdoor computation overhead of our scheme is slightly
higher than other schemes, we avoid key management and
distribution operations compared with the symmetric
scheme MVSSE. Moreover, the user in the MVSSE scheme
cannot generate search trapdoors independently and it re-
quires interactive communication with the server. Similarly,
the Π+ scheme requires the data owner to generate and
distribute public-private key pairs for multiple recipients,
which does not meet the key security specification. &e
theoretical computational overhead of trapdoor algorithm
for each scheme is compared as shown in Figure 5. &e
computational overhead of our scheme is slightly higher
than that of MVSSE scheme, and the trapdoor generation of
Π+ scheme only involves pseudorandom permutation op-
eration with minimal time overhead.

When performing search operations, theMVSSE scheme
contains multiple scalar multiplication operations, which
will incur a large computation overhead. &e search com-
putation overhead of our scheme is lower than that of the
symmetric searchable encryption scheme Π+ because the
computations in the main algorithm of our scheme are hash
operations or symmetric cryptographic primitives. &ere-
fore, our scheme is a searchable public key scheme with high
search performance. Figure 6 shows the variation of the
theoretical search computation overhead with the number of
indexes for each scheme. Our scheme has the lowest
computation overhead, and the MVSSE scheme has the
highest time overhead with the number of indexes.

7.2. Prototype Implementation. We implement our BNSEM
system using the MIRACL cryptographic library (C++) on a
PC with 16GB of RAM, Intel Core i5-7500 CPU, OS
Windows 10, and a Fabric consortium blockchain on a PC
with 16GB of RAM, Intel Core i5-7500 CPU, and OS
Ubuntu 16.04. In addition, we set the system security pa-
rameter κ to 128 bits, implement hash functions with dif-
ferent input and output lengths based on SHA-256, and use
the AES algorithm in CBC mode as the pseudorandom
permutation function with a key length of 128 bits. Finally,
we choose a super-singular elliptic curve (y2 � x3 − 3x, p �
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2255 + 241 + 1) to achieve the ASE-128 security level. Next,
we perform three simulation tests: the time cost of the
encryption algorithm with the number of indexes, the time
cost of the search algorithm with the number of indexes, and
the time cost of all algorithms under a certain number of
indexes of our system.

To overall evaluate the efficiency of our system, we test
the average time overhead of all algorithms under the
condition that the number of indexes containing the key-
word is 10000, as shown in Figure 7. &e key generation
requires multiple scalar multiplication operations on the G1
group with a time overhead of about 85ms. In addition, the
time to generate a search trapdoor of the keyword is about
166ms, while the time overhead to encrypt a search
structure with 10000 file indexes is only 287ms, mainly
because the trapdoor algorithm requires the time-

Table 2: Time cost of basic operations.

Operations e mtp sm mul2 F/F− 1 h

Time cost (ms) 43.669 86.316 15.995 0.024 0.002 0.001
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Figure 7: Time cost of each algorithm.

Table 1: Comparison of computational overheads.

Schemes Encryption Trapdoor Search
MVSSE [24] sm + (2m)∗mul2 + (2 + m)∗F + (2m)∗ h 2∗ sm + 2∗mul2 + 2∗F 3∗ sm + (2m + 1)∗mul2 + m∗F + 4m∗ h

Π+[20] 2(m + 1)∗F 5∗F 5m∗F

BAEKS [25] (2n + 5)∗ sm + n∗ e + (n + 1)∗ h sm + e + mtp (n + 4)∗ sm + 2∗ e + 2∗mul2 + h

Ours 2∗ sm + e + mtp + F + (2m + 4)∗ h 3∗ sm + e + mtp + h (2m + 4)h
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consuming operations (bilinear pairs and mtp). &e search
algorithm in the smart contract is efficient with an average
time overhead of about 55ms for 10000 matched results.

8. Conclusion

In this study, we propose a blockchain-based searchable
encryption scheme BNSE and design a searchable encryp-
tion system BNSEM for medical data based on the scheme.
Firstly, the system adopts the smart contract of Fabric to
guarantee the accuracy of search results. Secondly, we use
polynomial-based broadcast cryptography to implement a
multiuser search function. &en, the system achieves legal
regulation of medical ciphertext data without violating the
privacy of the private key. Finally, we provide the security
analysis of BNSEM and perform a test of the time cost of
each algorithm. For future work, we have considered
functional extensions of multikeyword search and range
queries on numerical data.
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