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Black-box fuzzing is a testing technique to find both known and unknown vulnerabilities in software. When applying black-box
fuzzing to smart devices, the main idea is to take a smart device as a black box and provide random input through a network-based
interface, such as a Web interface. Due to the diversity of Web interface implementations and complex data format, a blind
mutation of the messagemakes themessage unable to pass the verification of the device component.,erefore, eachWeb interface
needs a unique fuzzer, which precisely defines a message format of the target interface, a state maintenance method, the field
positions to be mutated, and a specific input mutation method. At the time of writing, a fuzzer is completely developed by a
security engineer. To save human labor, we present PDFuzzerGen, a tool to automatically synthesize complex black-box fuzzers
for smart devices. PDFuzzerGen generates multiple fuzzing policies by analyzing rawmessages and then synthesizes fuzzers based
on policies. PDFuzzerGen requires no human intervention and can be applied to a wide range of smart devices. Furthermore, the
generated fuzzers can expose bugs and flaws that rest deep in smart devices. PDFuzzerGen was evaluated to generate fuzzers for 19
different smart devices from 6 vendors. It has found 14 previously unknown vulnerabilities, 5 of which were confirmed and
disclosed by the China National Vulnerability Database (CNVD) and 2 of which were confirmed and disclosed by Common
Vulnerabilities and Exposures (CVE). ,e generated fuzzers outperform some manually crafted fuzzers on a few metrics, in-
cluding the vulnerability detection rate and time cost of a newly developed fuzzer, which demonstrates the effectiveness and
efficiency of PDFuzzerGen.

1. Introduction

In recent years, smart devices have become an indispensable
part of our life. Such devices include smart routers, cameras,
door locks, light bulbs, and so on. By 2020, every person on
this planet has four smart devices on average [1]. While these
smart devices enrich our lives, unfortunately, they also in-
troduce security risks in the form of vulnerabilities. A no-
torious example is the Mirai [2] botnet, which exploited a
bunch of vulnerabilities on millions of smart devices
worldwide (including routers and webcams) and launched a
large-scale denial of service attack. In the work-from-home
scenarios during COVID-19, Trend Micro has reported that

introducing vulnerable smart devices to the household will
expose employees to malware and attacks that could slip into
a company’s network [3]. ,erefore, it is crucial to discover
the vulnerabilities in smart devices before deploying them
in use.

Vulnerabilities in smart devices are usually imple-
mentation flaws in the device firmware, which is a software
that provides hardware support for upper-level users. In
recent years, researchers have developed many novel tech-
niques to discover vulnerabilities in smart devices by ana-
lyzing their firmware [4–8]. ,ese approaches, however,
present several limitations. ,e primary one is the difficulty
in firmware acquisition because many vendors do not make
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their firmware images publicly available [9]. ,e second one
is the difficulty of unpacking firmware images, which may be
available in a variety of compression (even with encryption)
formats; most of them are undocumented [10].,e third one
is the difficulty of binary analysis due to diverse underlying
architectures (memory layout, instruction set, and so forth)
[11]. ,is impedes the methods that rely on emulation for
certain architectures, and it is still a challenge to analyze the
binary file after firmware decompression without the
knowledge of the underlying architecture [9, 11].

Due to resource computational constraints, many smart
devices provide network-based administration interfaces
[12].,eWebmanagement interface is a popular instance of
these network-based interfaces (Web interface for short).
,eWeb interface usually packs user data and sends it to the
device in a format defined inside the device. After receiving
the message, the device parses the message, performs au-
thentication and data format verification, and then passes
the message data to a further procedure according to the
different functions used [13]. If there is an implementation
flaw in message parsing or further procedure, a vulnerability
may be exploited [11]. So a smart device that has a Web
interface can be treated as a black box. Feeding this black box
with malformed messages could trigger potential vulnera-
bilities in the parsing process. And more importantly,
feeding this black box with crafted malicious messages,
which have authentication credentials and malicious param-
eters whose format conforms to different data exchange for-
mats (such as XML, JSON, SOAP, Key-value pairs, etc.), can
trigger in-depth vulnerabilities in the further procedure.

,is approach is also called black-box fuzzing. State-of-
the-art black-box fuzzing tool BooFuzz [14] facilitates smart
device fuzzing through the help of an analyst [13]. ,e
analyst writes a set of “fuzzer stubs,” a set of functions that
define (i) a state maintenance method, (ii) the precise po-
sition of the fuzzed parameters in amessage, and (iii) specific
mutation methods. An analyst must write such a set of stubs
for each Web interface of each smart device tested. Inter-
esting fuzzed parameters and how these parameters are
mutated are completely determined by the analyst. While
this approach mitigates the challenge of fuzzing smart de-
vices, it relies on human knowledge of message semantics
and empirical perception of message parameters that may
trigger potential implementation flaws.

1.1.OurApproach. In this paper, we propose PDFuzzerGen,
a black-box fuzzer generation framework, to automatically
generate black-box fuzzers that can discover real-world
vulnerabilities. PDFuzzerGen uses a novel technique called
policy-driven fuzzer generation. As the name suggests, its
main idea is to formulate multiple fuzzing policies by an-
alyzing the raw messages of a Web interface, and a set of
“fuzzer stubs” for BooFuzz is generated based on these
policies. Finally, these “fuzzer stubs” are used to synthesize
fuzzers, and fuzzing inputs are generated by the fuzzers to
trigger deep implementation flaws in the firmware of the
smart device. PDFuzzerGen automates the manual process
of the analyst in creating customized fuzzers for smart

devices and specific Web interfaces. Since the Web interface
is accessed via a network, this approach is completely in-
dependent of the device firmware images, and it can be used
to test smart devices that do not publicly release their
firmware image.

In our research, we implemented a full-featured proto-
type of PDFuzzerGen and evaluated it in a real-world en-
vironment. To assess its effectiveness, we ran PDFuzzerGen
on 19 popular smart devices from 6 vendors. PDFuzzerGen
successfully discovered 14 previously unknown vulnerabil-
ities, 2 of which were submitted and confirmed by the
Common Vulnerabilities and Exposures (CVE): CVE-2021-
31624 and CVE-2021-31627, and 5 of which were submitted
and confirmed by the China National Vulnerability Database
(CNVD): CNVD-2020-69407, CNVD-2020-67555, CNVD-
2021-17400, CNVD-2021-22752, and CNVD-2021-24948.
We have reported all these vulnerabilities to CNCERT/CC
[15] in pursuit of helping vendors fix them.

1.2. Contributions. We summarize the contributions of the
paper as follows:

(i) New technique: we developed a new technique
called policy-driven fuzzer generation to automat-
ically generate fuzzers. ,ese policies include state
maintenance policies, parameter discovery policies,
parameter mutation policies, and monitoring
policies.

(ii) New framework: to the best of our knowledge, we
present the first firmware-independent black-box
fuzzer generation framework, PDFuzzerGen, which
is used to find implementation flaws in smart devices.
Based on the dynamically created policies, PDFuz-
zerGen creates BooFuzz fuzzers for different net-
work-based interfaces without human interaction.

(iii) Implementation and findings: we implemented a
full-featured prototype of PDFuzzerGen and eval-
uated it on 19 real-world smart devices. In total, 14
zero-day vulnerabilities were discovered.

1.3. Roadmap. In the remainder of this article, Section 2
provides a review of the background and related work of
smart device fuzzing and fuzzer generation. Section 3
presents a detailed design of PDFuzzerGen, and Section 4
covers its implementation details. ,e evaluation results are
summarized in Section 5. Section 6 discusses some limita-
tions of the current design and points out the future work.
Finally, Section 7 concludes the paper.

2. Background and Related Work

In this section, we present the fuzzing work in the smart
devices scenario and fuzzer generation, a method featured by
a higher degree of automated fuzzing in recent years.

2.1. Smart Devices Fuzzing. Fuzzing methods can be clas-
sified into white-, grey-, and black-box fuzzing [16]. White-
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box fuzzing requires the source code of the target. However,
the firmware source code and related documents of smart
devices are rarely publicly available, so white-box fuzzing is
not appropriate for smart devices. ,e typical grey-box and
black-box fuzzing methods used in smart devices in recent
years are summarized in Table 1.

Unlike some methods based on program analysis [20],
grey-box fuzzing is usually guided by code coverage, and it is
necessary to track the executed code block during the
fuzzing execution stage [10]. As a matter of the fact, this type
of method needs to distinguish bare-metal devices from
simulated devices. For bare-metal devices, this method relies
on hardware debugging to achieve code coverage tracking
[21], but this function is usually disabled in consumer de-
vices by the manufacturers [6, 7]. For simulated devices,
some researchers [5, 22–24] focus on studying how to
simulate firmware so that its related services can run ex-
pectedly, such as Web services. Some fuzzing methods
[6, 7, 25] carry out grey-box fuzzing based on these simu-
lation methods. When the simulation is working, these
methods can detect vulnerabilities. Unfortunately, the
success rate of simulation and the range of applicable
manufacturer’s equipment is relatively limited [24], and
many simulated devices do not support debugging [26]. At
the same time, simulated devices and bare-metal devices
may have some functional differences [10, 24]. Vulnera-
bilities in a simulated device may not be exploitable on a
bare-metal device. As a matter of the fact, for those devices
that cannot be successfully simulated or that cannot be
debugged, the grey-box fuzzing method that relies on
simulation and debugging functions is not applicable.

Black-box fuzzing mitigates the issues of grey-box
fuzzing at the expense of some efficiency. Black-box fuzzing
methods for smart devices can be classified into app- and
protocol-based fuzzing. IoTFuzzer [11] is the first method
for fuzzing from the mobile app side, which mutates test
cases by identifying and reusing app-specific logic. Unlike
the method of discovering component vulnerabilities in
DEX files [27], IoTFuzzer is still looking for vulnerabilities in
smart device firmware. Based on IoTFuzzer, DIANE [10]
aims at the challenge that the generated test cases may be
restricted by their own code constraints. It transfers the
operation of data mutation from the first function entered by
the user to the last data encoding function before sending the
data to the smart device so that it can directly bypass the
previous input data sanitization stage. ,ese methods can
effectively discover vulnerabilities in the code that com-
municates with the app on smart devices. Unfortunately, not
all smart devices have corresponding mobile apps. And even
if the smart device has a mobile app, this method cannot find
vulnerabilities in components that do not communicate with
the mobile app.

Protocol-based fuzzing usually starts from the network
communication process. Unlike intrusion detection
methods that focus on protocol classification, protocol-
based fuzzing focuses on flawed protocol components [28].
Using communication messages as a seed, it performs
fuzzing on protocol components or functional modules of
smart devices through mutation or generation methods.

Based on the black-box fuzzer peach, Kamel and Lanet [29]
tried to find errors in some modern smart card Web server.
Costin et al. [30] extended the range of the research object
from smart cards to the entire commercial off-the-shelf
(COTS) equipment, such as routers, webcams, and so on.
,is method relies on the original device firmware through
decompression and static analysis of it. After that, it tries to
simulate the firmware, and when the simulation is suc-
cessful, it performs dynamic analysis including black-box
fuzzing. Unfortunately, their method completely relies on
the success of firmware simulation, which limits its usage. In
addition, this method focuses more on the automation of the
entire process. When performing black-box fuzzing, the
protocol specification is not considered, so there are a lot of
test case format errors, which makes the overall fuzzing less
efficient. At the same time, their work also pointed out that
many of the latest smart devices require authentication to
access vulnerable modules.

SIoTFuzzer [19] is another third-party independent
work while writing this paper. SIoTFuzzer chooses to start
from the Web front-end page and complete stateful message
generation through front-end source code review, state
analysis, and seed generation.,en, the correct seedmessage
is generated. Finally, the generated seed message is mutated
to complete the fuzzing process. ,is method can effectively
generate a raw seed message. Unfortunately, their stateful
message generation requires manual pre-analysis of the test
target, which limits its large-scale application. In addition,
they did not discover unknown vulnerabilities.

2.2. Fuzzer Generation. Although the fuzzing method has
proven to be an effective method of vulnerability detection
[13, 16, 31], the development of the fuzzer still relies on
experienced analysts [32], and the process takes a lot of time
[13]. Some modern fuzzing frameworks, such as libFuzzer
[33] and Boofuzz [14], facilitate fuzzing through the help of
analysts. In the development of fuzzing, researchers need to
write a small fuzzer, which is an independent program. For
smart device fuzzing, the analyst must write such a fuzzer for
eachWeb interface of each smart device. Analysts can decide
for themselves which fields to fuzz, the mutation rules, and
whether the authentication process is required. ,ese
methods rely on a manual in-depth understanding of dif-
ferent network-based interfaces and their communication
processes (for BooFuzz) or internal APIs and their usage (for
libFuzzer). And the larger the scale of the application and the
more functional interfaces, the greater the manual overhead
of writing Fuzzer. ,erefore, the cost required to apply this
method to many different devices is enormous.

,e Google security team first realized the challenge of
fuzzing complex interfaces. ,ey tried to use fuzzer gen-
eration approach to solve it and developed FUDGE [34] and
FuzzGen [32]. ,e goal of FUDGE and FuzzGen is to au-
tomatically generate fuzzers for the open-source libraries of
the Linux distributions. FUDGE synthesizes the fuzzer by
extracting the API sequence from the existing source code
that calls the library function. Based on FUDGE, FuzzGen
analyzes the existing source code of calling library functions,
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infers the API call relationship of the library, and then
generates fuzzers, which further improves the degree of
automation. IntelliGen [35] addresses the issue of the quality
of existing test cases that FuzzGen relies on calling library
functions, starting from two aspects: high-value entry
function and suitable parameters. It first scans the target
program, leverages LLVM to locate the high-value entry
function as a potential entry function, and then performs
accurate parameter inference to improve performance and
compatibility to solve the previous issues.

Inspired by FUDGE and FuzzGen, WINNIE [31] focuses
on closed-source Windows programs. Compared with the
open-source Linux library, the closed-source and GUI-based
Windows software ecosystem has some new challenges. ,e
authors first clarified five challenges of the research object:
target discovery, call-sequence recovery, argument recovery,
control-flow, and data-flow dependence. ,enWINNIE was
developed specifically to solve these challenges one by one.
,eir experimental results show that WINNIE can suc-
cessfully circumvent some GUI limitations and can effec-
tively find bugs in Windows GUI programs.

,ese approaches have proved that fuzzer generation is
an effective method to improve the efficiency of fuzzing and
reduce the labor expense and time consumption of manual
development.,ese approaches are effective for open-source
libraries or Windows GUI programs, but unfortunately,
many smart devices vendors do not make their firmware
images, source code, or documentation publicly available
[9–11], and smart devices usually use Web interfaces for
communication instead of windows GUI programs. So these
fuzzer generation approaches cannot be applied to smart
device fuzzer generation.

3. Design

In this section, we introduce the detailed design of
PDFuzzerGen. Figure 1 shows an overview of the PDFuz-
zerGen framework. To synthesize customized fuzzers for a
smart device, PDFuzzerGen requires the raw messages sent
to the device as the initial seed. PDFuzzerGen first scans the
raw messages and picks out some candidate functional
messages for fuzzing (§3.1). ,e selected raw messages are
passed to the policy generator for policy analysis. ,e policy
generator formulates state maintenance policies, parameter
discovery policies, mutation policies, and monitoring pol-
icies (§3.2∼§3.5). Based on these generated policies,
PDFuzzerGen generates a series of fuzzer stubs, which are
used to synthesize a set of fuzzers (§3.6). ,ese fuzzers can

run independently and generate fuzzing messages to fuzz the
target smart device and monitor the response messages to
find potential device abnormalities, such as crashes.

3.1. Target Discovery. ,e first step of fuzzer generation is
target discovery. In raw messages, there are many messages
requesting static resources, which usually do not trigger deep
and different function codes. ,erefore, in order to generate
fuzzers that can discover in-depth vulnerabilities, the goal of
target discovery is to identify functional messages that can
trigger deep code.,ese functional messages are used as seed
messages for subsequent policy analysis.

Generally, typical smart device Web interface request
messages consist of two types. One is for resource retrievals,
such as GET and HEAD messages. ,e other one is for
resource management, such as POST, PUT, DELETE, and so
on. Resource management messages usually interact with
deep functional components of smart devices and are im-
portant for fuzzer generation. Resource retrieval messages
are usually used to get some static resources, pages, or device
status data, which usually comply with RESTful specifica-
tions. However, some of the static resource request messages
are rarely related to functional components. In addition,
some devices also use resource retrieval messages, such as
GETmessages for functional interaction and do not comply
with RESTful specifications. Accordingly, PDFuzzerGen
reserves resource maintenance messages, denoted as RMM.
At the same time, it filters resource request messages to
remove the request for static resources and request messages
without query parameters, denoted as RRMf. According to
(1), the set of potential functional messages, I, is

I � RMM∪RRMf. (1)

3.2. State Maintenance. Many smart devices require au-
thentication to access vulnerable components. Existing
fuzzers usually require manual intervention to authenticate.
In other words, an ananalyst manually logs in and infers the
authentication method of the target service. After that,
authentication credentials, such as cookies or tokens, are
filled in a fuzzer to maintain the authenticated session state.
,e design goal of PDFuzzerGen is to reduce the overhead of
manual intervention as much as possible, so it needs to
automate the entire process from login to session mainte-
nance. ,us, when formulating a state maintenance policy,
several questions need to be answered: (i) does the target

Table 1: Grey- and black-box fuzzing methods in smart devices.

Fuzzer Fuzzing type Hardware support Component Zero-day detection
IoTFuzzer [11] Black-box Bare-metal APP-related Yes
FIRM-AFL [7] Grey-box Emulation Web Yes
FirmFuzz [6] Grey-box Emulation Web Yes
IoTHunter [17] Grey-box Emulation Protocol Yes
MultiFuzz [18] Grey-box None Protocol Yes
SIoTFuzzer [19] Black-box Emulation Web No
DIANE [10] Black-box Bare-metal APP-related Yes
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device require authentication? (ii) Is the authentication
process replayable? (iii) Can the authenticated state be
maintained? We will answer these three questions from four
aspects: authentication identification, replayable message
identification, unified state maintenance model, and fuzzing
execution type.

3.2.1. Authentication Identification. Most smart devices
have the function of authentication, but there are still some
devices that may not have this function, especially some
simulated devices. ,e design goal of PDFuzzerGen is
service-oriented, which means fuzzers can be generated if
the Web interface can be accessed normally, regardless of
whether the device is bare-metal or simulated. PDFuzzerGen
implements authentication identification by identifying the
login message in raw messages. PDFuzzerGen recognizes
login messages from two aspects. ,e first aspect is to
identify whether the request parameters carry authentica-
tion-related information, such as login-related string literals.
,e second aspect is to determine whether the request
message after the login message can be responded to ex-
pectedly, including whether the status code and response
content are expected.

For status codes, the main judgment is based on the
definition of HTTP response status codes in RFC2616 [36].
When the status code is in an error state, the login process
usually fails, but when the status code is in a success state, the
login process does not necessarily succeed. ,is is because
some Web components set a uniform status code and use a
custom response result specification in the response content.
Different manufacturers may customize different response
result specifications, and it is very difficult to accurately
identify these different specifications. However, according to
our observations, most Web components have significant
differences in the length of the response message for login
success and failure. For example, when the login fails, a long
error message or a more complex failure page will be
returned, which makes the length of the response content in
the case of failure significantly larger than that in the case of
success. ,is gave us some inspiration. At the same time,
common practice tells us that accessing any existing func-
tional interface will be redirected to the login page or login
interface under the condition that the authentication is not
passed. Based on this practical experience, by enumerating
and traversing the subsequent functional interface messages

of the located authentication message, the URLs appearing
in the response header and message body are counted and
clustered, respectively. If they all have the same login jump
request, it indicates that the previous authentication packet
authentication failed. ,erefore, for the response content,
PDFuzzerGen comprehensively uses the above two methods
to determine whether the authentication message is suc-
cessful or not.

3.2.2. Replayable Message Identification. One of the im-
portant factors affecting the automated authentication of the
fuzzer is whether the loginmessage can be replayed. Based on
the ideaofdifferential analysis,when the response result of the
replayed message is basically consistent with the response
result of the successful login, it indicates that the login
message can be replayed.After the above steps, PDFuzzerGen
can locate the specific login message and determine whether
the login message can complete the login process. After that,
the login message is replayed N times for the target Web
interface, andafter each replay, it is detectedwhether the login
is successful and whether the login status has changed. For
example, it can be detected whether the cookie or authenti-
cation token has changed. If there is a change, it can be
inferred that the loginmessage canbe replayed; otherwise, the
target authentication is replay resistant.

3.2.3. Unified State Maintenance Model. ,e authentication
categories for the Web interface of smart devices are usually
divided into three categories: cookie-based, token-based, and
session-based. Some devices also use a mixture of them. For
example, both token and cookie are used for authentication.

To enable PDFuzzerGen to handle these complex sce-
narios at the same time, we propose a unified state main-
tenance model: a sliding state maintenance model. For the
session mechanism, the state data is usually recorded on the
server side, and there is usually no relevant state mainte-
nance information in the request message. As shown in
Figure 2, for the cookie mechanism, the state data is usually
in the “Cookie” field in the HTTP request header, and the
session state can be maintained if the relevant cookie is
carried. For the token mechanism, taking a POST request as
an example, the location of the token may exist in the
following four locations in the request message: (i) URL, (ii)
request header fields, (iii) cookie, and (iv) payload. ,ere-
fore, for the created fuzzer to dynamically obtain the
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Figure 1: Overview of PDFuzzerGen.
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authentication field at runtime, PDFuzzerGen needs to lo-
cate the position of the authentication field in each au-
thentication method.

PDFuzzerGen uses the differential sliding positioning
algorithm for the above state maintenance model to locate
the position of the potential authentication field.,e specific
steps are shown in Algorithm 1:

3.2.4. Fuzzing Execution Type. We divide the fuzzing exe-
cution type into two categories: auto-login fuzzing and
anonymous fuzzing. ,is is to enable PDFuzzerGen to
handle the above-mentioned multiple scenarios more easily.
Auto-login fuzzing refers to fuzzing after logging out.
Anonymous fuzzing refers to fuzzing performed at login.
When the target service does not require authentication,
there is no restriction on authentication. Fuzzing can be
performed at any time, so anonymous fuzzing can be ap-
plied. ,en, when the target service requires authentication
and the login message can be replayed, the fuzzer can au-
tomatically complete the authentication process before each
test case is sent, locate the relevant authentication status
field, and fill it into the mutated test case to complete the
auto-login fuzzing test. Finally, when the target service re-
quires authentication and the login message cannot be
replayed, this situation will be recorded by PDFuzzerGen. In
this case, the generated fuzzers will only be able to fuzz the
message parsing component because it cannot pass the
authentication and reach the deep-level functional code. In
practice, the limitations of the last case can be mitigated to
some extent, which we discuss in Section 6.

After the above process, PDFuzzerGen constructs a state
maintenance policy. ,e information in the state mainte-
nance policy includes authentication, message replay, au-
thentication state maintenance field location, and fuzzing
execution type.

3.3. Parameter Discovery. ,rough state maintenance, the
prerequisites for generating fuzzers have been met. ,e
next thing to do is to enable the generated fuzzer to generate
test messages with the correct parameter format and reach
deep-level functional components to achieve refined
fuzzing. A typical smart device Web interface communi-
cation and message processing flow is shown in Figure 3.
When an HTTP message is sent to a smart device, the Web
server first parses the message, completes the authentica-
tion, identifies the structured message parameters, and
then calls the parameter analysis component to analyze the
structured message parameters. Finally, the extracted
message variables are passed to different functional com-
ponents that specifically handle these parameters. Ac-
cordingly, to discover the vulnerabilities of deep-level
functional components, the structural integrity and ef-
fectiveness of the test messages must be ensured.

For Web interfaces, although in most cases resource
request messages, such as GETmessages are used to obtain
data, resource maintenance messages, such as POST, are
used to submit data. However, when each smart device
vendor implements related functions, the type of request for
submitting data is not fixed. Some smart devices, such as TP-
LINK TL-WR940N, use GETmessages to complete all data
submission operations. ,e data formats of the request
parameters are also different; for example, it can be JSON
(such as TP-link TL-IPC43AW equipment), XML (such as
D-Link DIR-823G equipment), and other types. Accord-
ingly, PDFuzzerGen needs to deal with various complex
parameter scenarios. For the parameter discovery process,
considering that in the actual encoding process, before the
deep-level parameters reach the target code position, some
other parameters usually need to pass the verification.
,erefore, we hope that the payload generated by mutation
is not only syntactically compliant but also semantically
compliant, especially the parameter relationship. ,erefore,

POST /some/url/token1/example.http HTTP/1.1
Host: example.com
Token-Param2: token2
Cokie: Token-Param3=token3

{”data_key”:”data”,”Token-Param4”:”token4”}

Figure 2: Example of Web interface message with authentication credentials.

Input: Login message Ml, Replay time n

Output: Potential authentication field location Lp

(1) Replayed Mln times. After each login authentication succeeds, select the same group of functional messages Ma that carry state
maintenance information.

(2) A pairwise difference is performed on the message in Ma, and its potential k difference fields fd are located.
(3) Perform sliding traversal on each difference field fd and filter according to its location and content. When fd is in the URL or

request header fields, the difference field is inferred to be a potential authentication field fp. When fd is in the cookie or payload,
the parameters in the cookie or payload are parsed, and the values of the same key are compared. If the length of fd exceeds the
threshold k, the field is inferred to be a potential authentication field fp.

(4) Record the location of all fp as Lp.

ALGORITHM 1: Differential Sliding Positioning.
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we define two different degrees of parameter relationship to
better describe the relationship between parameters: hier-
archical relationship and dependency relationship.

,e hierarchical relationship is used to describe the
parameter relationship at the syntactic level, and the de-
pendency relationship is used to describe the parameter
relationship at the semantic level. ,ere are many formats
for parameters and usually support nested data structures
such as JSON, XML, and so on. In these formats that support
nested data structures, we define the hierarchical relation-
ship of parameters as the hierarchical order relationship of
each key-value pair from outside to inside. Based on the
hierarchical relationship, we define the relationship between
a parameter and its parent parameters and ancestor pa-
rameters that are shallower than its depth as a dependency
relationship. Taking some parameters of the JSON structure
in Figure 3 as an example, for the nested key-value pair
″network″: ″name″: ″wan_status″ , ″network″ is the
outer key; ″name″: ″wan_status″  is the value of the outer
layer; ″name″ is the key of the inner layer; and ″wan_status″
is the value of the inner layer. ,e hierarchical relationship
of these parameters from shallow to deep is: ″network″,
″name″, and ″wan_status″. ,e parameter dependency of
″wan_status″ is that ″wan_status″ depends on ″name″ and
″network″.

,e parameter discovery algorithm of PDFuzzerGen is
shown in Algorithm 2:

After the above process, PDFuzzerGen uses the parameter
data structure type, parameter dependency, parameter key-
value information, and parameter value information to build
the parameter discovery policy.

3.4. Mutation Policy Selection. ,e mutation is a very im-
portant step in a fuzzing process. For some modern fuzzing
frameworks, such as libFuzzer and BooFuzz, a mutation
operation can be done by an underlying mutation module.
In a fuzzer, it is more important to define specific mutation
policies. PDFuzzerGen completes mutation policy selection
from three origins: parameter value evaluation, policy se-
lection, and policy schedule.

3.4.1. Parameter Value Evaluation. ,ere are many pa-
rameter fields in a raw seed message. To perform fuzzing
more efficiently, the value of parameters needs to be eval-
uated. Parameter value evaluation is mainly carried out from
three origins: parameter position, semantic feature of pa-
rameter value, and parameter type. (1) For a parameter
position, in the previous parameter discovery stage,
PDFuzzerGen has obtained the dependency and hierarchical
relationship of the parameters. According to our practical
experiences and observations, the more complex the func-
tion parameter, the more complex the data structure, and the
deeper the parameter hierarchy, the deeper the function
code level that can be triggered. ,us, the default value
evaluation basis of PDFuzzerGen is to evaluate according to
the depth of the parameter hierarchy. ,e deeper the hi-
erarchy, the higher its potential value. (2) For the numerical
semantic features of parameters, when a parameter value is a
human-readable vocabulary, PDFuzzerGen marks the pa-
rameter as a potentially high-value parameter. (3) For the
parameter type, when the parameter value is a data type

POST /stok=xxxxx/ds HTTP/1.1
...
Connection: close

{”network”:{”name”:”wan_status”
},”cloud_config”:{”name”:[”new_
firmware”,”device_status”,”bind”]
},”wireless”:{”name”:[”wlan_wds
_2g”,”wlan_wds_5g”]},”method”:
“get”}

Web Server

Functional component 1
Functional component 2

Functional component n

Smart device

Parameter
analysis

component

wan_status
new_firmware
device_status
bind
wlan_wds_2g
wlan_wds_5g
get

......

HTTP/1.1 200 OK
...
Connection: close

{”hosts_info”:{”online_host”:[{”h
ost_info_0”:{”type”:”0”,”blocked”
:”0”,”down_speed”:”0”,”up_limit”:
“0”,”down_limit”,”0”,”is_cur_host
“:”1”,”limit_time”,””,”plan_rule”:[
]}}]},”error_code”:0}

{”network”:{”name”:”wan_st
atus”},”cloud_config”:{”name
“:[”new_firmware”,”devive_st
atus”,”bind”]},”wireless”:{”na
me”:[”wlan_wds_2g”,”wlan_
wds_5g”]},”method”:”get”}

Figure 3: Smart deviceWeb interface communication andmessage
processing flow.

Input: Potential function message I

Output: Parameter discovery results Rp

(1) For each message in I, identify the message
type T and parameter position M of all
submitted parameters.

(2) For each position Mi in each type Ti, extract
the original complete parameter data structure S.

(3) Determine the type Si of S. Use the analysis
module Fsi corresponding to Si to analyze Si,
record all parameter dependency R, and obtain
all key-value pair information K: V.

(4) For each Ki: Vi ∈ K: V, mark Vi as the target test
parameter, and Ki remains unchanged.
At the same time, record the Mi and Ti

corresponding to Vi, which are recorded as vp.
(5) Count all the vp and record them as vs.
(6) According to the parameter dependence

relationship R, calculate the parameter test
value vt. For each higher level of parameter
depth, the potential value increases by one.

(7) Record Si, R, vs, and vt as Rp.

ALGORITHM 2: Dynamic Parameter Discovery.
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related to the smart device business, such as IP, domain
name, and so on, PDFuzzerGen marks the parameter as a
potentially high-value parameter.

3.4.2. Policy Selection. Considering the different triggering
and detecting methods of different types of vulnerabilities,
we divide mutation policies into random-based mutation
policies and injection-based mutation policies. ,e random-
based mutation policy is to use the original value of the field
as the seed data for random mutation. ,e injection-based
mutation policy refers to a method that adds a command
injection payload based on the original value of the resource
and then uses the value after adding the load as the seed data
for mutation. In addition, in order to facilitate the fuzzer to
monitor abnormal conditions outside the device, the typical
command injection payload used includes: reverse shell,
request external resources, restart the device, and so on. At
the same time, for the policy selection of target parameters,
PDFuzzerGen prefers to select valuable parameters using an
injection-based mutation policy. ,ese parameters include
semantic features, numeric types, business-related param-
eters (such as IP and domain name), and so on.

3.4.3. Policy Scheduling. PDFuzzerGen divides the fuzzing
test process into the quick test and full test. By default,
PDFuzzerGen performs full test, and all parameters are used
for fuzzing. At the same time, PDFuzzerGen provides a quick
test option for those userswhoprefer a result in a short period
of time and are less concerned with the number of errors
found. When the quick test option is enabled, PDFuzzerGen
first performs a quick test on top N parameters based on the
parameter value.Whennovulnerabilities are found in aquick
test, it switches to a full test and performs fuzzing tests on all
parameters. It must know one parameter having multiple
fuzzing policies after policy selection is reasonable. PDFuz-
zerGen creates different fuzzers to execute fuzzing tests. In
different fuzzers, there are different mutation policies based
on the results of the policy selection.

After the above process, PDFuzzerGen regards the pa-
rameter value, policy selection result, and policy scheduling
result as the mutation policy.

3.5. Monitoring Policy Development. ,e black-box fuzzing
cannotobtain thememory,process,file information, andsoon
of a smart device, so it needs to be detected from the responses
of the smart device. However, simply monitoring service
availability may be inaccurate, and there may be under-
reporting. ,erefore, PDFuzzerGen sets a multigranularity
monitoring policy, which can be flexibly configured.

More specifically, we divide monitoring into two cate-
gories: active monitoring and passive monitoring. Active
monitoring means that the fuzzer actively sends request
packets to smart devices to detect the status of the device,
including device survival monitoring, service survival
monitoring, and function survival monitoring. Device
survival monitoring is achieved by monitoring whether the
smart device responds to the device survival detection

packet. Service survival monitoring is achieved by moni-
toring whether the Web interface port responds as expected.
Function survival monitoring is achieved by monitoring
whether a specific function of the Web interface responds
expectedly. Passive monitoring refers to determining
whether the smart device has an unexpected response or
whether it actively sends unexpected data messages to the
outside world, such as whether the device has a reverse shell
request or an external resource request.

3.6. FuzzerGeneration. After completing the above steps, the
key to fuzzer generation, the policy, has been constructed.
Next, complete fuzzers need to be synthesized based on these
policies. In order to achieve this goal, two steps need to be
completed: fuzzer stub generation and fuzzer synthesis.

3.6.1. Fuzzer Stub Generation. An important step in gen-
erating fuzzer stubs is to combine these policies reasonably.
For example, when the mutation policy is a random mu-
tation policy, the monitoring policy needs to choose active
monitoring; otherwise, the status of a device cannot be
judged. For a fuzzer stub, once it is generated, its content is
fixed. ,erefore, in order to enable the generated fuzzer to
test more deep components on smart devices, there may be
many fuzzer stubs. PDFuzzerGen dynamically matches and
combines these policies and then generates multiple fuzzer
stubs, which are used in the final synthesis of the fuzzer.

3.6.2. Fuzzer Synthesis. In order to generate fuzzers that can
run normally, in addition to multiple fuzzer stubs, some
additional basic function codes are required, such as the
entry function of the fuzzer, the calling method of each
fuzzer stub in the main function, and the parameter in-
formation obtained dynamically (e.g., target IP, port, etc.).
Like fuzzer stubs, there may be many fuzzers synthesized
based on a raw message, and these fuzzers together form a
fuzzer bundle. Each fuzzer in the fuzzer bundle can run
independently.

4. Implementation

PDFuzzerGen prototype is written in about 4,000 lines of
Python code to generate fuzzers. PDFuzzerGen supports
fuzzing on bare-metal and simulated smart devices at the
same time. We solved the following challenges during
implementation.

4.1. Parameter Selection. ,ere are many parameters in an
HTTP message, including parameters in a request header
and parameters submitted by a client. Fuzzing all these
parameters is feasible, but it will reduce the efficiency of
fuzzing to a certain extent. According to our experiences,
fuzzing parameters in a request header usually triggers er-
rors in a Web server, and fuzzing client-user submitted
parameters usually triggers the implementation flaw in the
deep component. ,erefore, we give a higher priority to
parameters submitted by client-user in fast fuzzing. ,e
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parameters in a request header are given less priority and
postponed for use in full fuzzing mode.

4.2. State Maintenance and Monitoring Definition. ,e
fuzzers generated by PDFuzzerGen can be run on the
BooFuzz framework. For state maintenance, PDFuzzerGen
defines the corresponding pre-sent callback function
according to the state maintenance policy. ,e callback
function is used to complete continuous state maintenance
and position acquisition of authentication parameters. In
addition, the offset position of the authentication parameter
is synthesized in the main function process to set the value of
the configuration of the authentication parameter. For the
monitoring definition, PDFuzzerGen defines the corre-
sponding post-send callback function according to the
monitoring policy. Each fuzzer has a unique monitoring
callback function. When there are multiple monitoring
policies for a message, PDFuzzerGen generates multiple
different fuzzers to complete the fuzzing.

4.3. Fuzzer Driver. After a fuzzer bundle is generated, al-
though the PDFuzzerGen process has ended, we still hope
that the generated fuzzer bundle can be automatically
driven. We additionally wrote a fuzzer wrapper to drive a
fuzzer bundle to fuzz the target device. ,e fuzzer wrapper
records the logs and test cases during the entire fuzzing
process so that the test cases that trigger the crash can be
quickly located in the follow-up. At the same time, in order
to reduce the time consumption of device service restart after
the target service crashes, fuzzer wrapper provides a service
recovery interface for the simulated device to automatically
restore the target service.

4.4. Useless Fuzzer Filtering. Although PDFuzzerGen uses
many techniques to synthesize fuzzers, we cannot guarantee
that all synthesized fuzzers are effective, especially for smart
devices with a complex authentication process. So we
implemented a simple fuzzer filter for PDFuzzerGen. ,e
filter automatically executes a fuzzer in a short time and
monitors the response results of the device. If the fuzzer fails
to run or there is no difference in different responses (it is
common that different authentication results have different
responses), the fuzzer is considered invalid and is auto-
matically deleted. An invalid fuzzer is usually caused by a
failed login authentication. Failed login authentication
makes the target functional component unusable, and all test
messages will be discarded by the target smart device. De-
leting such invalid fuzzers can significantly reduce the time
to trigger implementation flaws and improve the effec-
tiveness of the generated fuzzers.

5. Evaluation

In this section, we evaluated PDFuzzerGen on real-world
smart devices to answer the following questions:

(1) Features of PDFuzzerGen. Compared with existing
fuzzer generation tools, what are the functional
advantages of PDFuzzerGen? (§5.1)

(2) Efficiency of fuzzer generation. Compared with
manually developed fuzzers, what are the labor ex-
pense and time consumption for PDFuzzerGen to
automatically generate fuzzers? (§5.2)

(3) Efficacy of generated fuzzers.Howeffective are fuzzers
generated by PDFuzzerGen and can PDFuzzerGen
discover unknown vulnerabilities from real-world
devices? (§5.3)

5.1. Evaluation Setup. Since existing fuzzer generation tools
do not support smart device fuzzing (e.g., WINNIE [31] and
FuzzGen [32]), we mainly compare features with these tools.
For the evaluation of fuzzer generation process and gen-
erated fuzzers, we mainly compare PDFuzzerGen with
BooFuzz [14] and Mutiny [37]. BooFuzz needs a manually
written fuzzer before fuzzing; we invited 10 security analysts
to complete this part of the test to make a more compre-
hensive comparison with PDFuzzerGen. To evaluate fuzzers
generated by PDFuzzerGen, we used 19 popular real-world
devices of different models and from different top key
vendors [38]. In order to better monitor the network
communication, all devices under test are connected to a
local router. We deployed PDFuzzerGen on a Windows 10
desktop PC with Intel Core i7 8-core x 3.70GHz CPU and
16GB RAM. ,e PC is also connected to the router.

5.2. Features of PDFuzzerGen. In this section, we evaluate
PDFuzzerGen and existing fuzzer generation tools. As
shown in Table 2, as far as we know, PDFuzzerGen is the first
fuzzer generation framework for smart devices. PDFuz-
zerGen automatically generates black-box fuzzers that use
BooFuzz as a fuzzer engine, which has a wider range of use
than other fuzzer generation tools.

Next, we compare PDFuzzerGen with state-of-the-art
open-source network fuzzers BooFuzz [14] and Mutiny [37],
as shown in Table 3. We compare them all in each stage of
writing fuzzers for smart devices. Mutiny only implements
the target discovery function and provides an interface for
monitoring policy selection. BooFuzz provides related in-
terfaces for mutation policy selection and monitoring policy
selection, but it needs to be implemented manually by re-
searchers. PDFuzzerGen implements all the functions of
each stage and can automate the entire process.

5.3. Efficiency of Fuzzer Generation. To evaluate the differ-
ences in time expense between PDFuzzerGen and a man-
ually developed fuzzer, we invited 10 security analysts to
complete the task of manually coding fuzzers. We first
generated about 100MB and more than 400,000 raw mes-
sages for 19 smart devices. We divide the experiment into 2
stages. In the first stage, about 200 fuzz test seed messages
need to be filtered from more than 400,000 raw messages. In
the second stage, 10 security analysts and PDFuzzerGen
write fuzzers based on the filtered seed messages. ,e time
spent by each of the 10 security analysts is accumulated as
the total time to jointly complete the second stage of the test.
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To be fair, 10 security analysts and PDFuzzerGen used the
same raw messages to conduct 5 rounds of testing and
calculate the average time.

,e experimental results are shown in Table 4. ,e
average time for a security analyst to code a fuzzer is
54.9minutes, and PDFuzzerGen reduces this time cost by
nearly three orders of magnitude. Experimental results show
that PDFuzzerGen can significantly improve the develop-
ment efficiency of fuzzers.

5.4. Efficacy of Generated Fuzzers. In this section, we
evaluate the efficacy of fuzzers generated by PDFuzzerGen.
We selected 19 devices from 6 vendors. ,ese devices are the
best-selling products offered by mainstream manufacturers.
We compare PDFuzzerGen with default configured open-
source network protocol fuzzers: BooFuzz andMutiny. Note
that we believe that these two fuzzers are handled fairly.
Firstly, they are designed for general requests such as HTTP.
Secondly, we intentionally selected the same raw data
message for them to ensure the consistency of their fuzzing
seeds. Finally, because they cannot complete the automatic
state maintenance, we help them complete the state main-
tenance function manually to ensure the validity of the test
data. In order to compare the efficacy of fuzzers generated by
PDFuzzerGen, we reconfigured BooFuzz and Mutiny to run
them for 24 hours. When a crash occurs, we automatically
reset the device to resume testing.

From Table 5, we can see that PDFuzzerGen generally
surpasses popular fuzzers in terms of the number of detected
vulnerabilities and the time expense. It identified 11 memory
corruption vulnerabilities and 3 command injection vul-
nerabilities. It only took 5.7 hours, with 46,913 fuzzing
messages in total. PDFuzzerGen uses parameter discovery
policies to identify different data structures and ensure the
validity of the message. ,erefore, Buffer Overflow 8 and
Buffer Overflow 9 are discovered. ,rough the selection of
mutation policies, Command Injection 1 and Command
Injection 2 were discovered. While meeting the above two
policies at the same time, Command Injection 3 was dis-
covered. Neither BooFuzz nor Mutiny can handle the above
situation to discover none of these vulnerabilities. Figure 4

shows the number of vulnerabilities discovered by
PDFuzzerGen, Mutiny, and BooFuzz over time. PDFuz-
zerGen found more vulnerabilities than Mutiny and Boo-
Fuzz and found vulnerabilities faster. In some cases, the time
for PDFuzzerGen to find vulnerabilities is very short, even
within 2minutes, such as Buffer Overflow 1 and Buffer
Overflow 9. ,is is because PDFuzzerGen evaluated the
value of the parameters in the message and selected the most
valuable parameters for priority fuzzing. ,erefore, vul-
nerabilities were discovered within a short period of time.
However, PDFuzzerGen must spend more time testing in
some cases. In addition, when testing Buffer Overflow 5,
Buffer Overflow 6, Buffer Overflow 7, and Uncategorized
Crash 1, BooFuzz had a better time performance than
PDFuzzerGen did. ,is is because when the number of
parameters goes higher and the structure of parameters are
becoming more complex, PDFuzzerGen has more test cases
to run. Even in these cases, the time cost difference is
reasonably small.

In these real-world devices, we manually judged the
triggered crashes and exceptions one by one to determine
whether they were previously unknown vulnerabilities. Fi-
nally, PDFuzzerGen found 14 zero-day vulnerabilities, 2 of
which were assigned CVEs and 5 were assigned CNVDs, as
shown in Table 6.,e results show that PDFuzzerGen can be
applied to real smart devices from different vendors and can
discover real-world unknown vulnerabilities.

6. Discussion and Future Work

Our prototype demonstrates the automated generation and
policy-driven capabilities of black-box fuzzers for smart
devices. Since this is the first step towards automation, we
want to highlight some opportunities for improvement.

Table 2: Comparison of fuzzer generation tools.

Fuzzer Platform Component Fuzzer engine Fuzz type
PDFuzzerGen Smart device Smart device component BooFuzz Black-box
FUDGE [34] PC C/C++ library libFuzzer White-box
FuzzGen [32] PC C/C++ library libFuzzer White-box
WINNIE [31] PC Windows application WinAFL Grey-box
IntelliGen [35] PC C/C++ library libFuzzer White-box

Table 3: Features comparison with BooFuzz and Mutiny.

Fuzzer Target discovery State maintenance Parameter discovery Mutation policy
selection

Monitoring policy
development

Fuzzer
generation

PDFuzzerGen ✓ ✓ ✓ ✓ ✓ ✓
BooFuzz [14] 7 7 7 Manual Manual 7

Mutiny [37] ✓ 7 7 7 Manual 7

Table 4: Fuzzer generation time consumption comparison.

Time consumption ,e first stage (s) ,e second stage (s)
PDFuzzerGen 253 758
Artificial 13,572 659,241
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6.1. Automatic Generation of Raw Seed Messages. ,e initial
input of PDFuzzerGen is raw messages. Although PDFuz-
zerGen automates the process from raw messages to gen-
erated fuzzers, the automatic generation of working raw
messages itself is still a challenge. A promising solution is to
start with the front-end page of each device and analyze the
dependencies between the front-end parameters and input
rules to generate effective raw seed messages.,is will be our
next step to achieve a higher degree of automation.

6.2. Message Dependency. In the current implementation of
PDFuzzerGen, we only focus on those messages that can
complete the corresponding functions with a single request.
But, in fact, there are still a few functions that require
multiple request messages to collaborate to work out. In this
case, splitting multiple requests and creating fuzzers sepa-
rately may prevent the generated fuzzers from working
properly. In order to work around this issue, it is necessary to
manually participate in these complex interaction processes
and make corresponding modifications to the fuzzer. One
possible automatic method is to track and model the entire
conversation flow during the initial analysis of the message
and then handle it on the established interactive process
model. Automating this process to reduce human in-
volvement is on our roadmap.

6.3. Message Replay. Although login messages can be
replayed on most of the smart devices we tested, there are
still some devices where login messages cannot be replayed,
which limits the discovery of bugs in components that re-
quire login authentication. In practice, this situation can be

Table 5: Fuzzing time statistics.

Vulnerability Device PDFuzzerGen Mutiny BooFuzz
Buffer Overflow 1 TP-Link TL-WR940N 16 s 1,060 s 190 s
Buffer Overflow 2 Tenda AC9 143 s 1,479 s 1,473 s
Buffer Overflow 3 TP-Link TL-WR810N 209 s N/A 635 s
Buffer Overflow 4 Tenda AC18 316 s 216 s 400 s
Buffer Overflow 5 TP-Link TL-WR841N 1,424 s 2,087 s 1,221 s
Buffer Overflow 6 TP-Link TL-WR841N 1,979 s 854 s 1,213 s
Buffer Overflow 7 Tenda AC9 1,610 s N/A 1,179 s
Buffer Overflow 8 D-Link DIR-806 3,199 s N/A N/A
Buffer Overflow 9 TP-Link TL-WR940N 78 s N/A N/A
Uncategorized Crash 1 TP-Link TL-WR941N 1,774 s N/A 931 s
Uncategorized Crash 1 TP-Link TL-WR810N 1,587 s 1,342 s N/A
Command Injection 1 Tenda AC9 3,603 s N/A N/A
Command Injection 2 Tenda AC9 1,310 s N/A N/A
Command Injection 3 D-Link DIR-823G 3,269 s N/A N/A
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Figure 4: ,e number of vulnerabilities discovered over time.

Table 6: Assigned CVEs and CNVDs for the vulnerabilities found
by PDFuzzerGen.

Vulnerability Severity Vulnerability type
CVE-2021-31624 High Buffer Overflow
CVE-2021-31627 High Buffer Overflow
CNVD-2020-69407 High Command Injection
CNVD-2020-67555 Medium Buffer Overflow
CNVD-2021-17400 Medium Buffer Overflow
CNVD-2021-22752 Medium Buffer Overflow
CNVD-2021-24948 Medium Buffer Overflow
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alleviated with the help of appropriate manual configuration.
First, PDFuzzerGen is able to flag that messages are in this
case. Next, for the raw message, in this case, the analyst can
manually complete the login process and fill in the corre-
sponding authentication credential into the corresponding
raw message authentication field. Finally, the analyst can use
PDFuzzerGen to regenerate the fuzzer for the message
carrying the authentication credentials. ,is situation is
transformed into anonymous fuzzing. Because most anti-
replay mechanisms limit the target to programmable robots
rather than normal users, researchers only need to take a few
extra minutes to complete the modification of the original
message during the whole process. And, for a single device,
the authentication credential can be reused within a certain
period of time, so multiple raw messages of the same device
can be modified by simple replacement. Compared to the
complicated encoding process, this time cost is acceptable.
Of all the 19 smart devices we selected, login messages were
not replayable for 3 devices. In addition to fuzzing the
parsing module for these 3 devices, we also performed the
above steps to alleviate the limitation caused by the inability
to replay the login message. After completing mitigations, all
generated fuzzers can fuzz modules that require authenti-
cation. Further automation of the login process is one of the
directions for future improvements.

6.4. Parameter Relationship. In the process of parameter
discovery, when different parameter data exchange formats
are found, all hierarchical relationships of each parameter can
be identified by using the corresponding parsing tool. ,e
accuracy of this process depends on two aspects: on the one
hand, it depends on the implementation accuracy of the
firmware components for thedefinitionof variousdata format
standards (e.g., ECMA-404 [39] defines the JSON data ex-
change format).On the other hand, it depends on the accurate
implementation of the standard by each parsing tool. For
example, the json library[40] of Python implements parsing of
the json data format. ,erefore, if the firmware component
correctly implements the data format standard and the data
format parsing tool can correctly parse the standard data
structure, the accuracy of the hierarchical relationship and the
dependency relationship can be effectively guaranteed. Since
the dependency relationship is defined above the hierarchical
relationship, it can be directly derived from the hierarchical
relationship. ,erefore, when the accuracy of the hierarchi-
cal relationship is guaranteed, the accuracy of the dependency
relationship can be guaranteed.

6.5. Valuable Parameters. According to our experience,
although the types and values of parameters may vary, those
parameters with specific semantic meaning are more im-
portant for the functions involved. For example, for a smart
device management function that uses the ping command to
test network connectivity, among its various parameters, the
parameter of type IP address may be directly used for
splicing and executing the ping command. In this scenario,
command injection vulnerabilities may occur. Typical vul-
nerabilities include: CVE-2021-41653, CVE-2021-38470,

and so on. Among the seven vulnerabilities we found, two
involve parameters that meet the valuable parameters we
defined, namely CVE-2021-31624 and CNVD-2020-69407.
Prioritizing testing with valuable parameters reduced the
time to discover the above two vulnerabilities by approxi-
mately 1x and 5x. Among them, CNVD-2020-69407 has
higher parameter complexity, with a total of nine tested
parameters. ,is shows that selecting valuable parameters
for priority fuzzing can effectively reduce the time of vul-
nerability discovery in some scenarios with a large number
of parameters. ,e determination of valuable parameter
categories mainly relies on knowledge entries to the
knowledge base. At present, the way of adding specific
knowledge items in the knowledge base is mainly the ac-
cumulation of artificial experience. Automated knowledge
entry augmentation would be a promising approach to
knowledge base construction. ,is will be one of the future
work directions.

6.6. False Positives. ,e fuzzer generated by PDFuzzerGen
judges whether an exception is triggered by monitoring the
return result of the callback function. Consequently, inac-
curate fuzzers may produce invalid crashes and exceptions,
whichmay not happen on a normal use device.,ere are two
possible reasons for this. On one hand, it may be due to the
limited performance of the bare-metal device. When the
message sending of fuzzing is too fast, some devices may
experience short-time freezes or wait for the request to be
processed. When the waiting time exceeds the threshold of
the fuzzer, an exception will be thrown, leading to a false
positive. On the other hand, it may be because the behavior
of some simulated devices is not the same as the bare-metal
device. Some crashes triggered on simulated devices may not
be triggered on bare-metal devices. ,e first case can be
mitigated by adjusting the timeout waiting time of the
monitoring policy in PDFuzzerGen, but this will result in a
certain degree of fuzzing efficiency reduction. But what is
interesting is that timeouts caused by device performance
problems are often accompanied by potential denial of
service vulnerabilities, which are common in smart devices.
So the short timemanual verification here is worthwhile.,e
second case can be solved by testing on the bare-metal device
and the simulated device at the same time, but this will
undoubtedly increase the labor expense and time con-
sumption. But, fortunately, the number of such cases is
relatively small, so this verification will only generate less
time overhead.

6.7. More Protocols. In the current implementation of
PDFuzzerGen, we only focus on the Web interface on smart
devices. However, there are no special technical obstacles to
migrating the policy-driven fuzzer generation method and
PDFuzzerGen to other smart device services, such as FTP,
SMB, UPnP services, and so on. An inspiring example is that
we simply migrated PDFuzzerGen to the SMB service and
then tested a smart device with SMB service enabled by
default, which finally found a memory corruption vulner-
ability and was assigned a CNVD: CNVD-2021-30168.
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7. Conclusion

We came upwith a new technique called policy-driven fuzzer
generation. Supported by this technique, PDFuzzerGen, a
black-box fuzzer generation framework was proposed to
support an automatic fuzzing of deep-level functional
components on smart devices through a Web interface. In-
stead of directly mutating a raw message, PDFuzzerGen
analyzes a message, formulates a variety of driving policies,
and synthesizes fuzzers to reduce labor expense and devel-
opment time consumption. We tested PDFuzzerGen on 19
real-world devices. PDFuzzerGen foundmore vulnerabilities
thanmanually crafted black-box fuzzers in less time. Overall,
PDFuzzerGen discovers 14 previously unknown vulnera-
bilities with two CVEs and five CNVDs.
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,e data used to support the findings of this study are
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(http://www.cnvd.org.cn).
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