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Although the fully homomorphic signature (FHS) has made great progress, the low efficiency of existing FHS schemes as one main
drawback cannot reach the requirements in practical application. It is well known that Number--eory-Research-Unit (NTRU)-
based cryptography is not only considered to be resistant to the quantum computer but also has high efficiency compared with the
standard lattice-based cryptographic systems. In this paper, our goal is to construct a simple and highly efficient FHS scheme. To
this end, we first devise an NTRU-based homomorphic trapdoor function (HTDF), which is more effective than the one proposed
by Gorbunov et al. (STOC 2015). We then convert it into an efficient NTRU-based FHS scheme. Additionally, the HTDF we
constructed is not only collision-resistant but is also claw-free, resulting in our FHS scheme is being strongly unforgeable.

1. Introduction

As the advantages of cloud computing increase, fully ho-
momorphic cryptography has aroused great interest due to
its remarkable characteristics. It not only allows the client to
safely upload his/her data to some unreliable clouds but also
allows the server to perform calculations on the data. Fully
homomorphic cryptography consists of fully homomorphic
encryption (FHE) and fully homomorphic signature (FHS).
Gentry [1] designed the first fully homomorphic encryption
system at STOC 2009 and Gorbunov et al. [2] constructed
the first leveled fully homomorphic signature scheme at
STOC 2015. In this work, we mainly discuss the issues re-
lated to FHS.

Rivest [3] first proposed the concept of homomorphic
signature (HS) in 2000. Two years later, Johnson et al. [4]
gave a security model and designed several provable secure
HS schemes. In a HS scheme, a user signs a data
m � (m1, . . . , mk) in the message space M using his/her
signing key and then distributes the signed data
σ � (σ1, . . . , σk) to some unreliable remote server. -e
server can run arbitrary computations y � g(m) over the
signed data σ and homomorphically derive a short signature

σg,y, which can verify that y is indeed the correct output of g

operation on message m. Anyone can check the tuple
(g, y, σg,y) by employing the user’s public verification key
and then determine that y is indeed the correct outcome of
g′ s calculation on m. In addition, the verification process
does not need the underlying data m.

According to the homomorphic capability of HS
schemes, we can divide the homomorphic signature schemes
into three categories: linear homomorphic signature,
somewhat homomorphic signature (SHS), and fully ho-
momorphic signature.

Zhao et al. [5] proposed a linear HS scheme to resolve the
inherent network pollution problem in network coding.-is
scheme allows an arbitrary linear combination calculation of
the signature data, which can both conveniently verify the
integrity of the received message and effectively prevent the
application built on the network code from being attacked by
pollution. In further research studies, many papers [6–11]
have made further improvements in efficiency, security, and
privacy protection.

In 2011, Boneh and Freeman [12] constructed the first
SHS scheme, which is selectively secure in the random oracle
(RO) model. Subsequently, Catalano et al. [13] proposed a
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new SHS scheme, which is adaptively secure, whose security
no longer depends on RO model, and whose verification
process is more efficient.

Different from the abovementioned homomorphic sig-
nature schemes, the FHS allows polynomial depth circuit
operations on the signed data. In 2014, Gorbunov et al. [2]
proposed the first leveled FHS scheme based on the hardness
of the small integer solution (SIS) problem in standard
lattices [14, 15]. To this end, a building block called the
homomorphic trapdoor function (HTDF) is proposed. -is
new cryptographic primitive helps us to conceptually unify
digital signatures [16–18] and fully homomorphic encryp-
tion [19].-ey showed that if an HTDF function is claw-free,
then you can directly use the HTDF function to construct an
existentially unforgeable FHS scheme under a selective
chosen-message attack (EU-sCMA), and that an EU-sCMA
secure FHS can be converted into an existentially
unforgeable under the adaptive chosen-message attack (EU-
aCMA) one with the help of HTDF functions. Additionally,
this solution has the following advantages: First, it allows
quick amortization verification of calculations on multiple
different datasets, even though these datasets belong to
different users with different verification keys. Second, the
scheme can be made context hiding, that is, the signature
σg,y corresponding to y � g(m) will not expose any in-
formation about the underlying data m. -ird, the scheme
also allows several different calculations to be combined on
signed data. Inspired by the key-homomorphic function
encryption of the circuit, Boyen et al. [20] constructed the
first adaptively secure homomorphic signature scheme
utilizing the vanishing trapdoor technique [21]. Compared
with Gorbunov et al. FHS, the efficiency of this scheme has
been significantly improved, and it can fight against stronger
adversaries, but this scheme does not reach context hiding.
Later, Tsabary [22] demonstrated the equivalence between
FHS and attribute-based signature (ABS) [23]. -ey can be
implied by each other under certain conditions, which opens
up a new direction for constructing FHS schemes. Fur-
thermore, Tsabary built an ABS from lattices and converted
it into a new FHS scheme. All the abovementioned existing
HS algorithms can only produce one signature for a single
message at a time, which is inefficient. -erefore, Luo et al.
[24] proposed a new leveled fully homomorphic signature
scheme, which generates signatures for all messages in the
dataset only by calling the signature algorithm twice. To the
end, the vector coding technique [25] is used, which encodes
all messages in the dataset into two matrices.

In addition, Wang et al. [26] constructed an identity-
based HTDF (IBHTDF), which has better parameters and
stronger security. -e maximum noise compared with
Gorbunov et al. HTDF is roughly reduced from O(mdβ) to
O(4dmβ), which will lead to a polynomial modulus q �

ploy(λ) when d � O(logλ), where d is the maximum depth
of the circuit and λ is the security parameter. -e stronger
security requires that IBHTDF be not only claw-free but also
collision-resistant. -en, they converted the above-
mentioned IBHTDF into a leveled strongly unforgeable
IBFHS scheme. However, the leveled IBFHS scheme is only
secure in the selective security model under the hardness of

the SIS problem. Recently, Wang et al. [27] used trapdoor
vanishing [21] and vector coding techniques [25] to con-
struct an efficient leveled strongly unforgeable IBFHS
scheme based on the SIS problem on arbitrary lattices.
Compared with [26], this scheme is adaptively secure against
chosen identity and chosen message attacks under the
standard SIS assumption. Concurrently, Wang and Wang
[28] constructed a new leveled strongly unforgeable IBFHS
scheme based on a new IBHTDF, whose homomorphic
multiplication operation is very similar to the homomorphic
addition operation, resulting in that the noise level of
IBHTDF is used to evaluate circuits with depth d was re-
duced from O(4dmβ) in [26] to O(2dβ).

1.1. Motivation and Contribution. Fully homomorphic sig-
nature is an important branch of digital signatures, which
plays a significant role in the information age. At present,
many achievements have beenmade in this research field. To
our best knowledge, the existing FHS schemes are con-
structed on the standard lattices. -ey are not practical
because of their low efficiency. -erefore, it is intriguing to
design more efficient FHS schemes.

In 1998, Hoffstein et al. [29] put forward a new public
key cryptography system called NTRU. NTRU features
relatively short, easy to create key, high speed, and low
memory requirements. -e security of the NTRU crypto-
system comes from the interaction of the polynomial hybrid
system and the independence of the reduced modulus of two
relatively prime integers p and q. Stehlé and Steinfeld [30]
present a provably secure NTRU-based signature (denoted
by NTRUSign in this work) scheme, which is a novel
adaption of the unfledged and heuristic NTRU-based sig-
nature scheme [31] and the standard lattice-based signature
scheme [16]. However, NTRUSign has no homomorphic
property.-erefore, it is necessary to design anNTRU-based
FHS.

Following the blueprint of [2, 26], we first devise an
NTRU-based HTDF function from the NTRUSign proposed
by Stehlé et al., which is both collision-resistant and claw-
free. We then convert it into a strongly unforgeable FHS
scheme.

We point out that when only performing polylog-depth
circuits, we can compute them by Barrington’s theorem [32].
Hence, a polynomial modulus is enough, resulting in im-
proved efficiency and security [26]. In addition, we also
could choose the ring [X]/(Xn− 1 + · · · + X + 1) used in [33]
to construct an FHS scheme with similar efficiency.

1.2. Paper Organization. In Section 2, we provide some
background used in this work. We then formally describe
our NTRU-based HTDF functions in Section 3 and NTRU-
based FHS in Section 4. Finally, we conclude in Section 5.

2. Preliminaries

-roughout, we use the bold lowercase letters (e.g., a
→) to

denote row vectors. We use the a
→

[i] to denote the i-th entry
of a

→ and ‖ a
→

‖∞ � maxi‖ a
→

[i]‖∞ to represent the infinity
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norm of a
→. Sometimes, we denote u

→
� ( u

→
1, u

→
2) ∈ R2×ℓ

and u
→

� [ u
→

1, u
→

2] ∈ R2ℓ. We let [n] denote the set
[n] � 1, 2, . . . , n{ }.

Let R[x]/〈ϕ(x)〉 denote the rings for some integer
polynomials ϕ(x) ∈ [x] of degree n. In this paper, we use the
cyclotomic polynomial ϕ(x) � xn + 1, where n � 2k for
positive integer k and Rq ≜R/qR for some integer q which is
isomorphic to Zq[x]/〈ϕ(x)〉. We represent elements in Rq

as a(x) � a0 + a1x + · · · + an− 1x
n− 1, where its coefficients are

in the range (− q/2, q/2] and the infinity norm of a is
‖a‖∞ � max|ai|.

-en, we introduced a parameter λ and a negligible
function negl (λ). λ is used to denote the security parameter.
-e growth negl (λ) is slower than λ− c for any constant c> 0
and any sufficiently large value of λ. An event with an
overwhelming probability is equivalent to its occurrence
with a probability of at least 1 − negl(λ).

2.1. Basic Notions

2.1.1. Distributions. For a probability distributionD, we use
x←D to denote that x is sampled according toD. For a set S,
we use y←$ S to denote that y is sampled uniformly at
random from S. For two distributionsD1 andD2,D1 ≈ cD2
and D1 ≈ sD2 denote that D1 and D2 are computationally
indistinguishable and statistically indistinguishable,
respectively.

2.1.2. Entropy. -e min entropy of a random variable X,
denoted by H∞(X), is defined as H∞(X)≜ − log(maxx

Pr[X � x]). -e average min entropy of X conditioned on
Y, denoted with H∞(X|Y), is defined as follows:

H∞(X|Y)≜ − log Ey←Y maxxPr[X � x|Y � y]  

� − log Ey←Y 2− H∞(X|Y�y)
  .

(1)

Given the correlation value Y, the optimal probability of
an infinite attacker predicting X is 2− H∞(X|Y).

2.1.3. B-Bounded. A distribution ensemble χk k∈N, sup-
ported over the ring R, is called B-bounded if Pra←χk

[‖a‖∞
≤B] � 1.

Lemma 1 (see [34]). In a ring R � ≜ [x]/〈xn + 1〉, for any
two polynomials a, b ∈ R, we have the following norm
‖ab‖∞ ≤ n‖a‖∞ · ‖b‖∞.

Lemma 2 (see [34]). In a ring R � ≜ [x]/〈xn + 1〉, let χ be a
B-bounded distribution over R, let a1, . . . , am←χ. 9en, the
value of 

m
i�1 ai is nm− 1Bm bounded.

2.2. Gaussian and Discrete Gaussian. For r> 0, the Gaussian
function ρ

r, c
→( x

→
), supported on Rn and centered at c

→ with
parameter r and x ∈ Rn, is defined as follows: ρ

r, c
→( x

→
)

≜ e− π‖ x
→

− c
→

‖2/r2 .

2.2.1. Discrete Gaussian Distribution. For r> 0, the discrete
Gaussian function ρ

r, c
→( x

→
), supported on Zn and centered

at c
→ with parameter r and x ∈ Zn, is defined as follows:

D
Zn,r, c

→ ≜ ρ
r, c
→( x

→
)/ρ

r, c
→(Zn). When c equals 0, it is denoted

by DZn,r. Take note that the following Lemma illustrates that
a discrete Gaussian distribution DZn,r outputs a
r

�
n

√
-bounded polynomial with overwhelming probability.

So, we define a r
�
n

√
-bounded distribution called truncated

Gaussian distribution which is statistically indistinguishable
from discrete Gaussian distribution.

Lemma 3 (see [34]). For n � ω(logλ) and r>ω(
����
logn


), it

holds that Prx←DZn,r
[‖x‖> r

�
n

√
]≤ 2− n+1 � negl(λ).

-e truncated discrete Gaussian distribution centered at
0 and denoted by DZ,r is that sample polynomials from
DZn,r, and if the polynomial is not r

�
n

√
-bounded, then

discards it and repeats the sampling. According to Lemma 3,
if n � ω(logλ) and r>ω(

����
logn


), then we have

DZ,r ≈ sDZn,r.

2.3. Lattices

2.3.1. RSIS. Choose m polynomials a
→

� ( a
→

1, . . . , a
→

m)

∈ Rm
q uniformly and independently, find x

→ ∈ Rm
q /0 such

that 
i

a
→

i x
→

i � 0modq and ‖ x
→

‖≤ β, then this problem is

called RSIS q, m, β.
-e following theorem shows that there is a reduction

from the average-case hardness of RSIS to the worst-case
hardness of ideal-SVP as follows:

Theorem 1 (see [30]). For n � 2k, ϕ(x) � xn + 1 and ε> 0.
Letm, q> 0 such that q> β

�
n

√
· ω(logn) andm, logq≤ poly(n).

A polynomial-time algorithm solving RSISq,m,β with over-
whelming probability can be used to solve Ideal-SVPc in
polynomial time with the approximate factor c≥ β

�
n

√
·

ω(
����
logn


).

2.3.2. Lattice Trapdoor. In this paper, for an odd integer q

and ℓ � (logq), we use the “powers of two” gadget g
→

�

(1, 2, . . . , 2ℓ− 1) ∈ Rℓ
q first introduced by Micciancio and

Peikert. [18]. For a
→ ∈ Rℓ

q, g
→− 1

(·) is the deterministic bit
decomposition function, which outputs a matrix X ∈ Rℓ×ℓ

2 so
as to X � g

→− 1
( a

→
) and g

→
· X � a

→.

Lemma 4 (see [30]). İere are three efficient algorithms as
follows:

(1) TrapGen(1n, q, σ): It runs the NTRUSign key gener-
ation algorithm same as [30] and returns (h, td).

Recall that h � gf− 1 ∈ R∗q is a signing key and td �

f g

F G
  is the corresponding trapdoor R-basis for the

R module h⊥ � u � (u1, u2) ∈ R1×2: [h, − 1]u � h

u1 − u2 � 0modq}.
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(2) SamDom(12ℓ, q): It samples u
→

� ( u
→

1, u
→

2) ∈ R2×ℓ

such that ‖ u
→

‖∞ ≤ βsam with probability 1.
(3) SamPre(h, v

→
, td): Given h ∈ R∗q , v

→ ∈ Rℓ
q and the

trapdoor td, it returns u
→

� ( u
→

1, u
→

2) ∈ R2×ℓ such
that [h, − 1] u

→
� h u

→
1 − u

→
2 � v

→modq and ‖ u
→

‖∞
≤ βsam with probability 1.

(4) We have the statistical indistinguishability:

h ≈ sh′and(h, td, u
→

, v
→

) ≈ s h, td, u
→′, v

→′( , (2)

where (h,td)←TrapGen(1n,q,σ),h′←$ R∗q , and u
→←

SamDom (12ℓ,q), v
→

� [h, − 1] u
→modq, v

→′←$ Rℓ
q, u

→′←
SamPre(h, v

→′, td).

2.4. Permutation Branching Program. -en, a permutation
branching programΠ is defined as follows [35].Πwith input
space of 0, 1{ }t, length L, and width w is a sequence of L

tuples of the form (r(k), σk,0, σk,1) where.

r: [L]⟶ [t] is a function associates the k-th tuple
with an input bit xr(k).
σk,0, σk,1 are permutations over [w] � 1, 2, . . . , w{ }.

Π performs calculation on input x � (x1, x2, . . . , xt) as
follows. Let the initial state be η0 � 1 and the k-th state be
ηk ∈ [w]. -en, the state ηk is calculated recursively
according to the formula given below.

ηk � σk,xr(k)
ηk− 1( . (3)

After L steps, the final state is ηL. If ηL � 1, the output of
Π is 1, otherwise it is 0.

In order to handle the problem of excessive noise growth
caused by homomorphic operation, we present the state in
the form of bits, as described in [35]. Specifically, for η0 � 1,
we use an w-dimensional unit vector e

→
k, e.g., e

→
0 �

(1, 0, 0, . . . , 0) instead of the state ηk ∈ [w]. -e principal
idea of this design is that e

→
k[i] � 1 holds only when

σk,xr(k)
(ηk− 1) � i. If e

→
k[i] � 1 holds, if and only if either:

xr(k) � 1 and e
→

k− 1[σ − 1
k,1(i)] � 1 or

xr(k) � 0 and e
→

k− 1[σ − 1
k,0(i)] � 1.

Hence, for k ∈ [L], i ∈ [w], we have the following:
e
→

k[i] � e
→

k− 1 σ− 1
k,1(i)  · xr(k) + e

→
k− 1 σ − 1

k,0(i)  · 1 − xr(k) 

� e
→

k− 1 ξk,i,1  · xr(k) + e
→

k− 1 ξk,i,0  · 1 − xr(k) ,
(4)

where ξk,i,1 ≜ σ − 1
k,1(i) and ξk,i,0 ≜ σ − 1

k,0(i) are fully determined
by the description of Π and can be computed easily and
publicly. In order to make the homomorphic operation
more concise and efficient, we give another representation of
permutation branching program, such that (r(k), ξk,i,0,

ξk,i,1)}k∈[L],i∈[w].

3. HTDF Functions

A homomorphic trapdoor function (HTDF) allows anyone
to calculate a homomorphic input ug and an output vg. -e
input depends only on (g, (x1, u1, v1), . . . , (xt, ut, vt)) and

the output depends on (g, v1, . . . , vt). -at is, fpk,

g(x1, . . . , xt)(ug) � vg holds, where g is an admissible
function (or called circuit) defined very soon.

3.1.Definition. AHTDF consists of five polytime algorithms
(HTDF.KeyGen, f , Inv,HTDF.Evalin,HTDF.Evalout) with
syntax as follows:

(pk, sk)←HTDF.KeyGen(1λ): A key generation pro-
cedure. -e security parameter λ defines the input
space U, the index space X, and the output space V

and some efficiently sampleable input-distributionDU

over U. We require that elements in U,V, and X can
be efficiently tested and that elements in V can effi-
ciently be sampled uniformly at random.
fpk,x: U⟶ V: A deterministic function indexed by
pk and x ∈ X.
Invertsk,x: V⟶ U: A probabilistic inverter indexed
by sk and x ∈ X.
ug � HTDF.Evalin(g, (x1, u1, v1), . . . , (xt, ut, vt)): A
deterministic input homomorphic evaluation algo-
rithm. It takes some function g: Xt⟶ X as input
and values xi ∈ X, ui ∈ U, vi ∈ V i∈[t] and outputs
ug ∈ U.
vg � HTDF.Evalout(g, v1, . . . , vt): A deterministic
output homomorphic evaluation algorithm. It takes
some function g: Xt⟶ X as input and values
vi ∈ V i∈[t] and outputs vg ∈V.

3.1.1. Correctness of Homomorphic Computation. Let
(pk, sk)←HTDF.KeyGen(1λ) and g: Xt⟶ X be a
function on x1, . . . , xt ∈ X, and set y � g(x1, . . . , xt). Let
u1, . . . , ut ∈ U and set vi � fpk,xi

(ui) for i ∈ [t]. Set
vg � HTDF.Evalout(g, v1, . . . , vt), ug � HTDF.Evalin(g, (x1,

u1, v1), . . . , (xt, ut, vt)). -e correctness requirement is
established for ug ∈ U and fpk,y(ug) � vg.

3.1.2. Relaxed Correctness of Leveled HTDFs. In a leveled
fully homomorphic scheme, the size of noise carried by each
input ui ∈ U is βi ∈ Z. -e initial samples selected from the
input-distribution DU carries a small noise of β0 and the
noise size βg of the evaluated input ug depends on the noise
size βi of ui, the indices xi, and the function g. In fact, if the
noise size βg > βmax, where βmax is an extreme value of noise
size, the correctness of the scheme cannot be guaranteed.
-us, we ought to pay attention to limiting the types of
functions that can be calculated homomorphically. A
function g is admissible on indices (x1, . . . , xt) if, βg ≤ βmax
whenever ui carries noise with size βi ≤ β0.

3.1.3. Distributional Equivalence of Inversion. In order to
illustrate the security of our main construction FHS, we
demand the following statistical indistinguishability:

(pk, sk, x, u, v) ≈ s pk, sk, x, u′, v′( , (5)
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where (pk, sk)←HTDF.KeyGen(1λ), x ∈ X, u←DU, v �

fpk,x(u), v′←$ V, u′←Invsk,x((v′).

3.1.4. HTDF Security. Gorbunov et al. [2] constructed an
existential unforgeability FHS based on the security of claw-
freeness HTDF. Here, we want to construct a FHS scheme

that is strongly unforgeable like Wang et al. [26] did, so the
security of HTDF is required to meet the two characteristics
of claw-freeness and collision-resistance. In particular, it
should be hard to find u≠ u′ ∈ U and x, x′ ∈ X such that
fpk,x(u) � fpk,x′(u′). Notice that if x � x′ holds, then
(u, u′) is a collision, otherwise a claw. Formally, for any PPT
attacker A, the following holds:

Pr
fpk,x(u) � fpk,x′ u′( 

u≠ u′ ∈ U, x, x′ ∈ X

(pk, sk)←HTDF.KeyGen

u, u′, x, x′( ←A 1λ, pk 



⎡⎢⎣ ⎤⎥⎦≤ negl(λ). (6)

3.2. Construction: Basic Algorithms and Security. It is to be
remembered that λ is the security parameter. In order to
illustrate the HTDF function concisely, we need to introduce
some asymptotic public parameters, as shown below.

3.2.1. Parameters. We define flexible d≤ poly(λ) as the
maximum depth of the circuit that supported by homo-
morphic trapdoor function. Choose an integer n � poly(λ)

and a sufficiently large prime q � q(n), and set ℓ � (logq).
Set β0 � O(q1/2 · poly(n)) � O(q1/2 ·poly(λ)), βmax � O

(4dnℓβ0), βRSIS � O(nℓ)βmax < q.

3.2.2. Construction of HTDF. Below, we give the basic al-
gorithm of the HTDF function F.

Set X � Z2,V � Rℓ
q and U � u

→
� ( u

→
1, u

→
2) ∈

R2×ℓ
q : ‖ u

→
‖∞ ≤ βmax}. Define the distribution DU and

sample u
→←SamDom(12ℓ, q) as in Lemma 4 so that

‖ u
→

‖∞ ≤ β0.
(pk, sk)←HTDF.KeyGen(1λ): Run (h, td)←TrapGen
(1n, 1ℓ, q) and set pk � h ∈ Rq and sk � td.
Define fpk,x( u

→
)≜ [h, − 1] u

→
+ x g

→
� h u

→
1 − u

→
2 + x g

→.
Define u

→←Invsk,x( v
→

) to output u
→←SamePre(h, v

→

− x g
→

, td).

3.2.3. Distributional Equivalence of Inversion. Let x ∈ X and
(pk � h, sk � td)←HTDF.KeyGen(1λ). Let u

→←DU,
v
→

� fpk,x( u
→

) � [h, − 1] u
→

+ x g
→

� h u
→

1 − u
→

2 + x g
→, v

→′←$

V, u
→′←SamPre(h, v

→′ − x g
→

, td). Obviously ( v
→′ − x g

→
) is

uniformly random, then by Lemma 4 and a simple hybrid
argument, we can obtain as follows:

h, td, u
→

, h u
→

1 − u
→

2(  ≈ s h, td, u
→′, v

→′ − x g
→

(  (7)

We perform the following operations on both sides of
the equation: put in an x ∈ X and then add x g

→ to the last
entry to both sides, we can obtain as follows:

h, td, x, u
→

, v
→

� h u
→

1 − u
→

2 + x g
→

(  ≈ s h, td, x, u
→′, v

→′( 

(8)

3.2.4. HTDF Security. Next, it is proved that if the RSIS
assumption holds, the HTDF functionF constructed above is

safe. Recall that in the original HTDF security experiment, we
generate the public key h along with the secret key td for
h←$ R∗q .

Theorem 2. Suppose that the RSISq,2,βRSIS-assumption holds
for the described parameters, then the HTDF function F

satisfies the HTDF security.

Proof. Assume that there exists a PPT adversary A, which
can have a nonnegligible probability δ win the HTDF se-
curity experiment. -en, we establish a probability poly-
nomial time simulator S that breaks the RSIS q, 2, βRSIS
assumption with nonnegligible probability.

Next, we revise the HTDF security experiment, we
sample h←$ R∗q , instead of sampling (h, td)←TrapGen(1n,

1ℓ, q) and setting pk � h and sk � td. Please note that sk � td

has never been used anywhere in the primeval HTDF se-
curity experiment. Hence, adversary A′ s point of view
among the original HTDF security experiment and the
simulated HTDF security experiment are indistinguishable
by Lemma 4. Specifically, adversary A attacks the security
experiment of simulated HTDF and gains the security ex-
periment with a probability of at least δ − negl(λ).

At present, we have proved that the PPT adversary A,
who won in the simulated HTDF security experiment, can be
used to settle the RSIS problem. Suppose that the successful
adversaryA outputs values u

→≠ u
→′ ∈ U, x, x′ ∈ X such that

fpk,x( u
→

) � fpk,x′( u
→′). Let u

→∗
� u

→
− u

→′ and x∗ � x′ − x.
-en, we obtain as follows:

fpk,x( u
→

) � [h, − 1] u
→

+ x g
→

� [h, − 1] u
→′ + x′ g→

� fpk,x′ u
→′( ⇒[h, − 1] u

→∗
� x
∗

g
→

.
(9)

Additionally, because u
→

, u
→′ ∈ U, it holds that

‖ u
→

‖∞, ‖ u
→′‖∞ ≤ βmax and thus ‖ u

→∗
‖∞ ≤ 2βmax. Moreover,

since u
→≠ u

→′, it holds that u
→∗ ≠ 0

→
.

To solve the RSIS problem defined by [h, − 1], where
h ∈ R∗q , then we talk over the two situations given below:

x � x′: In this situation, the small u
→∗

� u
→

− u
→′ ≠ 0

→
is

a nonzero solution of the RSIS problem, as [h, − 1]

( u
→

− u
→′) � [h, − 1] u

→∗
� x∗ g

→
� (x − x′) g

→
� 0, .

x≠x′: On this event, we prove that the simulator S

pretty good at using the knowledge of a small u
→∗ ≠ 0

→
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and some x∗ ≠ 0 satisfying the right side of the (9) to
find a nonzero solution of the RSIS problem (similarly
as [2]).

Sample t
→←$ R2

2 and let r
→≜ [h, − 1] t

→ ∈ Rq. Calculate
t

→′ � g
→− 1

( r
→/x∗) ∈ Rℓ

2 such that x∗ g
→

t
→′ � r

→. -erefore,

[h, − 1] u
→∗

t
→′ − t

→
  � [h, − 1] u

→∗
  t

→′ − [h, − 1] t
→

� x
∗

g
→

t
→′ − r

→
� r

→
− r

→
� 0

→
.

(10)

Setting u
→◇ ≜ u

→∗
t

→′ − t
→
, we then have [h, − 1] u

→◇
� 0

→

and ‖u◇‖∞ ≤ 2nℓβmax + 1≤ βSIS. Below the u
→◇ ≠ 0

→
, i.e.,

t
→≠ u

→∗
t

→′ have to be proved. Here we show that, even given
(h, u

→∗
, x∗), the following inequality holds with over-

whelming probability for uniformly random t
→

Actually, we
have

H∞ t
→

| t
→′ ≥ H∞( t

→
|[h, − 1] t

→
)≥ω(n), (11)

-e reason for the first inequality is that t
→′ is completely

determined by r
→

� [h, − 1] t
→

as g
→− 1

(·) is deterministic, and
the reason for the second inequality comes from Lemma 4.
-erefore, Pr[ t

→
� u

→∗
t

→′]≤ 2− ω(n) � negl(λ).
So, if the adversary A wins any situation in the

abovementioned simulated HTDF security game with a
nonnegligible probability δ/2 − negl(λ), the simulatorS will
generate an effective and small enough solution to solve the
RSIS problem with a probability of δ/2 − negl(λ). -e
process of the proof ends. □

3.3. Basic Homomorphic Evaluation. In an HTDF scheme, in
order to verify an evaluated function value, we demand to
design two corresponding algorithms: one is the input algo-
rithm, another kind is the output algorithm, and both algo-
rithms are deterministic.-is is different from a homomorphic
encryption system; in a homomorphic encryption system, only
one (random or deterministic) homomorphic algorithm that
acts on the ciphertext needs to be designed.

-e two basic homomorphic algorithms addition and
multiplication are described as follows. Here, we will sim-
plify some notations (e.g., Evalin instead of HTDF.Evalin ).
Recall that for i � 1, 2, v

→
i � [h, − 1] u

→
i + xi g

→. Let ‖ u
→

i‖∞≤ βi

and xi ∈ 0, 1{ }.

3.3.1. Homomorphic Addition Algorithms. -ey calculate
the sum of the corresponding input and output vectors,
respectively.

Evalin(Add, (x1, u
→

1, v
→

1), (x2, u
→

2, v
→

2))≜ u
→

1 +

u
→

2modq

Evalout(Add, v
→

1, v
→

2)≜ v
→

1 + v
→

2modq

-e noise of the addition is bounded by β1 + β2. -e
correctness comes from ( v

→
1 + v

→
2) � [h, − 1]( u

→
1 + u

→
2)

+ (x1 + x2) g
→.

3.3.2. Homomorphic Multiplication Algorithms. -e ho-
momorphic output multiplication algorithm is a

multiplication of the output vectors which is performed the
multiplication defined in Section 3.1. -e homomorphic
input multiplication algorithm is asymmetric and it needs
partial output, index, and the whole input to compute.

Evalin(Mult, (x1, u
→

1, v
→

1), (x2, u
→

2, v
→

2))≜ u
→

1 · g
→− 1

( v
→

2) + x1 u
→

2modq

Evalout(Mult, v
→

1, v
→

2)≜ v1
→

· g
→− 1

(v2
→

)modq

-e noise of multiplication is bounded by nℓβ1+
|x1|β2 � nℓβ1 + β2. Assuming v

→
i � [h, − 1] u

→
i + xi g

→, the
correctness follows by the computation:

v
→

1 · g
→− 1

v2
→

(  � [h, − 1] u
→

1 + x1 g
→

(  · g
→− 1

v
→

2( 

� [h, − 1] u
→

1 · g
→− 1

v
→

2( 

+ x1 [h, − 1] u
→

2 + x2 g
→

( 

� [h, − 1] u
→

1 · g
→− 1

v
→

2(  + x1 u
→

2  + x1x2 g
→

.

(12)

3.4. Homomorphic Output and Input Evaluation.
According to the abovementioned discussion, it is very easy
to homomorphically calculate an arithmetic circuit or
Boolean circuit similar as [2], we are not satisfied. We want
to show how to design the scheme as well as [26] based on
the fact that the noise growth is asymmetric.

3.4.1. Homomorphic Output Evaluation. Below we describe
the definition of the homomorphic output evaluation
algorithm

Evalout Π, v
→

0, v
→

0,i 
i∈[w]

, v
→

j 
j∈[t]

 ⟶ v
→
Π, (13)

for a length is L and a width is w permutation branching
program Π. In the initialization stage, we will assign v

→
0,

v
→

0,i 
i∈[w]

below and v
→

j is the vector such that v
→

j � [h, −

1] u
→

j + xj g
→, where u

→
j � ( u

→
j,1, u

→
j,2). Recall that (r(k),{

ξk,i,0, ξk,i,1)}k∈[L],i∈[w] is a description of the permutation
branching program Π, and the initial state vector is defined
as the first w-dimensional unit vector e

→
0 � (1, 0, 0, . . . , 0).

For k ∈ [L] and i ∈ [w], it holds that:

e
→

k[i] � e
→

k− 1 ξk,i,1  · xr(k) + e
→

k− 1 ξk,i,0  · 1 − xr(k) . (14)

Here, we give the full description of the process of the
homomorphic output evaluation algorithm Evalout of the
permutation branching program Π.

Initialization: Let v
→

k,i be an output relevant to the state
e

→
k[i], where k ∈ [L], i ∈ [w],

(1) Choose v
→

0←
$

Rℓ
q and set it to be a corresponding

output of the state 1.
(2) Choose v

→
0,i←

$
Rℓ

q and set it to be a corresponding
initial output of the initial state e

→
0[i].

(3) Set v
→

j ≜ v
→

0 − v
→

j, where v
→

j (such that v
→

j � [h,

− 1] u
→

j + xj g
→) is an output corresponding to xj,

and set it to be a corresponding output of (1 − xj).
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Calculation: For k � 1, 2, . . . , L, suppose that at step
k − 1, we have v

→
k− 1,i 

i∈[w]
. -en, we can calculate

inductively as follows:

v
→

k,i � v
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
  + v

→
r(k) · g

→− 1
v
→

k− 1,ξk,i,0
 .

(15)

Final output: After finishing the computation, we have
the value of v

→
L,i 

i∈[w]
. Finally, output the final output

v
→

L,1 corresponding to the state e
→

L[1], i.e., v
→
Π � v

→
L,1.

3.4.2. Homomorphic Input Evaluation. Here, we give the full
description of the process of the homomorphic input
evaluation algorithm Evalin(Π, (1, u

→
0, v

→
0)), ( e

→
0[i], u

→
0,i,

v
→

0,i)}i∈[w], (xj, u
→

j, v
→

j) 
j∈[t]

)⟶ u
→
Π of the permutation

branching program Π.

Initialization: Let u
→

k,i be an input relevant to the state
e
→

k[i], where k ∈ [L], i ∈ [w].

(1) Sample u
→

0 � ( u
→

0,1, u
→

0,2)←DU (such that
v
→

0 � [h, − 1] u
→

0 + 1 · g
→) and set it as input relevant

to the state 1.
(2) Sample u

→
0,i � ( u

→
0,i,1, u

→
0,i,2)←DU (such that

v
→

0,i � [h, − 1] u
→

0,i + e
→

0[i] g
→) and set it as the initial

input relevant to the initial state e
→

0[i].
(3) Set u

→
j ≜ u

→
0 − u

→
j, where u

→
j � ( u

→
j,1, u

→
j,2) (such

that v
→

j � [h, − 1] u
→

j + xj g
→) is an input corre-

sponding to xj, and set it to the input relevant to
(1 − xj).

Calculation: For k � 1, 2, . . . , L, suppose that at step
k − 1, we have u

→
k− 1,i 

i∈[w]
. -en, we can calculate

inductively as follows.

u
→

k,i � u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
  + xr(k) · u

→
k− 1,ξk,i,1

 

+ u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,0
  + 1 − xr(k)  · u

→
k− 1,ξk,i,0

 .

(16)

Final input: After finishing the computation process,
we have the value of u

→
L,i 

i∈[w]
. Finally, output the final

input u
→

L,1 corresponding to e
→

L[1], i.e., u
→
Π � u

→
L,1.

3.5. Correctness of Homomorphic Evaluation and Noise
Analysis. In the following lemmas, we testify the validity of
homomorphic input and homomorphic output algorithms
and explain in detail the noise growth in the above ho-
momorphic evaluation.

Lemma 5. Suppose that Evalout(Π, v
→

0, v
→

0,i 
i∈[w]

, v
→

j 
j∈[t]

)

⟶ v
→
Π and Evalin(Π,(1, u

→
0, v

→
0), ( e

→
0[i], u

→
0,i, v

→
0,i)}i∈[w],

(xj, u
→

j, v
→

j) 
j∈[t]

)⟶ u
→
Π, where v

→
0�[h,− 1] u

→
0+1· g

→, v
→

0,i

�[h,− 1] u
→

0,i+ e
→

0[i] g
→ and v

→
j�[h,− 1] u

→
j+xj g

→ for i∈[w],

j∈[t]. 9en for all k∈[L],i∈[w], we have v
→

k,i�[h,− 1]

u
→

k,i+ e
→

k[i] g
→. For k�L, we have v

→
L,1�[h,− 1] u

→
L,1+

e
→

L[1] g
→.

Proof. Using formulas (1), (4), and (5) and the above con-
ditions, for all k ∈ [L], i ∈ [w], it holds as follows:

v
→

k,i � v
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
  + v

→
r(k) · g

→− 1
v
→

k− 1,ξk,i,0
 

� [h, − 1] u
→

r(k) + xr(k) g
→

  · g
→− 1

v
→

k− 1,ξk,i,1
  + [h, − 1] u

→
r(k) + 1 − xr(k)  g

→
  · g

→− 1
v
→

k− 1,ξk,i,0
 

� [h, − 1] u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
  + xr(k)[h, − 1] u

→
k− 1,ξk,i,1

+ xr(k) · e
→

k− 1 ξk,i,1  g
→

+[h, − 1] u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,0
  + 1 − xr(k)  h, − 1] u

→
k− 1,ξk,i,0

+ 1 − xr((k))  · e
→

k− 1 ξk,i,0  g
→

� [h, − 1] u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
  + xr(k) · u

→
k− 1,ξk,i,1

  + u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,0
   + 1 − xr(k)  · u

→
k− 1,ξk,i,0

  

+ xr(k) · e
→

k− 1 ξk,i,1  + 1 − xr(k)  · e
→

k− 1 ξk,i,0   · g
→

� [h, − 1] u
→

k,i + e
→

k[i] g
→

.

(17)

-e process of proof ends. □

Lemma 6. Assuming that Evalin(Π, (1, u
→

0, v
→

0), ( e
→

0[i],

u
→

0,i, v
→

0,i)}i∈[w], (xj, u
→

j, v
→

j) 
j∈[t]

)⟶ u
→
Π and all the

noises of the inputs are bounded by β, i.e., ‖ u
→

0‖∞, ‖ u
→

0,i‖∞,
‖ u
→

j‖∞≤ β, then we have ‖ u
→
Π‖∞ ≤ 3nℓLβ + β.

Proof. We use the inductive method to prove the lemma.
-at is, for any step k � 0, 1, 2, . . . , L and i ∈ [w], we will
show that ‖ u

→
k,i‖∞ ≤ 3nℓkβ + β.

If k � 0, it is not difficult to find that all the initial noises
are such that ‖ u

→
0,i‖∞≤ β, i ∈ [w].

Suppose that at step k − 1, we have ‖ u
→

k− 1,i‖∞≤ 3
nℓ(k − 1)β + β. -en, according to formula (16), we have as
follows:
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u
→

k,i

����
����∞ � u

→
r(k) · g

→− 1
v
→

k− 1,ξk,i,1
  + xr(k) · u

→
k− 1,ξk,i,1

 

������

+ u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,0
  + 1 − xr(k)  · u

→
k− 1,ξk,i,0

 

������∞

≤ u
→

r(k) · g
→− 1

v
→

k− 1,ξk,i,1
 

�����

�����∞

+ xr(k) · u
→

k− 1,ξk,i,1

�����

�����∞
+ u

→
r(k) · g

→− 1
v
→

k− 1,ξk,i,0
 ∞

+ 1 − xr((k))  · u
→

k− 1,ξk,i,0

�����

�����∞

≤ nℓβ + xr(k) · (3nℓ(k − 1)β + β)

+ 2nℓβ + 1 − xr(k)  · (3nℓ(k − 1)β + β)

� 3nℓkβ + β,

(18)

where ‖ u
→

r(k)‖∞ � ‖ u
→

0 − u
→

r(k)‖∞≤ ‖ u
→

0‖∞ + ‖ u
→

r(k)‖∞
≤ β + β � 2β.

-rough induction, we obtain ‖ u
→
Π‖∞ � ‖ u

→
L,1‖∞≤ 3n

ℓLβ + β. -e process of proof ends. □

Remark 1. Barrington’s theorem [32] states that a circuit
with a depth of d can be transformed into a permutation
branching program with a length of 4d. -us, simply by
setting d≤ poly(λ), the resulting maximum noise level is less
than O(4dnℓβ). In particular, in the setting where it only
requires d � O(logλ), we obtain the modulus q �

poly(λ)>O(4dnℓβ) to be a middle large polynomial, which
can supply a better security for the scheme. In other words, it
is based on Ideal-SVP assumption with polynomial ap-
proximation factors.

4. Strongly Unforgeable NTRU-Based FHS

We construct a single key FHS scheme that is strongly
unforgeable against selective chosen-message-attack (SU-
sCMA) using the HTDF function, which appears in the form
of a black box in the fore chapter.

4.1. Definition. A single data-set homomorphic signature
scheme consists of the following seven PPT algorithms
PrmsGen, KeyGen, Sign, SignEval, Process, and Verify:

prms←PrmsGen(1λ, 1N): Input the security parameter
λ and the maximum data-size N, and output public
parameters prms. In addition, the security parameters
define the message space X.
(pk, sk)←KeyGen(1λ): Take the security parameter λ
as input. Output the key pair (pk, sk) of verification key
and signing key.
(σ1, . . . , σN)←Signsk(prms, x1, . . . , xN): Sign data
(x1, . . . , xN) ∈ XN.
σg � SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Determin-
istically and homomorphically evaluate a signature σg

for some function g over (x1, . . . , xt) ∈ X
t.

vg � Processprms(g): A deterministic algorithm that
can homomorphically evaluate a certificate vg from the
public parameters prms.

Verifypk(vg, y, σg): Verify that y is indeed the output of
function g by proving that σg and vg are corresponding.

4.1.1. Correctness. For prms←PrmsGen(1λ, 1N), (pk, sk)←
KeyGen(1λ, prms), (x1, . . . , xN) ∈ XN, (σ1, . . . , σN)←
Signsk (prms, x1, . . . , xN), and g: XN⟶ X, we need the
following equation:

Verifypk vg, y � g x1, . . . , xN( , σg  � accept, (19)

holds, where vg � Processprms(g) and σg � SignEvalprms
(g, (x1, σ1), . . . , (xt, σt)).

Notice that the correctness of singing by setting g � idi

and hence omitted, where idi is the i-th identity mapping.

4.1.2. Relaxed Correctness of Leveled FHS. Since the relaxed
correctness of the leveled FHS can be deduced from the
correctness of the leveled HTDF, we omit this process.

4.1.3. Security Experiment. -e SU-sCMA security experi-
ment for FHS describes the adversary needs to determine the
data to be signed before receiving public parameters and
verification key. -en, the adversary struggled to discover
(g, y′, σ′) so that it could meet the conditions for winning
the experiment. It is noted that here we do not require y � y′
or y ≠y′. -erefore, if y � y′ holds, then σ′ is a strongly
forgeable signature, otherwise it is an existentially forgeable
signature.

We now proceed to define the SU-sCMA security ex-
periment for FHS among an adversaryA and a challengerC
as follows:

-e adversary A selects at one-time data (x1, . . . ,

xN) ∈ XN and sends it to the challenger C.
-e challenger C runs prms←PrmsGen(1λ, 1N) and
(pk, sk)←KeyGen(1λ, prms) and returns (prms, pk)

back to the adversary A.
-e challenger C runs (σ1, . . . , σN)←Signsk(prms, x1,

. . . , xN) and sends the signatures (σ1, . . . , σN) to the
adversary A.
-e adversary A selects a function g: XN⟶ X and
values y′, σ′. Let y � g(x1 . . . , xN). If all the following
conditions are met, A wins:
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(1) g is admissible on the data-set (x1, . . . , xN);
(2) σ′ ≠ σg, where σg � SignEvalprms(g, (x1, σ1), . . . ,

(xN, σN));
(3) Verifypk(vg, y′, σ′) accept, where vg � Processprms

(g).

If for all PPT adversary A, inequality Pr[Awins]
≤ negl(λ) always holds. We say that the FHS scheme is SU-
sCMA secure.

Remark 2. Define the stronger SU-aCMA security notion
for FHS describing the strongly unforgeable adaptive cho-
sen-message-attack game, where the adversary can select
data to be signed after seeing the public parameters and the
verification key. It is to be noted that an adaptively secure
FHS can be transformed from a selectively secure FHS to-
gether with a chameleon hash with homomorphism [2], and
that our HTDF built in the previous section is a chameleon
hash. -erefore, we believe that we can obtain an adaptively
secure NTRU-based FHS via the transformation.

4.2. Construction. Let F � (HTDF.KeyGen, f , Inv,HTDF
.Evalin, (HTDF.Evalout) be an HTDF with index space X,
input space U, output space V and some efficiently
sampleable input distribution DU over U. We construct
an FHS scheme S � (PrmsGen,KeyGen, Sign, SignEval,
Process,Verify), with message space X as follows.

prms←PrmsGen(1λ, 1N): Sample vi←V, i ∈ [N] and
set public parameters prms � (v1, . . . , vN).
(pk, sk)←KeyGen(1λ, prms): Choose (pk′, sk′)←
HTDF.KeyGen and set pk � pk′, sk � sk′.
(σ1, . . . , σN)←Signsk(prms, x1, . . . , xN): Sample ui←
Invsk′ ,xi

(vi) and set σi � ui, i ∈ [N].
σg � SignEvalprms(g, (x1, σ1), . . . , (xt, σt)): Run
HTDF.Evalin(g), (x1, u1, v1), . . . , (xt, ut, vt)) and out-
put ug, then set σg � ug.
vg � Processprms(g): Run HTDF.Evalout(g, v1, . . . , vt)

and output the result vg.
Verifypk(vg, y, σg): If fpk′ ,y(σg) � vg accept, else
reject.

4.2.1. Correctness. -e discussion on the correctness of the
above-built leveled FHS is the same as the discussion on the
correctness of the underlying leveled HTDFF, so it is
omitted.

4.2.2. Security. Now, we testify that the above FHS scheme is
SU-sCMA secure.

Theorem 3. Suppose F is a secure HTDF function, then the
above FHS scheme S is SU-sCMA secure.

Proof. Assume there exists a PPT adversary A that wins the
SU-sCMA security experiment of FHS with nonnegligible

probability δ. We build a PPT reduction B that breaks the
HTDF security of F.

In the SU-sCMA experiment, adversary A first selects a
data (x1, . . . , xN) ∈ XN and then receives prms � (v1,

. . . , vN), pk′ and (σ1, . . . , σN), where vi←V, (pk′, sk′)
←HTDF.KeyGen and σi � ui←Invsk′ ,xi

(vi). Next, we revise
the experiment by sampling ui←DU and setting
vi � fpk′ ,xi

(ui). Adversary A′ s point of view among the
original security experiment and the changed security ex-
periment are indistinguishable by the distributional equiv-
alence of inversion property of the underlying HTDF
function. -erefore, A attacks the changed experiment and
wins with a probability of at least δ − negl(λ).

-en, we prove that there is a PPT reduction B, which
can take any PPT adversary A, and the adversary has the
ability to win the changed experiment with nonnegligible
advantage δ − negl(λ). Hence, the probability of breaking
the HTDF security experiment of the underlying F is
δ − negl(λ).

After receiving a challenge public key pk′ and a data-set
(x1, . . . , xN), the reduction B selects σi � ui i∈[N] and
computes vi i∈[N] as in the changed experiment and returns
(pk′, σi, vi i∈[N]) back to A.

Suppose that the adversary A winning the changed
experiment outputs values (g, y′, σ′), where g: XN⟶ X

is an admissible function and σ′ � u′. Let y � g(x1, . . . ,

xN), ug � σg � SignEvalprms(g, (x1, σ1), . . . , ((xt, σt)), vg �

Processprms(g). So, on the one hand, fpk,y′(u′) � vg holds as
the forged signature σ′ verifies. On the other hand, fpk,y

(ug) � vg also holds as g is admissible. -us, we have values
ug ≠ u′ ∈ U and y, y′ ∈ X satisfying fpk,y(ug) � fpk,y′(u′),
which allows B to break HTDF security of F with prob-
ability δ − negl(λ) whenever A wins the changed experi-
ment with probability δ − negl(λ). □

5. Conclusion and Open Problem

In this paper, we propose an SU-sCMA secure NTRU-based
FHS scheme, which can be transformed to an SU-aCMA one
with the help of NTRU-based HTDF functions (and without
additional assumptions) using a similar transformation as
introduced in [2]. Our next station is improving the efficiency
of our FHS scheme and accomplishing the implementation
with the consideration of practical attacks [36–39]. In addition,
it is well known that the leveled FHE can be transformed into
pure FHE via bootstrapping [40], the only workable way to get
pure FHE at the present. However, there is no similar boot-
strapping to improve homomorphic capability in the HS
scenario, as the evaluated signature not only certifies the
corresponding message, but also certifies the computation
process. -erefore, it is still open to build a pure FHS.
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