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Intelligent trafc signal control is one of the important means to ensure trafc safety. Efective signal control can make trafc fow
fast and smooth, which frst needs current and future trafc information. As the control of one intersection may afect adjacent
intersections, this paper proposes to predict future trafc fow with consideration of multi-intersections. It can dynamically
improve trafc conditions and reduce trafc congestion. Based on various nonlinear spatial relationships at correlated multi-
intersections and the potential time-dependent relationship in trafc volume, a trafc fow predictionmethod named CNNformer
which combines transformer with CNN, is proposed.Te convolution neural network (CNN) and transformer are used to extract
the spatial and temporal features of correlated multiple intersections. Te learnable time code is embedded into transformer’s
location code, and the location information and time information are injected into the model to help it learn the time char-
acteristics of trafc volume. Tis study also considers the impact of cyclical trafc fow pattern and proposes CNNformer+. In the
method, all of the data from the previous time window, as well as the data from the prior week and month, are correspondingly
entered into the network. Finally, the output is generated through average pooling, realizing the learning of cyclical trafc fow
characteristics. In the experiment, CNNformer+ and the state-of-the-art trafc fow prediction methods are compared using
simulated data. Te results show that the proposed model outperforms the existing models in prediction accuracy and efciency.

1. Introduction

Urban trafc is an important factor of urban function layout,
which seriously afects the development of the social
economy and the improvement of people’s living standards.
Due to the increase in consumers’ purchasing power, there
are more and more private cars, and the road density is
increasing as well as the trafc safety concerns. Tus, in-
depth research on trafc congestion and efective measures
to improve trafc efciency has become a research highlight.

According to the National Urban Car PARC Report, by
the frst half of 2019, as of June 2019, there were 250 million
cars in China, and 66 cities across the country hadmore than
1 million cars. As the number of cars on the road rises,
morning and evening rush hour overcrowding and minor

trafc accidents become more and more common. Trafc
congestion and accidents are very detrimental to urban
development.Tey will not only increase the time needed for
people’s travel activities but also adversely afect people’s
work efciency and life experience. Moreover, the conges-
tion will lead to increased vehicle exhaust emissions and
damage the environment.

In the face of a complex trafc environment, the pre-
diction of trafc fow can improve the utilization rate of
urban road resources and reduce the possibility of car ac-
cidents. It can also provide accurate trafc guidance in-
formation for urban trafc signal control [1], and the design
of data dissemination techniques based on the travel of
trafc participants [2]. Shortly, 6G will be crucial for
communication, resource allocation, and compute
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ofoading [3, 4]. It will also help to collect data for trafc
prediction. Trough extracting characteristics from the
obtained trafc data, trafc prediction methods can improve
road safety and intelligent transportation constructions.

In the past decades, many scholars have put forward
various trafc fow prediction models and achieved a series
of theoretical and applied research results [5]. Most of these
research methods are mainly based on statistical models or
shallow machine learning methods to describe the evolution
of trafc network fow, such as ARIMA [6], ANN [7], and
SVR [8]. However, these methods can only be used when the
data are relatively stable and linear. Te actual trafc fow is
extremely variable and will be afected by weather, date,
trafc accidents, and other factors. Because the aforemen-
tioned elements have an impact on trafc fow, trafc-related
time series data typically exhibit nonlinear or rapid change
characteristics and are interdependent. In addition, due to
the complex trafc network and the increasing number of
vehicles, the spatiotemporal sequence trafc data collected
based on the Internet of vehicles technology is large in scale
and high in latitude, as well as lots of security threatens [9].
Terefore, the traditional methods are difcult to mine the
deep relationship between trafc spatiotemporal series data
and face a huge bottleneck when being applied in practice. In
recent years, deep learning has been proven to be able to
efectively extract depth features and has made break-
throughs in image processing, speech recognition, natural
language processing, and other felds [10]. Due to the
complex nonlinear spatiotemporal correlation between
diferent trafc time series data, the deep learning method is
a good choice for trafc fow forecasting tasks.

Because intersections are often interrelated, especially in
cities with large trafc fow and short intersection spacing,
the congestion of an intersection may afect the trafc
distribution and capacity of the whole region. At the same
time, the improvement of trafc congestion at a single in-
tersection may aggravate the congestion at adjacent inter-
sections and cannot accurately improve the overall trafc
efciency. Terefore, it is necessary to predict the trafc fow
of multiple intersections. Tere are not many studies on
multi-intersection trafc fow prediction, though, and most
of the outcomes are not particularly good.

Tis paper presents a trafc fow prediction method
based on transformer and CNN, called CNNformer. In
addition, we have made improvements to CNNformer,
added the learning of the periodic characteristics of trafc
fow, and proposed CNNformer+. Te main contributions
are as follows:

(i) Te trafc fow prediction in this paper is aimed at
multiple intersections. Many existing studies are
conducted for a single intersection. Te improve-
ment of trafc congestion at a single intersection
may aggravate the congestion at adjacent inter-
sections, and cannot accurately improve the overall
trafc efciency.

(ii) Tis work proposes CNNformer, a new multi-in-
tersection trafc fow prediction approach based on
transformer and CNN. Te fow data of correlated

multiple intersections are constructed into a two-
dimensional matrix with the shape of (number of
intersections× number of lanes), and CNN is used
to extract the spatial features of correlated multiple
intersections.Te transformer model is innovatively
used in intersection fow prediction. Compared with
LSTM, transformer can avoid recursion, which al-
lows parallel computing, reduces training time,
reduces performance degradation due to long-term
dependence, and has better performance in pre-
diction accuracy. In this paper, the learnable time
code is embedded into the transformer’s location
code, and the location information and time in-
formation are injected into the model to help the
model better learn the time characteristics of trafc
volume.

(iii) In addition, this study also considers the weekly and
monthly cycle trend of trafc volume, makes im-
provements on CNNformer, and proposes
CNNformer+. CNNformer+ can learn the periodic
characteristics of trafc fow.

2. Related Work

With the development of the intelligent transportation
systems, many cameras, sensors, and other information
collection equipments are deployed on the road. Tese
equipments have accumulated a large number of trafc time
series data with spatial information such as trafc fow,
vehicle speed, and lane occupancy rate, providing a good
data foundation for trafc fow prediction.

2.1. Shallow Machine Learning Methods. For a long time, to
improve the congestion analysis and management decision-
making ability of intelligent transportation, researchers have
proposed a large number of trafc fow prediction models.
Willams and Hoel used ARIMA [6] to model the trafc fow.
Tis method is to model the single variable trafc fow
sequence data as an autoregressive moving average process,
to predict the trafc fow. Chan et al. proposed an ANN
model using a mixed exponential smoothing strategy and
Levenberg–Marquardt optimization to support short-term
trafc fow prediction [7]. Alkheder et al. proposed to use a
Bayesian joint neural network for short-term trafc fow
prediction of adjacent intersections [11]. Alajali et al. pro-
posed to use gradient enhanced regression tree (GBRT) and
random forest (RF) to realize trafc fow prediction and
suggested to use extreme gradient enhanced tree (XGBoost)
algorithm to process trafc fow big data [12]. However,
these methods have not achieved a completely satisfying
result.

2.2. Deep Learning Methods. Due to the complex trafc
network and the increasing number of vehicles, the usually
collected spatiotemporal sequence data related to trafc fow
has the characteristics of large-scale, high-dimensional,
dynamic, and abrupt. Traditional methods are facing great
challenges. Te capacity of deep learning to capture
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nonlinear depth characteristics has raised signifcant con-
cerns [13]. It can also be used to automatically extract and
learn deep-seated features in trafc time series data.
Terefore, more and more scholars began to study the trafc
fow prediction model based on deep learning [14]. For
example, Tu et al. proposed a trafc congestion prediction
model SG-CNN [15]. By analyzing the characteristics of
trafc data, the model groups road segments. According to
the correlation characteristics of road segments in the road
network, the CNN model is used to extract the character-
istics of road segment data, to realize the information
sharing between road segments. Ren et al. proposed a new
global-local time convolution network (GL-TCN) to predict
trafc fow [16].Tis new local time convolution mechanism
can efectively capture the local characteristics of long-term
trafc fow. At the same time, the infuence of the periodicity
of the global trafc fow on the local trafc fow law is
considered.

Ma et al. proposed a trafc fow prediction model based
on a bidirectional LSTM network. By improving the LSTM
model, combining the characteristics of sequence data and
the long-term dependence of BiLSTM, the bidirectional
long-term memory network (BiLSTM) is integrated into the
prediction model [17]. Du et al. proposed a deep irregular
convolution residual LSTM network model (DST-ICRL) for
trafc fow prediction [18]. To learn the spatiotemporal
feature representation, the trafc fow between various roads
in the road network is modeled as a multichannel matrix,
which is comparable to the RGB pixel matrix of the image.
Furthermore, deep learning methods, such as Deep
Q-learning Network (DQN), can also be used to fnd optimal
ofoading strategies in intelligent-connected vehicles [19].

Te intersection is the most complex part of the road
network because it involves a variety of diferent objects,
such as vehicles and pedestrians. With the increase in trafc
demand, the problem of trafc congestion at urban inter-
sections is becoming more andmore serious.Te short-term
trafc fow forecast of intersections has also been the subject
of numerous corresponding studies. For example, Qu et al.
established a two-layer superposition model based on in-
tersection short-term trafc fow prediction by integrating
k-nearest neighbor (KNN) and Elman neural network
modeling methods [20]. Kim and Jeong proposed a col-
laborative trafc signal control method based on multi-in-
tersection trafc fow prediction (TFP-CTSC) [21]. Li et al.
proposed a new deep intersection spatiotemporal network
(DISTN) for trafc fow prediction. Considering the spatial
and temporal characteristics of the convolutional neural
network (CNN) and long-term and short-term memory
(LSTM), the depth learning method was applied to inter-
section trafc volume prediction [22]. Furthermore, digital
twins have been used to facilitate the design, evaluation, and
deployment of IoV-based systems [23, 24]. However, the
research is still in an initial stage.

3. Methodology

In terms of trafc fow prediction, the camera on the road is
usually used to count the number of cars passing by. If

multiple intersections in a certain area are considered, data
from diferent cameras will contain geolocation and time
information. Terefore, we can regard the trafc fow pre-
diction problem as a spatiotemporal sequence problem,
namely, we can use the time and space information con-
tained in the data to predict the trafc fow of diferent
intersections. Te structure of the model is shown in Fig-
ure 1. Te input of CNNformer + contains the trafc fow
data of three time windows, which are the trafc fow data of
the previous time window (Xt−H, Xt−H+1, . . . , Xt), the si-
multaneous data of the week before the previous time
window (Xt−H−week , Xt−H−week+1, . . . , Xt−week), and the si-
multaneous data of the previous month in the previous time
window (Xt−H−month, Xt−H−month+1, . . . , Xt−month). Each time
window contains H time steps, and the trafc fow data of
each time step can be described as a two-dimensional matrix.
Te three input time windows are processed separately, that
is, to stack the H two-dimensional matrices in the data of
each time window and input them to CNN. After using CNN
to extract the spatial features of data, the convoluted data are
input into transformer. After using transformer to extract
the time characteristics of data, the data of all time steps will
be output. Ten, it stacks the outputs (Znow, Zweek, Zmonth)

of the three time windows and puts them into the average
pooling layer. Te fnal output of the model is the predicted
trafc fow in the next time window.

3.1. Extracting Spatial Features Using CNN. Because the
intersections are often interrelated, the upstream and
downstream intersections may afect the trafc fow pre-
diction of the target intersection. In this paper, CNN is used
to extract the spatial features of associated intersections. Te
input data has the following shape: [H,N,D], whereH stands
for the number of time steps, N for the number of inter-
sections, and D for the quantity of trafc fow directions at
each intersection, where D is equal to 12.

With the great success of convolutional neural network
in the feld of image processing, other felds are also trying to
use the method of deep learning to solve practical appli-
cation problems. In the feld of trafc fow prediction, be-
cause the trafc fow based on region or station can be
organized into a two-dimensional vector or a one-dimen-
sional vector, it is considered as an efective method to mine
the spatial characteristics of trafc volume data using the
convolution neural network.

For instance, in time step t, the historical fow data of a
given road network can be described as a matrix as follows:

Xt �

X
1−1
t X

1−2
t · · · X

1−12
t

X
2−1
t X

2−2
t · · · X

2−12
t

⋮ ⋮ ⋱ ⋮

X
N−1
t X

N−2
t · · · X

N−12
t

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

For each element in the matrix, the superscript format is
(intersection number - trafc fow direction number), and
the subscript represents the time step t. Each row of the
matrix represents the trafc fow of all trafc fow directions
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at time t at the nth target intersection. Each intersection has
12 trafc fow directions. Terefore, there are 12 columns of
trafc fow data, and each column of the matrix represents
the trafc volume in a certain trafc fow direction from
intersection 1 to intersection N.

When the data of a time step can be described as a
matrix, it is easy to think that the matrix can be used as the
input of CNN.Te convolution model in this paper is shown
in Figure 2. Te spatial features of associated intersections
are extracted by using two-dimensional convolution layers
with a convolution kernel size of (2, 2) and padding size of
(2, 1). After convolution, a ReLU and Dropout layer are
added.

Te output X of theNth convolution layer at time t is XN
t ,

it will then pass through a residual connection. Finally,
through the full connection layer, it is transformed into a one-
dimensional spatial eigenvector Yt. Tis vector is used as the
input of the transformer network to capture the time
correlation.

Te output shape of CNN is [H,M], whereM represents
the sum of trafc fow directions at each time step and all
relevant intersections, and H represents the number of time
steps.

3.2. Extracting Time Characteristics Using Transformer.
Te task of predicting trafc fow is a typical time series
prediction challenge that uses historical observation data to
forecast future trafc fow data. Since transformer is an
excellent sequence model, this paper takes the output of
CNN as the input of transformer and uses transformer to
extract the time characteristics of trafc fow.

Currently, the majority of tasks involving trafc fow
forecasting uses RNN and its derivatives, LSTM and GRU.
RNN and its variants must process data in sequence during
training. Te calculation of time step t depends on the
calculation result at time t − 1, so parallel training is not
possible. In addition, the coding of the trafc fow by RNN
and its variants is only retained in the next time step, which

means that the coding of the current time step only strongly
afects the representation of the next time step, and its
infuence will disappear soon after a few time steps. Al-
though the structure of gate mechanisms such as LSTM
alleviates the problem of long-term dependence to some
extent, LSTM is still powerless for particularly long de-
pendencies. Te transformer model can avoid recursion,
allows parallel computing to reduce training time, and
reduces performance degradation caused by long-term
dependency. Compared with RNN and variants, the
transformer model has stronger structural fexibility and
versatility, and can capture a wider range of information
relevance. In addition, in the NLP feld, the transformer
model processes sentences in a nonsequential manner, and
sentences are processed as a whole rather than word by
word.

Te transformer does not rely on past hidden states to
capture dependencies on previous words but processes a
sentence as a whole, so there is no risk of losing or forgetting
past information. Based on the abovementioned advantages,
this paper attempts to apply transformer to the task of trafc
fow prediction.

Te input of transformer is a sequence of spatial ei-
genvectors containing H time steps, expressed as
(Yt−H, Yt−H+1, . . . , Yt), where Yt is the spatial eigenvector
output from the fow data of time step t after n convolution
layers, where t − H to t is the historical time step. Te
network is trained to predict the trafc fow of all associated
intersections in the next H time steps.

(Xt–H, Xt–H+1, ..., Xt)

(Xt+1, Xt+2, ..., Xt+H)(Xt–H–week, 
Xt–H–week+1,
..., Xt–week)

(Xt–H–month, 
Xt–H–month+1,
..., Xt–month)

Yn
t–H, Yn

t–H+1, ..., Yn
t

Yn
t–H–week, 

Yn
t–H–week+1,

..., Yn
t–week

Yn
t–H–month,

 Yn
t–H–month+1,

..., Yn
t–month

Transformer

Transformer

TransformerCNN

CNN

CNN

Znow

Zweek

Zmonth

Stack

Stack

Stack

3 H

Average
Pooling

Figure 1: Te CNNformer+ model structure.

Conv FC

(Xt–H, Xt–H+1, ..., Xt)
(Yn

t–H, Yn
t–H+1, ..., Yn

t )

Figure 2: Convolution model structure.

4 Security and Communication Networks



Transformer is a seq2seq model. Te encoder layer re-
ceives input and the decoder layer obtains output.

3.2.1. Encoder. Te encoder layer of transformer includes
two sublayers:

(i) Te frst sublayer is a multihead attention, which is
used to calculate the input Self-Attention.

(ii) Te second sublayer is feed forward, which is a
simple fully connected network.

After each sublayer, the residual network is simulated,
and the results of each sublayer are displayed as follows:

LayerNorm(x + Sublayer(x)), (2)

where Sublayer(x) represents the mapping of the sublayer to
the input X. To ensure full connection, the dimensions of the
output of all sublayers and embedded layers are the same.

Te structure of the encoder layer is shown in Figure 3.
Te encoder input consists of the following three parts:

(i) Input embedding: In the original transformer
model, the input of the model is a high-dimensional
eigenvector. Te feature vector is obtained by
converting the input text through word embedding
method such as Word2Vec [25], which is called an
embedded vector. Tis paper uses the full join layer
to replace the word embedding method to encode
the input data. After the full join layer, the shape of
the input data becomes [H, E], where H represents
the number of input time steps and E represents the
feature size of the input data.

(ii) Position encoding: Transformer adds an additional
vector positional encoding to the input of the en-
coder layer.Te dimension of this vector is the same
as that of the embedded vector, which is used to
provide relative position information. Tis vector
can determine the position of the current time step
in the time window, and the transformer can learn
the position information of the time step through
this vector. Te formula of the position code is
shown as follows:

PE(pos, 2) � sin pos/100002i/dmodel􏼐 􏼑, (3)

PE(pos, 2i + 1) � cos pos/100002i/dmodel􏼐 􏼑, (4)

where pos refers to the position of the current time
step in the time window, i refers to the subscript of
each value in the vector, and dmodel refers to the size
of the input dimension. When pos is an even
number, Sine coding is used; when pos is an odd
number, Cosine coding is used.

(iii) Global time encoding: Based on the transformer
model, this paper not only uses location coding for
local location embedding but also takes into account
the efectiveness of timestamp information in
practical applications. Te location codes are

extracted from the timestamp corresponding to
time series data.

Te calculation of global time encoding is shown as
follows:

GTE � FC Xmon, Xdow, Xd, Xh, Xmin( 􏼁, (5)

where Xmon refers to the month location embedding, Xdow
refers to the day of week location embedding, Xd refers to
the day location embedding, Xh refers to the hour location
embedding, and Xmin refers to the minute location em-
bedding. Tese fve vectors are combined and input into the
full connection layer for coding to generate a learnable
embedding.

Finally, the model adds the abovementioned three
embedded vectors and sends them to the next layer as input.

A multihead attention is equivalent to the integration of
M Self-Attention. Te specifc process of Self-Attention is as
follows:

(i) Self-Attention will use the input embedded vector to
calculate three new vectors. Te dimension of the
vector is the same as that of the embedded vector.
Tese three vectors are named as Query, Key, and
Value, respectively. Tese three vectors are obtained
by multiplying the embedded vector with a matrix,
which is randomly initialized. Te dimension of the
matrix is [64, E], and E represents the characteristic
size of the input data.

(ii) Calculate the score of Self-Attention, which deter-
mines the degree of attention paid to the input data
of other time steps when the model encodes one-
time step data at a certain position. Te fractional
value is calculated by point multiplication of Query
and Key.

(iii) Next, divide the result of point multiplication by a
constant. Te constant value selected in this paper is
8, which is the root of the frst dimension of the
matrix. Ten, do a Softmax calculation on the ob-
tained results. Te result is the correlation between
each time step data and the time step data at the
current location.

(iv) Finally, use the result to multiply the value to get the
Self-Attention Value.

Tis method of determining the weight distribution of
values through the similarity between Query and Key is
called scaled dot product attention. Te calculation formula
is shown as follows:

A(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (6)

where dk represents the dimensions of Query, Key, and
Value vectors.

A multihead attention is to perform the process of scaled
dot-product attentionM times, in which not only one group
of Q, K, and V matrices is initialized, but M groups are
initialized, and then M matrices are output.
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However, the feed forward neural network cannot input
multiple matrices. Terefore,Mmatrices need to be reduced
to one. Te precise method entails joining M matrices to
create a large matrix, multiplying this large matrix by a
weight matrix with the random initialization, and then
obtaining the fnal matrix.

In the transformer, each sublayer will be followed by an
incomplete module, and there is a layer normalization.Tere
are many normalization methods, but the purpose of each
method is to normalize the input data to achieve the efect
that the mean value is 0 and the variance is 1. Te data
should be normalized before entering the activation function
so that the input data do not fall in the saturation region of
the activation function.

Unlike batch normalization, which calculates the mean
and variance in the batch direction, layer normalization
calculates the mean and variance on each sample. Terefore,
layer normalization is usually used to normalize the se-
quence model.

3.2.2. Decoder. Te transformer decoder layer includes three
sublayers.

(i) Te frst sublayer is masked multihead attention,
which is also the Self-Attention of calculation input.
However, since future information cannot be
known at the time of generation, it is necessary to
mask future information. For a sequence, suppose
the time step is t, the decoding output should only
depend on the output before t, not after t. Terefore,
mask operation is required.

(ii) Te second sublayer is encoder-decoder attention.
Te output of the encoder layer and the output of

the masked multihead attention sublayer are used
for attention calculation.

(iii) Te third sublayer is feed forward, which is the same
as the encoder layer.

Te structure of the decoder layer is shown in Figure 4.
Te trafc fow of the input decoder layer is composed of a
part of the historical data that is close to the predicted data
and an empty vector. Te length of the empty vector is the
length of the data to be predicted. Te encoder layer uses the
same coding technique for input trafc volume.

Te masked multihead attention sublayer of the decoder
layer needs to use a mask so that the decoder cannot see
future information. Te specifc method is to generate an
upper triangular matrix, the values of which are all 0 s, and
apply this matrix to each sequence to achieve the purpose of
covering.

Te encoder-decoder attention sublayer of the decoder
layer uses the output information of the encoder to calculate
the content of the current decoded output. Te diference
between this part and Self-Attention lies in the three vectors
of Q, K, and V. Q is the attribute of the decoder, while K and
V are the last output K and V of the encoder layer. Te
calculation method of attention is the same as that of Self-
Attention.Trough this method, the encoder can capture the
output information of the encoder.

3.3. Learn the Periodicity of Trafc Flow Using Average
Pooling. When the decoder layer is completely executed, the
fnal output of the three time windows is Znow, Z0, and
Zmonth. Ten, we stack these three vectors and input them to
the average pooling layer. Te calculation process of average
pooling is as follows:

Input Embedding

Position Encoding

Multi-Head Attention

LayerNorm (x + z)

LayerNorm (x + z)

Output

Global Time Encoding

Feed Forward

x

z

z

z

Figure 3: Te transformer encoder layer.
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􏽢qt+1 � AvgPooling Znow, Zweek, Zmonth( 􏼁, (7)

where 􏽢qt+1 represents the predicted fow data. As shown in
Figure 5, average pooling involves combining feature points
from diferent neighborhoods and averaging their values to
create new features. Compared with the full connection
layer, the average pooling can greatly reduce the network
parameters, thus reducing the overftting phenomenon.

Te fnal output of the average pooling layer is the
predicted trafc volume of the next time window. Gaussian
error linear element (GELU) is used as the activation
function of the average pooling layer. It is a high-perfor-
mance neural network activation function because the
nonlinear change of GELU is a random regular transfor-
mation mode that meets the expectation, and the formula is
as follows:

xP(X≤ x) � xΦ(x), (8)

where Φ(x) refers to the cumulative distribution of the
Gaussian normal distribution of x. GELU introduces the
idea of random regularity in activation, which is a proba-
bilistic description of neuron input, and is more intuitive
and natural.

3.4. LossFunction. Te loss function, also known as the error
function, is used to measure the operation of the algorithm.
Te loss function is shown as follows:

L(α) � Loss 􏽢qt+1 − qt+1( 􏼁, (9)

where α represents the learning rate, Loss() represents the
loss function, 􏽢qt+1 represents the predicted fow data, and
qt+1 represents the actual fow data. Te error between the
anticipated trafc fow in the following time window and the
actual trafc fow in that time window is measured using the

loss function to determine how closely the predicted output
value is to the actual value.

3.5. Optimization Algorithm. Te application of machine
learning is a process highly dependent on experience. With a
large number of iterations, many models need to be trained
to fnd the right one. When training a neural network, we
frequently employ a large data collection, which will cause
the training time to be extremely slow. Terefore, using an
appropriate optimization algorithm can efectively improve
the speed of the training model. Gradient descent is a
method to fnd the objective function, that is, to minimize
the loss function. It uses gradient information to fnd the
appropriate objective value by iteratively adjusting param-
eters. It is one of the most widely used optimization
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LayerNorm (x + z)
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Global Time Encoding
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Figure 4: Te transformer decoder layer.
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Figure 5: Architecture of average pooling.
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algorithms in neural networks. Tis paper uses Adam as the
optimization algorithm of the model. Te reason is that it is
essentially the combination of momentum and RMSprop
algorithms and then corrects its deviation. Te momentum
algorithm uses momentum similar to physics to accumulate
gradients, and the RMSprop algorithm can make conver-
gence faster while making fuctuations smaller. Terefore,
the performance achieved by combining these two algo-
rithms is assumed to be better. Adam fully utilizes the second
moment mean of the gradient in addition to computing the
adaptive parameter learning rate based on the frst moment
mean, as does the RMSProp algorithm. Specifcally, the
algorithm computes exponential moving averages of the
gradients, using hyperparameters beta1 and beta2 to control
the decay rate of these moving averages. Because the initial
moving average, beta1 and beta2 values are all close to 1, the
moment estimate’s deviation is close to 0. By frst computing
the deviated estimate, and then, the deviate-corrected esti-
mate, the deviation is optimized.

4. Simulation Experiment of Regional Traffic
Flow Prediction Based on AnyLogic

AnyLogic is a professional virtual prototyping environment
for designing complex systems with discrete, continuous,
and mixed behaviors. Using AnyLogic, one may easily create
a simulation model of the intended system and the system’s
surrounding environment, including its physical equipment
and operators. Te road trafc Library in AnyLogic allows
users to model, simulate, and visualize vehicle trafc. Te
library supports detailed and efcient physical hierarchical
modeling of vehicle motion. AnyLogic can be applied to
model vehicles, roads, and lanes of highway trafc, street
trafc, production site transportation, parking lot, or any
other system.

4.1. Data Description. In the experiment, AnyLogic is used
to build a regional road networkmicromodel to simulate the
actual road conditions for the statistics of intersection trafc
fow data. Tis area is a real region composed of three as-
sociated intersections, and each intersection has 12 lanes, as
shown in Figure 6. Te simulation data includes three
months’ trafc fow data. Te statistical interval is
15minutes, and the trafc fow data of all intersections are
collected every 15minutes. Each model data represents the
number of vehicles passing in the direction of trafc fow
within 15minutes.

In the simulation, external factors such as morning peak,
weekends, and holidays, are considered to enhance the
randomness, making the simulation data tend to the real
data.

4.2. Data Preprocessing. Before inputting the data into the
model, it is necessary to standardize the data to scale the
attributes of a sample to a specifed range. It is necessary to
eliminate the infuence of diferent attributes of samples with
diferent orders of magnitude because

(i) Te diference in orders of magnitude will lead to
the dominant position of attributes with larger
orders of magnitude;

(ii) Te diference of orders of magnitude will cause the
convergence speed of iteration to slow down;

(iii) Algorithms that depend on sample distance are very
sensitive to the order of magnitude of data.

In this paper, min-max standardization, also known as
normalization, is used as themethod of data standardization.
Te specifc method is as follows: after the data (x) are
centered according to the minimum value, it is scaled
according to the range (maximum value-minimum value),
and the data are converged to [0, 1]. After normalization, the
range of the optimization process becomes smaller, the
optimization process becomes gentle, and it is easier to
correctly converge to the optimal solution. Te calculation
formula is shown as follows:

x
∗

�
x − xmin

xmax − xmin
. (10)

4.3. Evaluation Metrics. Tis paper measures the prediction
efect of the model using the mean square error (MSE) and
mean absolute error (MAE) loss functions to evaluate the
prediction performance of the algorithm more thoroughly.

4.4. Experimental Setup. Tis paper uses the Python3.7
simulation environment and the deep learning framework
PyTorch to build the model.Te CPUmodel used is Intel (R)
Xeon (R) w-2133 CPU@ 3.60GHz, thememory is 32GB, the
GPU model is NVIDIA GeForce GTX 1080 Ti, and the
operating system is Ubuntu.

4.5. Simulation Results and Analysis. Te proposed
CNNformer+ is compared with several baseline models,
including CNN, LSTM, DISTN [22], CNNformer, trans-
former, and informer [26]. Table 1 compares the perfor-
mance of the baseline model and CNNformer+ in the trafc
fow prediction task at the associated intersections. Table 2
shows the hyperparameter settings of the experimental
model.

Te following phenomena were observed during the
experiment:

(i) Compared with the traditional time series model
LSTM, the convolution model combined with CNN
and LSTM is more suitable for trafc fow predic-
tion tasks. Tis is because CNN can better extract
the spatial features of associated intersections than
LSTM. Compared with CNN, LSTM has better
performance in trafc fow prediction tasks.

(ii) Compared with the model combining CNN and
LSTM (DISTN). Transformer is more suitable for
trafc fow prediction tasks, thanks to its ability to
better establish long-distance dependencies, and

8 Security and Communication Networks



unlike LSTM, which depends on the calculation at
the previous moment, it can be well parallel.

(iii) Informer has achieved good results in time series
prediction tasks in many felds, which proves that
the improvement made by informer in transformer
is efective. However, in this experiment, the ac-
curacy of the forecast is lower than that of trans-
former, which might be because informer has a
difcult time capturing the details of trafc fow
data.

(iv) Compared with transformer, CNNformer has
higher prediction accuracy, thanks to CNN’s ability
to extract the spatial features of trafc fow data at
associated intersections.

(v) Te prediction accuracy of CNNformer+ is higher
than that of CNNformer, which verifes that
learning the periodic characteristics of trafc fow is
helpful to improve the prediction accuracy.

(vi) Te model proposed in this paper achieves the best
results in the trafc fow prediction task, which
shows that themodel is superior to some of themost

advanced trafc fow prediction methods in the
literature.

It can be seen from Figure 7 that the dimension size of
the hidden layer inside the model will also afect the per-
formance to a certain extent. Te richer hidden layers can
play a positive role. However, when the number of hidden
layer units is greater than 512, the model performance begins
to decline.

Figure 8 shows the comparison between the real trafc
volume and the trafc volume predicted by CNNformer+ at a
single time step, i.e., 10 a.m., 2 p.m., and 5 p.m. Each time
step includes 36(12 × 3) trafc movements. As can be ob-
served, themodel successfully captures the changing trend of
the actual trafc volume in the majority of trafc fow di-
rections where the predicted value is near the real value.

Figure 9 shows the comparison of real trafc volume at
10 a.m. with trafc volume predicted by informer and
transformer. It can be seen from the marks in the fgure that
CNNformer+, informer, and transformer have a huge de-
viation when predicting the trafc volume with movement
number 3. However, when predicting the trafc volume with
movement numbers 23–28, CNNformer+ can better ft the
real trafc volume than informer and transformer, which
refects the superiority of the algorithm used in this model.

After introducing the overall performance of the pro-
posed model, the prediction accuracy of single vehicle fow
motion is now given. Table 3 provides the prediction ac-
curacy for each movement at the second intersection. Te
MSE of the trafc movement from east and west is better
than that from north and south. Tis is because intersection
2 is located in the middle of the three intersections. Since the
volume of trafc leaving from the north and south is lower
than that leaving from the east to west, the trends of the
trafc fow are more varied, which makes it more difcult to
predict the direction of the trafc fow.

Table 4 provides the prediction accuracy of each of the
three intersections. It can be seen that intersection 2 has the
lowest MSE. Since intersection 2 is located in the center of
the main road, the fow data of this intersection is also
related to the trafc conditions of intersection 1 and in-
tersection 3. Intersection 1 and intersection 3 are located at
the boundary of the main road. Tere is only one upstream
or downstream intersection, which is less afected.Terefore,

Table 1: Comparison of simulation results.

Models MAE MSE
CNN 0.12205 0.02899
LSTM 0.09840 0.01720
DISTN 0.09778 0.01683
Transformer 0.09599 0.01656
Informer 0.09736 0.01681
CNNformer 0.09499 0.01604
CNNformer+ 0.09220 0.01515

Table 2: Experimental model hyperparameter settings.

Parameters Parameters size
Input dimensions 512
Batch size 128
Learning rate 0.0001
Epoch 120
Time window size 96
Number of encoder layers 1
Number of decoder layers 1

Figure 6: Te road network in the simulation network contains three intersections (Yinzhou district, Ningbo city, China).
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the change in trafc volume is more regular, reducing the
difculty of prediction.

Figure 10 shows the forecast results of trafc volume in
diferent time step sizes. It can be seen that MSE and MAE
also begin to decrease signifcantly with the increase of time
step size. Tis is because the transformer requires a large
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Figure 7: Efect of a hidden layer’s dimension on the efectiveness of the task of predicting trafc fow at related intersections. (a) MSE.
(b) MAE.
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Figure 8:Te comparison between the real trafc volume and the trafc volume predicted by CNNformer+ at a single time step, i.e., 10
a.m., 2 p.m., and 5 p.m. Each time step includes 36(12 × 3) trafc movements. (a) CNNformer+ at 10 a.m. (b) CNNformer+ at 2 p.m.
(c) CNNformer+ at 5 p.m.
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Figure 9: Te comparison of real trafc volume at 10 a.m. with trafc volume predicted by informer and transformer. Each time step
includes 36(12 × 3) trafc movements. (a) Informer at 10 a.m. (b) Transformer at 10 a.m.

Table 3: Volume prediction results for each intersection.

Intersections MSE
Intersection 1 0.01483
Intersection 2 0.01563
Intersection 3 0.01500
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amount of data for training. With the increase of time step
size, the number of input samples of the model decreases,
and the number of learned trafc volume features decreases,
this increases the difculty of prediction. Te results show
that a small time step size should be selected as far as possible
in trafc fow prediction.

Figure 11 shows the infuence of diferent sequences on
prediction accuracy. “now” refers to the input only using the
trafc fow data of the previous time window
(Xt−H, Xt−H+1, . . . , Xt). “now+week” refers to the input

contains the trafc fow data of the previous time window
and the simultaneous data of the week before the previous
time window (Xt−H−week, Xt−H−week+1, . . . , Xt−week).
“now+week +month” refers to the input contains the trafc
fow data of the previous time window, the simultaneous
data of the week before the previous time window, and the
simultaneous data of the previous month in the previous
time window (Xt−H−month, Xt−H−month+1, . . . , Xt−month). Te
fndings demonstrate that the minimal MSE and MAE are
reached by taking into account all three time windows.

Table 4: Volume predication results for each movement of intersection 2.

Movement of intersection 2 MSE
West ->North 0.01387
West -> South 0.01154
West ->East 0.01067
North ->West 0.01974
North -> South 0.01824
North ->East 0.01812
South ->West 0.01797
South ->North 0.02021
South ->East 0.01972
East ->West 0.01276
East ->North 0.01341
East -> South 0.01137
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Figure 10: Volume prediction results using diferent time step sizes. (a) MSE. (b) MAE.
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5. Conclusion

Transformer has advantages in dealing with time series tasks.
Many current research works are based on the transformer
architecture to establish models for various series tasks and
have achieved good results beyond the traditional models in
many application felds. To tackle the problem of trafc
safety oriented multi-intersection fow prediction, in this
research, a new architecture integrating CNN and trans-
former is proposed from the viewpoint of accuracy im-
provement, making it more suitable for the trafc fow
prediction task of associated intersections. Te comparative
experiment with informer and other baseline models proves
the superiority of the new architecture.

In the research work of this paper, the following results
have been achieved:

(i) A new intersection trafc fow prediction model
CNNformer + is proposed, which considers that the
trafc fow data at the associated intersection is a
group of spatiotemporal sequences, using CNN to
extract the spatial features of the data can signif-
cantly improve the prediction accuracy of the
transformer model.

(ii) Te average pooling layer successfully learns the
periodicity of the trafc fow data, increasing the
model’s forecast accuracy. Experiments on the
simulated network dataset demonstrate the superi-
ority of the proposed method.
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