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Te collaborative strategy of vehicle-road-environment based on intelligent and connected vehicles (ICVs) to assist in driving
vehicles safely and relieve trafc congestion has become an efective solution. Tis paper proposed a strategy for vehicle lane
change and roundabouts trafc based on vehicle profle (VP) in combination with the driving characteristics of roundabouts.
Initially, in order to solve the confusion problem ofmultisource heterogeneous data of ICVs in roundabouts, this paper defnes VP
to describe and characterize the multidimensional data of ICVs, so the data in ICVs can be further applied. Furthermore, the
weights of relevant parameters in the VP are updated based on the random forest algorithm. In addition, the payof function is
designed for the lane change decision at the exit of roundabouts based on the VP and dynamic weights. Finally, the performance of
the proposed algorithm is compared with other algorithms through the SUMO platform and three scenarios are used in the
simulation verifcation, including trafc congestion, normal, and sparse. Te experimental results verify the optimization efect of
vehicle profle on roundabout trafc strategy and also show that this algorithm can efectively improve the efciency of vehicle
trafc in roundabouts. In particular, the efciency and comfort of vehicles in roundabouts are efectively improved in normal
trafc scenarios.

1. Introduction

As a kind of trafc facility that can efectively solve the
problem of urban trafc congestion, trafc roundabout has
been widely used in the urban trafc system. However, the
roundabout is limited by the capacity of the road, and as the
volume of trafc increases, trafc congestion worsens. En-
suring the efciency and safety of the roundabout has be-
come an important problem in the trafc system. Trafc
lights have been added to control the movement of vehicles
in large roundabout areas. Although it can optimize the
problem, signal lights can also cause vehicles to wait and
even block [1]. With the continuous development of in-
telligent connected vehicles [2, 3], the application of
a multivehicle coordination strategy to roundabouts has
become a new solution to solve the congestion problem of
roundabouts and improve trafc efciency.

Intelligent and connected vehicles (ICVs) use the in-
ternet of vehicles communication technology [4] to in-
troduce more data information, such as vehicle information
and road condition information to form an organic whole of
vehicle-road-environment and realize the coordination of
the three. How to efectively use the above-mentioned
multiple heterogeneous data have become the basis and
key to efective vehicle-road-environmental coordination.

Te key to solving the congestion and the safety of trafc
around the roundabouts is to optimize the strategies of lane
change and trafc order. Terefore, the coordination
problem of roundabouts can be detailed as the vehicle lane
change decision at the intersection. Based on the defned
payof function, Nilsson et al. [5] proposed changing lanes if
the lane change time and location are appropriate. Based on
reduplicated game theory, Cheng et al. [6] defned a payof
function consisting of safety, rapidity, and control
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indicators. Various factors related to vehicles are involved in
lane change strategies, which caused the current situation of
complexity when considering lane change decisions.

Combining the above-given problems, this paper re-
searches the trafc efciency optimization of roundabout
scenes and the status quo in the multivehicle coordinated
lane change, then proposes a method for cooperative control
of vehicles under roundabouts based on the construction of
VP.Te main contributions of this paper are summarized as
follows:

(1) Based on the idea of the user profle, the vehicle
profle is constructed. Combining the data of vehicle,
driver, and driving environment, this paper provides
a basis for the further application of intelligent
connected vehicle data in multivehicle cooperation
problems.

(2) Te dynamic weight of the vehicle lane changing
payof function is defned, which makes the weight of
the function dynamically updated with the vehicle
driving scene and driving state, so as to realize the
scene adaptive optimization of the lane changing
strategy.

(3) According to the revenue function of the vehicle
profle and dynamic weight, a lane-changing de-
cision algorithm (UPC) based on the user profle is
established, and the overall trafc efciency of the
roundabout is optimized by the UPC algorithm.

2. Related Works

2.1.VehicleCollaborativeDecisionMaking. For collaborative
decision-making of vehicles, Jin et al. proposed a lane-
changing behavior decision model based on the Gaussian
mixture hidden Markov model (GM-HMM) for the char-
acteristics of drivers’ lane-changing behavior [7], which can
efectively simulate driving behavior. So et al. [8] proposed
an emergency vehicle control strategy that achieved ad-
vantages in mobility and safety, and the advantages of the
emergency vehicle control strategy can be maximized when
signal preemption and autonomous driving control operate
cooperatively. Bai et al. [9] established lane change models
with diferent degrees of cooperation with the following
vehicle in the target lane based on the characteristics of
accelerated lane change, combined with vehicle kinematics
and comfort requirements. It can achieve a safe accelerated
lane change trajectory and meet the requirements of vehicle
kinematics and comfort control. Ni et al. [10] established the
feasibility of the cooperative lane change operation by
establishing the gain function based on the excitation model.
By comparing the lane change gain and lane keeping gain,
we can judge whether the cooperation is feasible under the
current conditions. Te lane change process is divided into
the lane change stage and the longitudinal vehicle distance
adjustment stage.

Song et al. analyzed the game characteristics and game
models existing in trafc signal control at intersections [11],
analyzed the game characteristics in multiphase signal
control at single intersections in detail, studied the

multiperson cooperative game method in multiphase signal
control at single intersections, and established the corre-
sponding game model and solved it. Dewangan and Sahu
[12] designed fnite state machine models for straight and
turning intersections, combined with safety judgment rules,
and realized the safe passage of intelligent vehicles at in-
tersections. Guo et al. combined with trajectory prediction
[13], proposed a decision-making process (model) and
multifactor driving behavior selection method for intelligent
driving vehicles based on confict resolution. Ali et al. de-
veloped a forced lane change model based on game theory
(AZHW model) that can efectively capture forced lane
change decisions with high accuracy [14]. Te game-based
lane change behavior modeling under incomplete in-
formation proposed by Yu et al. [15], whose model pa-
rameters can be learned and updated during the lane change.
Leon Calvo and Mathar designed a cooperative formation
scheme using the joint paradigm to increase trafc fow and
stability [16], in which platoon formation is based on the
method of alliance game theory. Jing et al. formulated the
lane-changing problem as a Markov game between active
and passive vehicles [17]. Ding derived the global optimal
mergingmodel based on a cooperative game tominimize the
global revenue and achieve the optimal MS and trajectory.
Te fuel consumption, passenger comfort, and travel time in
the merged control area were used as the revenue
conditions [18].

2.2. Collaborative Decision-Making in Roundabouts. Since
the appearance of roundabouts in the 1960s, researchers
from many countries have tried to study and optimize the
capacity of the roundabout [19]. Due to the right-of-way
problem of vehicles and insufcient data [20], the efciency
of the roundabout will decrease with the increase in trafc
volume [21] and other problems. Terefore, it has not been
able to play its capacity advantage in the actual scene of high
trafc fow [22]. But the further development of technologies
such as the Internet of vehicles now ofers a great oppor-
tunity to improve transportation efciency.

Since deceleration, lane merging and lane changing at
roundabouts are the main causes of congestion, the current
research mainly focuses on route planning inside the
roundabout and lane merging at the junction. And, they
achieve this by controlling vehicle speed, trafc fow, etc.
Silva and Grassi [23] make path planning by clothoid,
circular arcs, and straight lines, whose curvature is piecewise
linear and continuous as well. A continuous and smooth
driving line is planned based on the linear variation of
curvature relative to distance. Hidalgo et al. [24] proposed
a method to solve the roundabout merging considering
a nominal trajectory generated through Bézier curves
combined with a model predictive control (MPC) to assure
a safe future state.

For coordinated decision-making at the intersection,
Hang et al. [25] designed and optimized a motion prediction
module through model predictive control (MPC), and the
payof function of decision-making was defned with the
consideration of vehicle safety, ride comfort, and travel
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efciency. Stackelberg game and grand coalition game ap-
proaches are adopted to address the decision-making of
CAVs at an unsignalized roundabout. Tian et al. [26] pro-
posed an algorithm based on a game-theoretic model; the
algorithm shows the interactions between the ego vehicle
and an opponent vehicle and adapts to an online estimated
driver type of the opponent vehicle. Similar to the problems
of Nilsson et al. [5] and Cheng et al. [6], their construction of
the payof function lacks the defnition of the weights of the
relevant factors, which makes the constructed payof
function not accurately characterize the vehicle payof.

At the same time, Ye et al. explored the infuence of
diferent parameter values on high-precisiondecision-
making in complex scenes [27], and Yu et al. [15] and Xu
et al. [28] also verifed that model parameters can be learned
and updated in the process of lane change to bring better
decision-making efects, and the decision optimization efect
combined with diferent road weights in diferent road
scenarios [29]. Terefore, in order to better characterize the
vehicle state and optimize the decision-making perfor-
mance, it is necessary to update the weight of the payof
function.

3. System Model and Problem Formulation

3.1. Vehicle Profle. In this paper, the method of the vehicle
profle (VP) is used to construct (design) vehicle tags from
fve aspects, including driver information, vehicle in-
formation, vehicle driving status, driving behavior, and
external environment, as shown in Figure 1. And, the VP is
used to characterize the vehicle status, the feature types are
shown in Table 1.

Based on the environment of Intelligent and connected
vehicles (ICVs) built by roadside unit (RSU), this paper
builds a vehicle profle. A roadside unit (RSU) is set in the
roundabout where vehicles can obtain trafc information
about themselves and surrounding vehicles and sets the data
transfer to the ideal case: no delay no packet loss. When the
vehicle enters the communication range, the vehicle im-
mediately connects with the roadside unit and accesses the
network. Data in vehicle driving are gathered and managed
by the roadside unit, then the vehicle completes the con-
struction of its vehicle profle by the data; in addition, the VP
is used for the problems of collaborative decision-making or
others, as shown in Figure 2.

Autopilot mentioned in the paper intelligent snatched
automotive vehicle data not only included in the basic data,
including infrastructure, environment, trafc data, road lane
around size, location of the vehicle, road and the direction of
motion, weather conditions, trafc intensity), the identity of
the owner (driving experience, age), the state data (gestures,
Eye position changes, etc.), and behavioral data (abnormal
lane change frequency, driving style, etc.). Te driver in-
formation and vehicle information are inherent in-
formation, and the external environmental data are collected
by RSU and distributed to each node. Te driving behavior
can be obtained by visual collaborative analysis and other
methods, and the vehicle running state can be obtained by
onboard sensors and dynamically divided by combining the

defnition of safe driving in diferent scenarios in relevant
laws and regulations.

Except for driving behavior, the data used for VP are all
inherent factors related to the vehicle, and all information
can be obtained directly through RSU. As for the repre-
sentation of driving behavior, Murphey et al. [30] proposed
the driver style identifcation coefcient Rdriver by taking
advantage of vehicle acceleration and its standard deviation
and proved that the proposed style coefcient could accu-
rately describe the driver’s driving style through experi-
mental verifcation.

Based on this idea and the timeliness of the VP, this
paper presents a simple representation of driving behavior
style through vehicle spacing.

Defnition 1. Driving behavior identifcation parameters:

Usp �

1, x≥ xsafe,

x

xsafe
, x< xsafe,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(1)

where x is the vertical distance between two cars, xsafe is the
safe distance between two cars at the current speed.

Te construction of the VP provides a unifed basis for
the consideration of the relevant factors in the multivehicle
cooperation problems so that the research on multivehicle
cooperation problems can be taken and used on demand.

3.2. Label Weight Calculation. Breiman [31] proposed the
random forest algorithm based on combining the Bagging
method with the random subspace method. Random forest
algorithm is an algorithm for classifcation and prediction,
which uses the bootstrap resampling method to draw
multiple samples from the original sample model decision
trees for each bootstrap sample and then combine the
predictions of multiple decision trees to arrive at the fnal
prediction result by voting and has high prediction accuracy,
good tolerance for outliers and noise, and is not prone to
overftting [32]. Applications of random forest in the feld of
assisted driving include the detection of trains ahead to avoid
collisions [33] and the monitoring of driver emotions [34].
Considering that the process of random forest algorithm
implementation is to set up diferent weights for diferent
decision trees to complete the voting to arrive at the fnal
result. Random forest can be used for the calculation and
selection of feature weights for the dataset, although the
random forest algorithm appears to classify and predict
the data.

Te common decision trees are divided into ID3, C4.5,
and CART. ID3 divides attributes by information gain (IG)
and recursively constructs decision trees, C4.5 constructs
decision trees by gain rate, and CART constructs decision
trees by Gini coefcient as a criterion. In this paper, the
calculation of diferent label weights in the vehicle profle is
completed by the random forest algorithm constructed with
IG. Information gain is a feature selection method based on
the information theory proposed by Harrington [35]; in
other words, information gain is the change resulting from

Security and Communication Networks 3



Age

Driving
Age

abnormal lane
change

Driver
information

Driving
behavior

change of
velocity

Trafc
density

External
Environment

Trafc
fow

Travelling
distance

Vehicle
information

Maintenance
frequency

Vehicle
type

Acceleration

Speed

Running
condition of

vehicles

Figure 1: Te label of vehicles.

Table 1: Feature type of vehicle profle.

Feature Feature type

Trafc fow (A)
(1) Fewer vehicles
(2) More vehicles

(3) Trafc congestion

Light conditions (B)
(1) Morning
(2) Daytime
(3) Nighttime

Trafc control (D)
(1) No signal light
(2) Signal light

(3) Signal light damage

Driving distance (E)
(1) Close

(2) Moderation
(3) Far away

Change of driving angle (F)
(1) Little

(2) Moderation
(3) Large

. . . . . .

Changes in acceleration (G)
(1) Gentle
(2) Normal
(3) Great

Speed (H)
(1) Slow

(2) Normal
(3) Fast

Space headway (J)
(1) Little

(2) Moderation
(3) Large

Age of driver (K)
(1) Young

(2) Middle-aged
(3) Old

Driving style (L)
(1) Gentle
(2) Normal
(3) Radical

. . . . . .
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the regularization of a data set. IG is calculated via entropy,
which is the expectation of information. Ten, the empirical
entropy for the trafc dataset T is

H(T) � − 
k

k�1

ck




|T|
log2

ck




|T|
. (2)

Te data types of dataset T are Ck, and the total number
of datatypes is k. Te subsets ({T1, T2, T3, . . . , Ti}) can be
divided from the trafc dataset T based on feature A. Ten,
the empirical conditional entropy of A is

H(T|A) � 
n

i�1

Ti




T
,

H Ti(  � − 
n
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Ti




T


k

k�1

Tik




Ti



log2

Tik




Ti



.

(3)

Te information gain of A is

IG(T, A) � H(T) − H(T|A). (4)

Traditional user profles generally complete personalized
recommendations through user profle tag data, the corre-
lation between tags, and the tag weight value. Tis paper
mainly defnes the weight of each component in the payof
function through the label weight value of the VP. Tat
means we get the weight from the calculation of
information gain.

If three factors that speed, acceleration, and travel time in
the vehicle profle need to be taken into the construction of

the payof function, the weights of speed, acceleration, and
travel time in the payof function are

Pv �
IG T, vsv( 

IG T, asv(  + IG T, vsv(  + IG T, timesv( 
,

Pacc �
IG T, asv( 

IG T, asv(  + IG T, vsv(  + IG T, timesv( 
,

Ptime �
IG T, timesv( 

IG T, asv(  + IG T, vsv(  + IG T, timesv( 
.

(5)

Teweight of each part of the payof function involved in
the game of multivehicle coordination is usually used as
a parameter in the construction process, then constantly
adjusting the parameter to optimize the experimental re-
sults. However, in the process of continuous debugging, the
importance degree of each part refected by the weight value
proportion is not accurate enough, and the importance
degree of all kinds of income of the vehicle in its running
process should be constantly changing.

Terefore, on the basis of constructing the vehicle
profle, this paper introduces the weight value of each label
into the construction process of the payof function, so that
the weight value of the payof function can change dy-
namically during the driving process and describe the
vehicle driving state more accurately. In this case, the
weight in the payof function is no longer a customizable
parameter but participates as a variable calculated from the
vehicle data.

3.3. LaneChangeScenarios. Te vehicle lane change decision
in the roundabouts is similar to the vehicle lane change
decision at the highway intersection, in that they both have
fxed exits, and the vehicle must complete its lane change
action before the fxed exit. In general, the lane-changing
behavior of vehicles is only related to the changing vehicle
and its surrounding vehicles. However, the VP also has the
problem of a cold start caused by insufcient behavioral data
at the early stage of construction like traditional user pro-
fles, making it difcult to accurately portray user charac-
teristics. In the new scenario, the data before the vehicle
enters the new decision point is processed and divided
according to relevant standards, which serves as the basis for
constructing the initial VP. Te decision module can obtain
the information of the VP label only after the VP is built. VP
is constantly improved in the process of driving in new road
conditions, including the update of weights. As shown in
Figure 3, the dynamic update of the vehicle profle starts
from the vehicle distance X from the start of the intersection
and provides decision help for an intersection lane change.

Figure 2: Te roundabout scene.

Security and Communication Networks 5



4. Lane Change Strategy Based on
Vehicle Profile

4.1. Vehicle Payof Function. In this paper, the payof
functions for the lane change vehicle SV and the yield vehicle
SRV are defned as follows:

Csv � PvUv(k) + Pacc(sv)Uacc(sv)(k) + Pxx(k),

Csrv � α PxUsp(k)  + PvUv(k) + PaccUacc(srv)(k),
(6)

subject to:

Uacc(sv)(k) � β
asv(k) − amax




amax
, (7)

Uacc(srv)(k) � β
asrv(k) − amax




amax
, (8)

Uv(k) �
vsrv(k) − vsv(k)( 




vmax
, (9)

0< k≤N

N �
xdes − xpos

vpos
,

(10)

where xdes is the location of vehicle target intersections, xpos
is the current position of the vehicle, and the expected
vehicle travel period N is obtained from the distance and the
current speed.

Te payof function includes three parts.Te frst part (9)
describes the benefts of security. When the speed diference
between the two vehicles is larger, the safety beneft is higher.
Te second parts (8) and (10) describe the benefts of
comfort when the acceleration of the vehicle is less, that is
the diference between the vehicle acceleration (asrv(k),
asv(k)) and the upper limit of the road acceleration (amax)
tends to level of, the benefts of comfort are higher. For the
lane change vehicle SV, the third part is the benefts of
efciency. Te smaller the vehicle distance (x(k)) from the
exit, the lower the probability that the vehicle will suc-
cessfully change lanes, and the lower the beneft it will bring.
And, for the yield vehicle SRV, the third part is the benefts
of aggressive (Usp(k)). When the distance between two
vehicles is greater than the safe distance, the greater the
willingness of SRV vehicles to give way, and when the vehicle
distance is smaller, the lower the willingness of vehicles to

give way. α, β are all set to 1. And, variables such as
Pv, Pacc(sv), Px are all obtained by calculating the weights in
formula (5).

4.2. Te UPC Algorithm. In the previous subsection, the
payof function of the vehicle was defned. Terefore, the
multivehicle cooperation algorithm based on vehicle profle
is shown in Algorithm 1.

For the inner lane vehicles exiting the roundabout, this
algorithm obtains the weight coefcients of each part of the
vehicle payof function based on the vehicle profle and
builds the vehicle payof function based on this. Te esti-
mated vehicle payof function value is obtained by the ve-
hicle driving state, and the threshold value is set as its
average value. For the inner lane vehicles whose payof
function value exceeds the threshold, it is forced to change
lanes to the outer lane of the roundabout at the driving
position beyond the threshold. Te vehicles, namely, the
inner lane vehicles, change lanes at the position where the
impact on the surrounding vehicles is low and the revenue is
high, so as to improve the lane-changing efciency and exit
efciency of the vehicles at the exit of the roundabout, so as
to improve the overall operational efciency of the
roundabout.

Te state machine of the algorithm in this paper is shown
in Figure 4, and the corresponding execution process is as
follows:

S1: complete the initialization work, and collect vehicle
data, when the vehicle reaches the critical position
(x� � 50), enter S2, if S5 exists, transmit vehicle data
to S5.
S2: normalize the vehicle data set, and start the vehicle
user profle update work after completion (enter S3).
S3: select the desired vehicle user portrait label, and
enter S4.
S4: calculate the weight of the selected label, and
enter S5.
S5: construct the vehicle income function and calculate
the income value based on the vehicle data (S1) and the
label weight (S4), enter S6.
S6: it is judged whether the income value satisfes the
lane-changing condition. If the condition is met, the
lane change is performed, and enter S2 to make the lane
change decision of the next vehicle. If the condition is

sv

pv

X

Figure 3: Te trafc scene.
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not met, enter S6 to make a decision at the next
moment.

5. Evaluation

5.1. Experiment Setup. In this paper, we use SUMO as the
simulation platform to simulate and compare the method
proposed.Te simulation scene is shown in Figure 5, and the
data related to the scenario are shown in Table 2.

According to the vehicle generation probability of
SUMO, this section is divided into three roundabout trafc
scenarios. According to the provisions of the old and new
trafc laws on the safe driving distance, when the vehicle
generation probability of SUMO is 0.05 (maximum 5 ve-
hicles per 100meters) [36], the safe driving distance limit has
been reached. Considering the safe driving distance, lane

change has little impact on surrounding vehicles. Terefore,
this paper divides SUMO vehicle generation probability into
three round-island trafc scenarios based on vehicle driving
safety spacing. Tey are a congestion scenario with a gen-
eration probability of 0.1 (up to 10 cars per 100meters),
a normal scenario with a generation probability of 0.08 (up
to 8 cars per 100meters), and a sparse scenario with
a generation probability of 0.05 (up to 5 cars per 100meters).

To compare the performance analysis, in addition to the
UPC algorithm proposed in this paper, three algorithms are
also introduced: (1) the built-in algorithm of the SUMO
platform, (2) the lane-changing algorithm with the uniform
weight of the revenue function (UW) [37], (3) the algorithm
that focuses on driving comfort (HA), which is mainly based
on the acceleration parameters to construct the vehicle
payof function [38], and (4) the algorithm (CRP) that

Input: Te data of vehicles
Output: Te lane-changing position of the vehicle
Initializing data;
VP (data);
WHILE (TRUE):
IF (0<X< 50)

P �CalculateWeight();
Payof (k)�GetPayof (P, VP (data));
IF (Payof (k)>Payof)

ChangeLane (position);
ELSE
Payof (k+ 1)�GetPayof (P, VP (data));

IF (Payof (k+ 1)>Payof)
ChangeLane (position);

END
END

ALGORITHM 1: (UPC).

Update
vehicle user

profle
S4:Label
weight

calculation

S5:Payof
function

construction

S6:Lane-
changing
desicion

S3:Label
selection

Y
if (Payof (k)>Payof)

N
if (Payof (k)<Payof)

S2:Data
Processing

S1:Initialize
data set

X==50

Figure 4: Finite state machine.
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optimizes the overall revenue of multiple vehicles on the
basis of the cooperative game [39].

5.2. Results Analysis in Normal Trafc Scenarios.
Figures 6(a) and 6(b) and Figures 7(a) and 7(b) are the
acceleration distribution diagram, the vehicle speed distri-
bution diagram, and the vehicle traveling time distribution
diagram of some selected vehicles, respectively. It can be
seen from Figures 6(a) and 6(b) and Figures 7(a) and 7(b)
that the lower and upper quartiles of the UPC algorithm are
lower than those of the SUMO algorithm, and the accel-
eration distribution interval of the UPC algorithm is smaller
in normal trafc scenarios. Tat means the vehicle driving
stability of the UPC algorithm is better.

Te lower quartile and the minimum and median values
of the velocity distribution of the UPC algorithm in
Figure 6(b) are also higher than those of the SUMO algo-
rithm. In Figure 7(a), the vehicle travel time of the UPC
algorithm is less than that of other algorithms. And, the
vehicle speed of the UPC algorithm in Figure 7(b) is mostly
distributed in the high range. Terefore, the vehicle trafc
efciency of the UPC algorithm is higher than that of the
SUMO algorithm.

And, the distribution of acceleration, speed, and vehicle
travel time of the UPC algorithm all show that the vehicle
driving stability and vehicle trafc efciency of the UPC
algorithm are better than the CRP algorithm, the UW al-
gorithm, and the HA algorithm.

Figure 5: Te simulation scene.

Table 2: Explanation of experimental parameters.

Parameter Value
Accel (maximum acceleration: m/s2) 2.5
Decel (maximum deceleration: m/s2) 2.5
X (vehicle distance from intersection: m) 50
Speed (maximum speed: m/s) 13.89
Radius (m) 200
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Figure 6: Main parameter analysis in normal scenarios. (a) Trend of acceleration. (b) Velocity distribution.
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5.3.ResultsAnalysis inDiferentTrafcScenarios. Te vehicle
trafc efciency optimization ability of the UPC algorithm
proposed in this paper has been verifed in the normal trafc
situation of the roundabout. Terefore, we verify the dif-
ference in the trafc efciency optimization ability of the
UPC algorithm in diferent scenarios by changing the vehicle
generation probability as shown in Table 3.

Figures 8(a) and 8(b) show the UPC algorithm’s ability
to optimize vehicle trafc efciency in three diferent sce-
narios. Due to the diference in vehicle generation proba-
bility, the number of fnal vehicles is proportional to the
generation probability, and the speed and travel time are
inversely proportional to the generation probability.

6. Conclusion

For the problem of vehicle cooperation at the exit of
roundabouts, this paper constructs the vehicle profle based

on the idea of a user profle and designs the vehicle payof
function according to the characteristics of roundabout
trafc scenarios and establishes the vehicle lane-changing
cooperative strategy model. SUMO software is used to
simulate the model, and the main conclusions of this paper
are as follows.

Te vehicle profle (VP) can objectively describe the
driving state of the vehicle, and the label weight of the VP
obtained by the random forest algorithm can solve the
problem of manual debugging of the weight in the payof
function, making the weight as a variable rather than
a parameter.

Te vehicle payof function is constructed based on the
dynamic weight, and the UPC algorithm designed can ef-
fectively improve the trafc efciency of vehicles in the
roundabout scene.

However, the experimental scenario in this paper as-
sumes that there is no delay and no packet loss and does not
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Figure 7: Te results in normal scenarios. (a) Vehicles’ travel time. (b) Velocity distribution interval.

Table 3: Te results in diferent situations.

Parameters
Scene

Sparse scene Normal scene Congestion scene
Average speed (m/s) 10.6813 9.5963 8.5698
Travel time (s) 4334 7578 10051
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Figure 8: Te results in diferent scenarios. (a) Velocity distribution. (b) Vehicles’ travel time.
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consider the problems that may exist in real-time com-
munication limitation and data packet loss in practical
applications. Terefore, the actual situation of communi-
cation limitations and so on should be considered in sub-
sequent studies.

Data Availability

Te data used to support the fndings of this study have not
been made available because the data are relevant for fol-
lowup studies.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis research was supported by the Natural Science Foun-
dation of Xinjiang Uygur Autonomous Region under Grant
nos. 2021D01E20 and 2020D01A73 and the National Science
Foundation of China under Grant nos. 62072071 and
62162061.

References

[1] Y. Cai, Z. Lv, J. Chen, and L. Wu, “An intelligent control for
crossroads trafc light,” in Proceedings of the 2011 8th in-
ternational conference on fuzzy systems and knowledge dis-
covery (FSKD), vol. 1, pp. 494–498, Shanghai, China, January,
2011.

[2] Z. Q. Wei, H. Ma, Q. X. Zhang, and N. Ding, “Challenge and
trend of intelligent vehicle networking based on apperceive-
communication-computing fusion,” ZTE Technology Journal,
vol. 26, no. 1, pp. 45–49, 2020.

[3] C. Chen, C. Wang, T. Qiu, M. Atiquzzaman, and D. O. Wu,
“Caching in vehicular named data networking: architecture,
schemes and future directions,” IEEE Communications Sur-
veys & Tutorials, vol. 22, no. 4, pp. 2378–2407, 2020.

[4] N. Chen, T. Qiu, Z. Lu, and D. O. Wu, “An adaptive ro-
bustness evolution algorithm with self-competition and its 3D
deployment for Internet of things,” IEEE/ACM Transactions
on Networking, vol. 30, no. 1, pp. 368–381, 2022.

[5] J. Nilsson, J. Silvlin, M. Brannstrom, E. Coelingh, and
J. Fredriksson, “If, when, and how to perform lane change
maneuvers on highways,” IEEE Intelligent Transportation
Systems Magazine, vol. 8, no. 4, pp. 68–78, 2016.

[6] C. Cheng, Z. Yang, and D. Yao, “A speed guide model for
collision avoidance in non-signalized intersections based on
reduplicate game theory,” IEEE Intelligent Vehicles Sympo-
sium, vol. 4, pp. 1614–1619, 2018.

[7] H. Jin, C. Duan, Y. Liu, and P. Lu, “Gauss mixture hidden
Markov model to characterise and model discretionary lane-
change behaviours for autonomous vehicles,” IET Intelligent
Transport Systems, vol. 14, no. 5, pp. 401–411, 2020.

[8] J. J. So, J. Kang, S. Park, I. Park, and J. Lee, “Automated
emergency vehicle control strategy based on automated
driving controls,” Journal of Advanced Transportation,
vol. 2020, Article ID 3867921, 11 pages, 2020.

[9] H. Bai, J. Shen, L. Wei, and Z. Feng, “Accelerated lane-
changing trajectory planning of automated vehicles with
vehicle-to-vehicle collaboration,” Journal of Advanced
Transportation, vol. 2017, Article ID 8132769, 11 pages, 2017.

[10] J. Ni, J. Han, and F. Dong, “Multivehicle cooperative lane
change control strategy for intelligent connected vehicle,”
Journal of Advanced Transportation, vol. 2020, Article ID
8672928, 10 pages, 2020.

[11] H. Song, J. Zhu, and Y. Jiang, “Two-stage merging network for
describing trafc scenes in intelligent vehicle driving system,”
IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 12, pp. 25509–25520, 2022.

[12] D. K. Dewangan and S. P. Sahu, “Driving behavior analysis
of intelligent vehicle system for lane detection using vision-
sensor,” IEEE Sensors Journal, vol. 21, no. 5, pp. 6367–6375,
2021.

[13] Z. Guo, D. Sun, and L. Zhou, “Game algorithm of intelligent
driving vehicle based on left-turn scene of crossroad trafc
fow,” Computational Intelligence and Neuroscience, vol. 2022,
Article ID 9318475, 9 pages, 2022.

[14] Y. Ali, Z. Zheng, M. M. Haque, and M. Wang, “A game
theory-based approach for modelling mandatory lane-
changing behaviour in a connected environment,” Trans-
portation Research Part C: Emerging Technologies, vol. 106,
pp. 220–242, 2019.

[15] H. Yu, H. E. Tseng, and R. Langari, “A human-like game
theory-based controller for automatic lane changing,”
Transportation Research Part C: Emerging Technologies,
vol. 88, pp. 140–158, 2018.

[16] J. A. Leon Calvo and R. Mathar, “Connected vehicles co-
ordination: a coalitional game-theory approach,” in Pro-
ceedings of the 2018 European Conference on Networks and
Communications (EuCNC), pp. 1–6, Ljubljana, Slovenia, June
2018.

[17] S. Jing, F. Hui, X. Zhao, J. Rios-Torres, and A. J. Khattak,
“Cooperative game approach to optimal merging sequence
and on-ramp merging control of connected and automated
vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 20, no. 11, pp. 4234–4244, Nov, 2019.

[18] O. Boualam, A. Borsos, C. Koren, and V. Nagy, “Impact of
autonomous vehicles on roundabout capacity,” Sustainability,
vol. 14, no. 4, p. 2203, 2022.

[19] H. K. An and D. S. Kim, “A review of roundabout capacity
model,” KSCE Journal of Civil and Environmental Engineering
Research, vol. 41, no. 2, pp. 143–150, 2021.

[20] R. Wu, H. Jia, L. Yang, H. Miao, Y. Lin, and Y. Zhang, “A
distributed trajectory control strategy for the connected au-
tomated vehicle in an isolated roundabout,” IET Intelligent
Transport Systems, vol. 16, no. 2, pp. 232–251, 2022.

[21] A. Danesh, W. Ma, C. Yu, R. Hao, and X. Ma, “Optimal
roundabout control under fully connected and automated
vehicle environment,” IET Intelligent Transport Systems,
vol. 15, no. 11, pp. 1440–1453, 2021.

[22] G. Ding, S. Aghli, C. Heckman, and L. Chen, “Game-theoretic
cooperative lane changing using data-driven models,” in
Proceedings of the 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), pp. 3640–3647,
Madrid, Spain, October 2018.

[23] J. A. R Silva and V. Grassi, “Path planning at roundabouts
using piecewise linear continuous curvature curves,” in
Proceedings of the 2017 Latin American Robotics Symposium
(LARS) and 2017 Brazilian Symposium on Robotics (SBR),
pp. 1–6, Parana, Brazil, November 2017.

[24] C. Hidalgo, R. Lattarulo, J. Pérez, and E. Asua, “Hybrid
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