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Linkable ring signatures (LRSs) are ring signatures with the extended property that a verifer can detect whether two messages
were signed by the same ring member. LRSs play an important role in many application scenarios such as cryptocurrency and
confdential transactions. Te frst code-based LRS scheme was put forward in 2018. However, this scheme was pointed out to be
insecure. In this paper, we put forward a code-based LRS scheme by constructing a new Stern-like interactive protocol and prove
that it meets the security requirements of LRSs. We also give the specifc parameters and the performance on the platform of our
scheme.

1. Introduction

Ring signatures [1], a signifcant cryptographic primitive,
enable a group user to sign a message on behalf of the group
(called a ring) while protecting their privacy. Anonymity
means that a verifer only can verify the correctness of the
signature but cannot identify who is the actual signer in the
ring. As an efcient privacy protection technology, ring
signatures have been widely used in various scenarios such as
e-voting [2], e-cash [3], and e-lottery [4, 5]. However, inmany
real-world applications, it is signifcant to not only protect the
privacy of the signer but also require each signer to sign no
more than once. For example, in an e-voting system, each
person signs their ballot on behalf of all those eligible to vote,
and each person is required to vote only once.

For more application scenarios, Liu et al. came up with
the frst linkable ring signature (LRS) scheme in 2004 [6].
LRSs are ring signatures with an extended property, where
one can publicly verify whether two signatures were pro-
duced by the identical signer without knowing the identity of
the signer. Compared to a ring signature scheme, an LRS
scheme contains a tag generated by an issue and the signing
keys of the entire ring user, where an issue can represent

a vote or a business event. If a ring member outputs two
signatures with an identical tag, two signatures will be
linked. In a more restricted version of LRSs, a signer will be
linked as soon as he signs twice. We call this kind of LRSs
one-time LRSs. Tis property plays an important role in
building cryptocurrencies, such as keeping the spender’s
anonymity and avoiding double-spending attacks [7], since
a sum of money can be used only once by a consumer no
matter in any deal.

LRSs have been extensively researched based on the
number theory problem [6, 8–10]. A general construction of
LRSs was presented by Franklin and Zhang [11]. For the sake
of linkability, they add a pseudorandom function (PRF)
evaluation of the signer’s private key to any ring signature
scheme and combine it with a zero-knowledge proof of the
correct evaluation. In 2019, Wang et al. [12] put forward
a general construction of one-time LRSs that adds one-time
signatures to any ring signature scheme to achieve link-
ability. With the arrival of high-performance quantum
computers, most classical asymmetric cryptography schemes
will be broken since Shor [13] came up with a quantum
algorithm to break the discrete logarithm problem and the
factoring problem. Terefore, a number of quantum-safe
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LRS schemes have been put forward in the past few years,
such as lattice-based LRS schemes [7, 14–16], code-based
LRS schemes [17–19], and isogeny-based LRS schemes [15].

Code-based cryptography has fourished as one of the
important felds of postquantum cryptography in recent years.
Te frst signature scheme from coding theory is the Cour-
tois–Finiasz–Sendrier (CFS) scheme [20]. After that, code-
based signatures make a great development [21–23]. In 2007,
Zheng et al. put forward the frst ring signature scheme from
coding theory [24]. Later, many other variants related to ring
signatures appeared like threshold ring signatures [25, 26],
traceable ring signatures [27], and group signatures [28–30].
In 2018, Branco and Mateus put forward the frst code-based
LRS scheme [18]. However, Feng et al. [31] point out that this
scheme is not safe since the Cramer–Damgard–Schoenmakers
(CDS) framework [32] was used to build the OR relationship.
In 2020, Ren et al. proposed another code-based LRS scheme
[19]. However, we found that once two signatures are linked,
the information of the signer’s private key will be leaked since
the output contains the information of the private key.

1.1. Our Contributions. For the purpose of not using the
CDS framework, we design a new Stern-like interactive zero-
knowledge (ZK) protocol, which is inspired by Ezerman
et al. [33], as the building block of our LRS scheme. A prover
can use this interactive ZK protocol to prove that he holds
a small-weight solution to two instances of the syndrome
decoding problem, which means the prover is a certifed ring
member with a unique label vector. Terefore, we employ
the interactive ZK protocol to build our LRS scheme. Ten,
we prove that our LRS scheme is not only correct but also
achieves the LRS security requirements. Finally, we analyzed
the efciency of the scheme and gave the running time on
the platform.

It should be pointed out that we do not use the techniques
mentioned in the introduction to construct our LRS scheme.
Te frst technique [11] needs secure PRFs with a succinct zero-
knowledge system. Te syndrome-based PRF [34] is the only
proposed one with a zero-knowledge argument system. Nev-
ertheless, such an argument systemwill lead to a very inefcient
construction since given an input of length l, the PRF will
implement l times of matrix multiplications. Te second
technique, to achieve one-time linkability through a one-time
signature scheme, also increases the overhead of a concrete
scheme. Our construction follows that of Baum et al. [14].

We assume a ring of size N � 2l, each member of which
is labeled i ∈ 1, . . . , N{ }. Let (H,T, si) represent the public
keys of the user Ui and ei represent the secret key with
Hamming weight t, where H ∈ Fk×n

2 , T ∈ Fk×n
2 denote two

matrices and si ∈ Fk
2, ei ∈ Fn

2 denote two row vectors. Let S �

[s⊤1 , . . . , s⊤N] ∈ Fk×N
2 denote a matrix of size k × N and xi

denote a vector of length N such that the i-th position is 1
and the rest of the positions are 0.Terefore, there is S · x⊤i �

s⊤i and the equation H · e⊤i � s⊤i can be reformulated as

H · e⊤i � S · x⊤i . (1)

Ten, Ui employs the secret key to get a vector

T · e⊤i � r⊤. (2)

Next, we construct a Stern-like ZK scheme where
a prover is able to make the verifer believe he holds a pair
(ei, xi) satisfying equations (1) and (2) with hidden index i.
By repeating this protocol a lot of times to make the
soundness error negligible and employing the Fiat–Shamir
transform [35], we get a transcript v of the NIZK argument.
Te fnal form of our proposed LRS is (r, v). Te size of our
scheme, including the public key and the signature, is lin-
early related to N. However, when setting the practical
parameters, our scheme achieves better performance than
that of the scheme put forward in [36] which is the best
performance syndrome-based ring signature scheme with
logarithmic signature size, as long as N does not exceed
216 [28].

We note that Ren et al. [19] attempt to build another
code-based LRS scheme. Unfortunately, there is a lot of
weakness in this construction. In detail, they use an insecure
signature scheme to build their LRS scheme, which would
result in the disclosure of the signer’s private key. We make
an analysis in Section 6.

1.2. Roadmap. Te remaining articles are structured as
follows. In Section 2, we introduce many preliminaries
needed in our paper. In Section 3, we frst propose an in-
teractive zero-knowledge protocol and then construct our
LRS scheme. We give the security proof and some security
parameters for our LRS scheme in Section 4. In Section 5, we
present the implementation results of the proposed LRS
scheme. In Section 6, we analyze Ren et al.’s scheme. Finally,
in Section 7, we draw the conclusion.

2. Preliminaries

2.1. Notations. Let λ and negl(λ) represent a security pa-
rameter and a negligible function in λ, respectively. Te set
1, 2, . . . , z{ } is abbreviated as [z]. We denote with ⊕ the
addition modulo 2. If not specifed explicitly, the bold
lowercase and uppercase letters represent row vectors and
matrices, respectively. Te Hamming metric of a vector y is
represented by w(y). Te transpose of x is represented by x⊤.
Let B(N, t) be the set of vectors v ∈ FN

2 such that w(v) � t.
Defne a function I2B from a positive integer to its binary
representation, so the inverse of I2B is written as B2I. For
a distribution F, the notation b←F means that b is

sampled from the distribution F. If X is a set, then x←$ X

denotes that x is randomly picked from X.

2.2. Linkable Ring Signatures. We now introduce the def-
nition of the LRSs. To keep things simple, (pk1, . . . , pkN) is
abbreviated as pk.

Defnition 1. An LRS scheme contains four polynomial-time
algorithms (KeyGen, Sign,Ver, Link) in which

(i) (pk, sk)←KeyGen(1λ): taking λ as input, it pub-
lishes a pair of public and private keys (pk, sk)
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(ii) σ← Sign(pk, M, sk): taking the public keys pk,
a message M, and a private key sk as input, it
generates a signature σ

(iii) b←Ver(pk, M, σ): taking the public keys pk,
a message M, and a signature σ as input, it outputs b

either 1 (accept) or 0 (reject)
(iv) b← Link(pk, M1, σ1, M2, σ2): taking the public

keys pk, two messages M1, M2, and two signatures
σ1, σ2 such that Ver(pk, M1, σ1) � 1 and
Ver(pk, M2, σ2) � 1 as input, it outputs b � 1 or
b � 0, where 1means that σ1 and σ2 are issued by the
same signer

2.2.1. Correctness. An LRS scheme achieves correctness if
for any λ ∈ N, and every messages M1, M2, (pk, sk)←
KeyGen(1λ), the following holds:

Pr

Ver pk, M1, σ1􏼐 􏼑 � 1

Ver pk, M2, σ2􏼐 􏼑 � 1

Link pk, M1, σ1, M2, σ2􏼐 􏼑 � 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 1 − negl(λ), (3)

where σ1 � Sign(pk, M1, skj) and σ2 � Sign(pk, M2, skj),
j ∈ [N].

We employ the security model of [6, 14], which contains
the following four aspects: existential unforgeability, ano-
nymity, nonframeability, and linkability. In order to build
the games used in these security models, we defne the
following two oracles:

(i) Sign(·): taking a query of the form (M, i) as input, it
generates a signature σ← Sign(M, ski)

(ii) Co(·): taking a pki, i ∈ [N] as input, it outputs the
corresponding ski

Let A stand for a probabilistic polynomial-time (PPT)
adversary and AO represent that A queries the random
oracle O.

Defnition 2 (existential unforgeability). An LRS scheme
LRS � (KeyGen, Sign,Ver,Link) is existential unforge-
able, if the advantage of A is negligible in the following
game:

(1) (pki, ski)←KeyGen(1λ)  i � [N]

(2) (M, σ)←ASign(·)(pk)

Here, A cannot use M to query the Sign(·).
Te advantage of breaking existential unforgeability is

denoted by the following equation:

AdvEu
A (λ) � Pr[Ver(pk, M, σ) � 1]. (4)

Defnition 3 (anonymity). An LRS scheme LRS �

(KeyGen, Sign,Ver,Link) is anonymous, if the advantage of
A is negligible in the following game:

(1) (pki, ski)←KeyGen(1λ)  i � 1, 2
(2) p← 0, 1{ }

(3) σ← Sign(M, skp)

(4) p′ ←ASign(·,skp)

Here,A cannot query the Sign(·, sk1) and the Sign(·, sk2).
Te advantage of breaking anonymity is denoted by the

following equation:

AdvAnonA (λ) � Pr p � p′􏼂 􏼃 −
1
2

􏼌􏼌􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌􏼌􏼌
. (5)

Defnition 4 (nonframeability). An LRS scheme LRS �

(KeyGen, Sign,Ver,Link) is nonframeable, if the advantage
of A is negligible in the following game:

(1) (pki, ski)←KeyGen(1λ)  i � [N]

(2) (pk1, M1)←ASign(·)(pk)

(3) σ1← Sign(M1, sk1)
(4) (M2, σ2)←ASign(·)(pk, pk1, M1, σ1)
(5) b← Link(pk, M1, σ1, M2, σ2)

Here, A cannot use the M2 to query the Sign(·, sk1).
Te advantage of breaking nonframeability is denoted by

the following equation:

AdvFrame
A (λ) � Pr[b � 1]. (6)

Defnition 5 (linkability). An LRS scheme LRS �

(KeyGen, Sign,Ver,Link) is linkable, if the advantage of A
is negligible in the following game:

(1) (pki, ski)←KeyGen(1λ)  i � [N]

(2) (Mi, σi)←ASign(·),Co(·)(pk)i � [N + 1]

Te advantage of breaking linkability is denoted by the
following equation:

AdvLinkA (λ) � Pr
∀i ∈ [N + 1]: Ver pk, Mi, σi􏼐 􏼑 � 1

∀i, k ∈ [N + 1], i≠ k: Link pk, Mi, σi, Mk, σk􏼐 􏼑 � 0
⎡⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎦. (7)

Security and Communication Networks 3



Remark 6. In this work, the proof of existential unforge-
ability is not given. As shown in [37], it is easy to get ex-
istential unforgeability from linkability and nonframeability.

2.3.Cryptography inCodingTeory. Wenow introduce a few
hard problems needed in our paper.

Problem 7 (syndrome decoding (SD) problem). Given
a parity-check matrix H ∈ Fk×n

2 , a syndrome s ∈ Fk
2, and

a positive integer w, the SD (n, k, w) problem is to search for
a solution e satisfying H · e⊤ � s⊤ and w(e)≤w.

Problem 8 (general syndrome decoding (GSD) problem).
Given two parity-check matrices H,G ∈ Fk×n

2 , two syn-
dromes s, r ∈ Fk

2, and a positive integer w, the GSD (n, k, w)

problem is to search for a solution e satisfying H · e⊤ � s⊤,
G · e⊤ � r⊤, and w(e) ≤w.

Considering the matrix E⊤ � [H⊤‖G⊤] and the vector
p � [s‖r], we have E · e⊤ � p⊤. Terefore, the GSD (n, k, w)

problem is equivalent to the SD (n, 2k, w) problem.

Problem 9 (codeword fnding (CF) problem). Given a par-
ity-check matrix H ∈ Fk×n

2 and a positive integer w, the CF
(n, k, w) problem is to search for a solution e satisfying H ·

e⊤ � 0⊤ and w(e)≤w.

Remark 10 (see [21]). For a binary [n, k] linear code, the
easy range for the weight w of the SD problem and CF
problem is [(n − k)/2, (n + k)/2].

Defnition 11 (Gilbert–Varshamov (GV) bound). For a bi-
nary [n, k] linear code, the GV bound dGV is denoted by the
following equation:

dGV ≔ max w: 􏽘
w−1

i�0

n

i
􏼠 􏼡≤ 2n− k

⎧⎨

⎩

⎫⎬

⎭. (8)

Remark 12. Te SD problem has a unique solution with
overwhelming probability if w is less than dGV.

Problem 13 (decisional syndrome decoding (DSD) problem
[38]). Given a parity-check matrix H ∈ Fk×n

2 and a syn-
drome s � H · e⊤, where the weight of the vector e is at most
w, the DSD (n, k, w) problem is to distinguish between
a random vector r and the syndrome s.

Lemma 14 (leftover hash lemma [39]). Given a distribution

F over Fn
2 with min-entropy s, a matrix G←$ Fk×n

2 , and
a vector r←F, the statistical distance between the distri-
bution of (G,G · r⊤) and the corresponding uniform distri-
bution is less than μ, where μ> 0 and
k≤ s − 2 log(1/μ) − O(1).

2.4. Zero-Knowledge Proof and Stern Protocol. We will in-
troduce the defnition of the zero-knowledge argument
systems in this section. We use the set of statements-
witnesses C � (a, b) ∈ F∗2 × F∗2􏼈 􏼉 to denote an NP-relation.
We frst introduce the defnition of an interactive zero-
knowledge argument system as follows.

Defnition 15 (zero-knowledge argument systems [40]). Let
(P,V) represent an interactive algorithm between a prover
and a verifer, and C denote an NP-relation. We say the
(P,V) is a ZK argument for a relation C, if the following
three conditions hold:

(i) Completeness: if (a, b) ∈ C, there is

Pr[〈P(a, b),V(a)〉 � 1] � 1. (9)

(ii) ϵ-Soundness: if (a, b) ∉ C, then for any PPT 􏽢P,

Pr[〈 􏽢P(a, b),V(a)〉 � 1]≤ η, (10)

where η is negligible.
(iii) Statistical zero-knowledge: if there exists a PPT

simulator S(a) which can interact with any V(a)

and produce a simulated transcript Isim, we have the
following equation:

Isim ≈ Ireal, (11)

where Ireal denotes the transcript of a real interaction’s
transcript.

Let Setup(λ)Π be a setup algorithm about the protocolΠ
with an input λ, then return the parameters pp. Te zero-
knowledge property and simulation-extractability of non-
interactive protocol are presented as follows.

Defnition 16 (noninteractive zero-knowledge). Let Π �

(SetupΠ,P,V) denote a noninteractive protocol. Te
protocol Π � (SetupΠ,P,V) is zero-knowledge for a re-
lation C, if a pair of PPT simulators (S1, S2) are presented
such that for any A, there is

Pr A
O1(·)

(pp)⟶ 1: pp← Setup(λ)􏽨 􏽩 − Pr A
O2(·)

(pp)⟶ 1: (pp, τ)← S1(λ)􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤negl(λ), (12)
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where O1 and O2 frst check that if the input (a, b) is
contained in C, if so, O1 outputs π←P(pp, a, b), and O2
outputs π← S2(pp, a, τ); otherwise, return ⊥.

Defnition 17 (simulation-extractability). We say that Π �

(SetupΠ,P,V) achieves simulation-extractable with regard
to a pair of PPT simulators (S1, S2), if there exists a PPT
extractor E such that for A, there is

Pr V pp, a, ϑ∗( 􏼁⟶ 1: (pp, τ)← S1(λ), a, ϑ∗( 􏼁←A
O(pp,τ,·)

(pp), b←E
A

a, ϑ∗( 􏼁􏽨 􏽩
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌 ∈ negl(λ), (13)

whereC(a, b)≠ 1, V represents all proofs produced by S2, ϑ
∗

is not contained in V , and O(pp, τ, ·) takes the input a and
outputs S2(pp, τ, a).

2.4.1. Stern Protocol. In 1996, Stern introduced a three-
round zero-knowledge argument of knowledge (ZKAoK)
for the SD problem in coding theory [41]. Te system pa-
rameters are a public matrix H ∈ Fk×n

2 , a syndrome s ∈ Fk
2,

and a weight w. According to the Stern protocol, anyone can
verify whether the prover holds a solution e ∈ Fn

2 with
Hamming metric w such that H · e⊤ � s⊤. If we embed the
statistically hiding commitment scheme into it, then we can
get a soundness error of 2/3. We describe the Stern protocol
in Algorithm 1.

3. Our Code-Based Linkable Ring Signature

We frst put forward an interactive zero-knowledge protocol,
in which a prover can prove that he is a ring member with
a label vector r that is generated by his own private key.
Based on this interactive zero-knowledge protocol, we
construct our LRS scheme by Fiat–Shamir transform.

3.1.TeUnderlyingZero-KnowledgeProtocol. In this section,
our main result is to show a zero-knowledge argument
system as the underlying protocol of our LRS scheme. First,
we need to introduce a set of vectors and an important
permutation, which are introduced in [28]. Let l denote an
integer and N � 2l. Ten, there are the following:

(1) For y � (y1, . . . , yN) ∈ FN
2 and k ∈ [N], let δN

k de-
note a vector of length N such that the k-th position
is 1 and the rest of the positions are 0

(2) Given a vector a � (a1, . . . , al) ∈ F l
2, we introduce

the permutation ϕa: FN
2 ⟶ FN

2 : y � (y1, . . . , yN)↦
y′ � (y1′, . . . , yN

′), where yj � yπ′, π � B2I(I2B(j)

⊕ a) for each j ∈ [N]

For any j ∈ [N] and any a ∈ F l
2, there is

y � δN
j ⇔ϕa(y) � δN

B2I(I2B(j)⊕ a). (14)

(3) For any vector x, y ∈ FN
2 and a ∈ F l

2, we have ϕa(x +

y) � ϕa(x) + ϕa(y)

We build our interactive ZKAoK following the Stern
framework and make a summarization as follows:

(i) Te public keys include two matrices H and T and
N syndromes s1, . . . , sN􏼈 􏼉

(ii) Te secret is a vector ej ∈ B(n, t) satisfying H · e⊤j �

s⊤j where the sj ∈ s1, . . . , sN􏼈 􏼉 with hidden index j

(iii) It is the prover’s target to make others convince of
the following relations:

H · e⊤j � s⊤j ∧ ej ∈ B(n, t),

T · e⊤j � r⊤.

⎧⎪⎨

⎪⎩
(15)

Let S � [s⊤1 , . . . , s⊤N]. Te relation H · e⊤j � s⊤j is equiv-
alent to H · e⊤j ⊕ S · x⊤ � 0⊤, where x denotes δN

j . Ten, the
relation can be rewritten as follows:

H · e⊤j ⊕ S · x⊤ � 0⊤∧ej ∈ B(n, t),

T · e⊤j � r⊤.

⎧⎪⎨

⎪⎩
(16)

We use COM to denote a collision-resistant hash func-
tion. Next, we showed the details of the underlying interactive
protocol in Algorithm 2.

Lemmas 14 and 18 point out that Algorithm 2 has the
statistically zero-knowledge property and the special soundness
property.

Lemma 18. Te interactive protocol shown in Algorithm 2 is
an argument with the statistical zero-knowledge property if
the COM is a statistically hiding string commitment scheme.

Proof. We employ a simulatorSwhich can interact with the
verifer 􏽢V after giving the public input (H, S,T, r). First, the
simulator S picks a 􏽣Ch ∈ 0, 1, 2{ }, and then depending on
the value ch chosen by 􏽢V,S proceeds as follows. □

Case 19. 􏽣Ch � 0: S randomly selects the following objects:

r1←
$
F

n
2, r2←

$
F

N
2 , δ←$ Sn, a← F

l
2, e′ ←

$
B(n, t),

x′ ←$ B(N, 1), ϵ1, ϵ2, ϵ3←
$ 0, 1{ }

λ
.

⎧⎪⎨

⎪⎩
(17)

Ten, S sets the CMT as (c1′, c2′, c3′), in which

c1′ � COM δ, a,H · r⊤1 ⊕ S · r⊤2 ,T · r⊤1 , ϵ1( 􏼁,

c2′ � COM δ r1( 􏼁,ϕa r2( 􏼁, ϵ2( 􏼁,

c3′ � COM δ e′ ⊕ r1( 􏼁,ϕa x′ ⊕ r2( 􏼁, ϵ3( 􏼁.

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

(18)

When the challenge ch is received,S performs as follows:

Security and Communication Networks 5



(i) If ch � 0, lets resp � (r1, r2, δ, a, ϵ1, ϵ2) and sends it
to 􏽢V

(ii) If ch � 1, terminates the process and outputs ⊥
(iii) If ch � 2, lets resp � (δ(r1), δ(e), ϕa(r2), ϕa(x),

ϵ2, ϵ3) and sends it to 􏽢V

Case 20. 􏽣Ch � 1: computes e′ ∈ Fn
2 and x′ ∈ FN

2 such that

H · e′⊤ � S · x′⊤,

T · e′⊤ � r⊤,

⎧⎨

⎩ (19)

and samples random objects as follows:

(1) Public parameters: n, k, w.
(2) Private key: Samples e ∈ Fn

2 such that w(e) � w.
(3) Public key: Samples H ∈ Fk×n

2 and calculates H · e⊤ � s⊤.
(4) Prover P:

(i) Samples r←$ Fn
2 and φ←$ Sn.

(ii) Calculates c1 � COM(φ,H · r⊤), c2 � COM(φ(r)), c3 � COM(φ(r + e)) and sets CMT � (c1, c2, c3).
(iii) Sends CMT to V.

(5) Verifer V:
(i) Samples the challenge ch←$ 0, 1, 2{ }.

(6) Prover P:
(i) Case ch � 0: Sets resp ≔ r,φ􏼈 􏼉.
(ii) Case ch � 1: Sets resp ≔ r + e,φ􏼈 􏼉.
(iii) Case ch � 2: Sets resp ≔ φ(r),φ(e)􏼈 􏼉.
(iv) Sends the response resp to V.

(7) Verifer V:
(i) If ch � 0, checks if COM(φ,H · r⊤) � c1 and COM(φ(r)) � c2 are true.
(ii) If ch � 1, checks if COM(φ,H · (r + e)⊤ + s⊤) � c1 and COM(φ(r + e)) � c3 are true.
(iii) If ch � 2, checks if COM(φ(r)) � c2,COM(φ(r) + φ(e)) � c3 and w(φ(e)) � w are true.

ALGORITHM 1: Stern protocol.

(1) Public parameters: n, k, w, N(logN � l).
(2) Private key: Samples e ∈ B(n, t) and x � δN

j .
(3) Public key: H,T, S, r, where H · e⊤ ⊕ S · x⊤ � 0,T · e⊤ � r⊤.
(4) Prover P:

(i) Samples the following uniformly random objects:
r1←

$
Fn
2 , r2←

$
FN
2 , δ←$ Sn, a← 0, 1{ }l, ϵ1, ϵ2, ϵ3←

$
0, 1{ }λ.

(ii) Sets c1 � COM(δ, a,H · r⊤1 ⊕ S · r⊤2 ,T · r⊤1 , ϵ1),
c2 � COM(δ(r1), ϕa(r2), ϵ2),
c3 � COM(δ(e⊕ r1), ϕa(x⊕ r2), ϵ3).

(iii) Sets the CMT as (c1, c2, c3).
(5) Verifer V:

(i) Samples the ch←$ 0, 1, 2{ }.
(6) Prover P:

(i) If ch � 0, sets resp ≔ r1, r2, δ, a, ϵ1, ϵ2􏼈 􏼉.
(ii) If ch � 1, sets resp ≔ e⊕ r1, x⊕ r2, δ, a, ϵ1, ϵ3􏼈 􏼉.
(iii) If ch � 2, sets resp ≔ δ(r1), δ(e),ϕa(r2), ϕa(x), ϵ2, ϵ3􏼈 􏼉.
(iv) Sends resp.

(7) Verifer V:
(i) If ch � 0, checks if COM(δ, a,H · r⊤1 ⊕ S · r⊤2 ,T · r⊤1 , ϵ1) � c1 and COM(δ(r1), ϕa(r2), ϵ2) � c2 are true.
(ii) If ch � 1, checks if COM(δ, a,H · (r1 ⊕ e)

⊤ ⊕ S · (r2 ⊕ x)⊤,T · (r1 ⊕ e)
⊤ ⊕ r, ϵ1) � c1 and COM(δ(e⊕ r1), ϕa(x⊕ r2), ϵ3) � c3

are true.
(iii) If ch � 2, checks if COM(δ(r1), ϕa(r2), ϵ2) � c2,COM(δ(e) ⊕ δ(r1), ϕa(x)⊕ϕa(r2)ϵ3) � c3 and w(δ(e)) � w, w(ϕa(x)) � 1

are true.

ALGORITHM 2: Te proposed underlying ZK protocol.
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r1←
$
F

n
2, r2←

$
F

N
2 , δ←$ Sn,

a← 0, 1{ }
l
, ϵ1, ϵ2, ϵ3←

$
0, 1{ }

λ
,

⎧⎪⎨

⎪⎩
(20)

where Sn denotes the symmetric group of all permutations of
n elements.

Ten, S sets CMT � (c1′, c2′, c3′) as the same as
equation (18).

When ch is received, S performs as follows:

(i) If ch � 0, lets resp � (r1, r2, δ, a, ϵ1, ϵ2) and sends it
to 􏽢V

(ii) If ch � 1, lets resp � (r1 ⊕ e′, r2 ⊕ x′, δ, a, ϵ1, ϵ3) and
sends it to 􏽢V

(iii) If ch � 2, terminates the process and outputs ⊥

Case 21. 􏽣Ch � 2: samples random objects:

δ←$ Sn, a← F
l
2, e′ ←

$
B(n, t),

x′ ←$ B(N, 1), ϵ1, ϵ2, ϵ3←
$

0, 1{ }
λ
,

⎧⎪⎨

⎪⎩
(21)

computes r1 ∈ Fn
2 and r2 ∈ FN

2 such that

H · r⊤1 ⊕ S · r⊤2 � H · e′⊤⊕⊤S · x′⊤,

T · r⊤1 � r⊤ ⊕T · e′⊤.

⎧⎪⎨

⎪⎩
(22)

Ten, S sets the CMT as the same as equation (18).
When the challenge ch is received, S performs as

follows:

(i) If ch � 0, terminates the process and outputs ⊥
(ii) If ch � 1, lets resp � (r1 ⊕ e′, r2 ⊕ x′, δ, a, ϵ1, ϵ3) and

sends it to 􏽢V

(iii) If ch � 2, lets resp � (δ(r1), δ(e′), ϕa(r2), ϕa(x′),
ϵ2, ϵ3) and sends it to 􏽢V

Because ch is sampled from 0, 1, 2{ }, the probability of S
terminating is 1/3. As the simulator S outputs a successful
transcript, the distribution of its outputs is indistinguishable
from the real interaction.

Lemma 22. On the input of (H, S,T, r), there is an extractor
E that can obtain a pair (e, x) from a CMT � (c1, c2, c3) and
3 valid (resp1, resp2, resp3) to all 3 possible pairs (ch1, ch2,
ch3). Te witness (e, x) satisfes the following equations:

H · e⊤ ⊕ S · x⊤ � 0⊤∧e ∈ B(n, t),

T · e⊤ � r⊤.

⎧⎨

⎩ (23)

Proof. We can construct an efcient knowledge extractorE.
Suppose that we have three valid transcripts (CMT, ch1,
resp1),(CMT, ch2, resp2), and (CMT, ch3, resp3) of the
proposed protocol, where ch1 ≠ ch2 ≠ ch3, where

resp1 ≔ r1, r2, δ
1
, a1, ϵ11, ϵ

1
2􏽮 􏽯,

resp2 ≔ e⊕ r1, x ⊕ r2, δ
2
, a2, ϵ21, ϵ

2
3􏽮 􏽯,

resp3 ≔ δ r1( 􏼁, δ(e), ϕa r2( 􏼁,ϕa(x), ϵ32, ϵ
3
3􏽮 􏽯.

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(24)

Because of the collision-resistance property of COM, we
have

a1 � a2, δ1 � δ2, ϵ11 � ϵ21, ϵ
1
2 � ϵ32, ϵ

2
3 � ϵ33,

δ r1( 􏼁 � δ1 r1( 􏼁, δ2 e⊕ r1( 􏼁 � δ r1( 􏼁 + δ(e),

ϕa r2( 􏼁 � ϕa1 r2( 􏼁, ϕa2 r2 ⊕ x( 􏼁 � ϕa r2( 􏼁 + ϕa(x),

Hr1 + Tr2 � H r1 ⊕ e( 􏼁 + T r2 ⊕ x( 􏼁,

w(e) � t, w ϕa(x)( 􏼁 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(25)

Terefore, the knowledge extractor E can extract the
witness (e, x) from e � r1 ⊕ e⊕ r1 �, x � r2 ⊕ x ⊕ r2. □

3.2. Our Code-Based Linkable Ring Signature Protocol.
Our LRS scheme is put forward in Algorithm 3. Roughly
speaking, we construct an LRS by repeating the underlying
ZKAoK protocol enough times so that the soundness error is
negligible and applying the Fiat–Shamir transform.

Given two positive integers N and l such that N � 2l, we
choose a random matrix H and two collision-resistant hash
functions as follows:

(i) h1: F
∗
2⟶ F

p
2

(ii) h2: F
∗
2⟶ F2λ

2

Here, p stands for the repetition number of the un-
derlying ZK protocol.

Te function h1 is used to generate the Fiat–Shamir
transform, and h2 is the one used in the underlying ZKAoK
protocol.

During the key generation algorithm, the user Ui ran-
domly chooses a vector ei from the set B(n, t) and sets
s⊤i � H · e⊤i .

In the signing algorithm, the userUi gets the underlying
protocol with (H, S,T, r) in which S � [s⊤1 , . . . , s⊤N] and
r⊤ � T · e⊤i . By repeating the protocol many times and the
Fiat–Shamir transform, he gets a NIZKAoK Π. Te form of
the proposed signature is (r, v), where v←P(pp, pk, sk).

Due to the validity of the NIZKAoK, the algorithm Ver
always outputs 1. If two signatures (r, v, M) and (r′, v′, M′)
were generated by the same user Ui, then by r⊤ � T · e⊤i
� r′⊤, the algorithm Link always outputs 1.

4. Analysis of the Proposed Protocol

We analyze the proposed LRS scheme from the aspects of
correctness and security.

Theorem 23. Our LRS scheme achieves correctness with an
overwhelming probability.

Proof. To explain that the given LRS scheme is correct, we
frst prove that the algorithm Ver (pk, M, σ) always returns

Security and Communication Networks 7



1, if the signature σ was generated by a ring userUi honestly
running algorithm Sign(M, ski), for any i ∈ [N].

We observe that the algorithm Sign is equivalent to the
signer repeating the underlying protocol enough times and
employing the Fiat–Shamir heuristic to it. Because of the
perfect completeness and validness of the underlying pro-
tocol, we have Ver (pk, M, σ) � 1 for any pair of (M, σ)

generated by an honest signer.
As for the validity of the algorithm Link, it is straight-

forward to observe that if σ and σ′ were generated by the
identical user Ui, for any i ∈ [N], where σ � (r, v) and
σ′ � (r′, v′), then by r⊤ � T · e⊤i and r′⊤ � T · e⊤i , the algo-
rithm Link (pk, M, M′, σ, σ′) always outputs 1. □

Theorem 24. Our LRS scheme satisfes anonymity in the
random oracle model because of the ZK property of Algo-
rithm 2 and the intractability of the DSD problem.

Proof. We set the fve hybrid games G0,G1,G2,G3, and G4
so as to explain that the proposed scheme satisfes ano-
nymity. G0 and G4 represent the real anonymous game, in
which p � 0 and p � 1, respectively. We will prove that the
sequence of games is indistinguishable from any adversary
A. Te advantage of A in Gi is represented by AdvanonA,Gi

(λ).

G0: Tis is a real anonymous game where p � 0. In this
game, the challenger C performs KeyGen to generate
pk � (H,T, s1, . . . , sN) and sk � (e1, . . . , eN). Te ad-
versary A can ask queries to three oracles, which are
Sign(·, sk0), Sign(·, sk1), and Sign(·, skp). C honestly
responds to the inquiries from the above three oracles
by employing the private key to execute the Sign
algorithm.

G1: Compared with the previous game, we set the
following changes: C runs the simulator (S1, S2) in-
stead of faithfully executing the underlying protocol
and does the following steps:

(1) Outputs the parameters by running S1 instead of
executing the setup algorithm of the NIZKAoK

(2) Uses the simulation proof to reply to the queries of
A by running S2, when the adversary A accesses
Signskp

Since the underlying protocol is zero-knowledge, there
is

AdvanonA,G0
(λ) ≈ AdvanonA,G1

(λ). (26)

G2: Compared with G1, G2 has the following modif-
cations: Te challenger C establishes a table with an
empty initial state. When A makes a query Mi to
Signskp

, C frst checks if there is a tuple (Mi, ri
p) in the

table, where ri
p is included in σ � (r, Com, Resp). If it

exists, then the challenger C produces the signature
with the ri

p by running the simulator S2. If not, the ri
p is

set as ri
p � r←$ Fk

2.Ten,C records the tuple (Mi, ri
p) in

the table and produces the signature with ri
p by running

the simulator S2.
In G2, the vector ri

p is randomly sampled from Fk
2

instead of being evaluated by T · e⊤p . Due to the in-
tractability of the DSD problem, we have

(r,T) ≈ T · e⊤p ,T􏼐 􏼑. (27)

Terefore, there is

(1) Public parameters: n, k, w ∈ N, N(logN � l).
H←$ 0, 1{ }k×n,T←$ 0, 1{ }k×n

(2) KeyGen: User Ui, i ∈ [N]:
(i) Samples ei ∈ B(n, w) as private key.
(ii) Calculates the public key s⊤i � H · e⊤i and sets S as [s⊤1 , . . . , s⊤N].

(3) Sign: Ui performs the following steps:
(i) Calculates T · e⊤i � r⊤.
(ii) Repeats Algorithm 2 with the input (H,T, S, r) p times such that the soundness error is negligible and then obtains

(CMT1, . . . ,CMTp).
(iii) Sets (ch1, . . . , chp) as h1(CMT1, . . . ,CMTp, M).
(iv) Sets the corresponding responses (resp1, . . . , respp) according to the step 6 of Algorithm 2.
(v) Sets the transcript v � (CMT1, . . . ,CMTp, resp1, . . . , respp).
(vi) Outputs the linkable ring signature σ � (r, v).

(4) Ver: Given a signature (M, σ), the verifer
(i) Calculates (ch1′, . . . , chp

′) � h1(CMT1, . . . ,CMTp, M);
(ii) According to Algorithm 2 with the input r to check if v � (CMT1, . . . ,CMTp, resp1, . . . , respp) is a valid transcript.
(iii) If the above condition holds, it returns 1; otherwise, it returns 0.

(5) Link: When two signatures (σ, σ′) are received, the verifer parses σ � (r, v) and σ′ � (r′, v′)
(i) Checks if σ and σ′ are correct.
(ii) Checks if r � r′.
(iii) If the above two conditions hold, it outputs 1; otherwise, it outputs 0.

ALGORITHM 3: Our LRS scheme.
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AdvanonA,G2
(λ) ≈ AdvanonA,G1

(λ). (28)

G3:Temodifcation betweenG3 andG2 is that the ri
p is

evaluated by sk1 instead of being randomly sampled in
G2. In addition to the above modifcation, the other
steps of G3 are the same as those of G2

G4: Tis is a real anonymity game where p � 1.

Te above proof shows that A cannot distinguish G0
from G4 with nonnegligible probability. Terefore, it is
impossible for A to distinguish whether p is 1 or 0. □

Theorem 25. Our LRS scheme satisfes linkability in the
random oracle model based on the CF problem and the
simulation-extractability of the underlying interactive protocol.

Proof. LetA denote an adversary who breaks the linkability
of the Algorithm 3. It implies thatA is able to output N + 1
pairs of tuples (Mi, σi) satisfying the following:

(1) Ver(pk, Mi, σi) � 1  i ∈ [N + 1]

(2) Link(pk, Mi, Mk, σi, σk) � 0  i, k ∈ [N + 1]

We use Ireal to denote the real interface, in which all the
parameters are honestly produced, and Isimo to denote the
simulator’s interface, in which all parameters are produced
by the simulator S1. Because the underlying protocol is zero-
knowledge (Lemma 18), A cannot tell the diference be-
tween the two interfaces. For Isimo, there is an extractor E
which can obtain a pair (ei, xi), where xi � δN

i , for every
message-signature pair (Mi, σi) satisfying the following
equation:

H · e⊤i ⊕ S · x⊤i � 0⊤,

T · e⊤i � r⊤i .

⎧⎨

⎩ (29)

Since there are only N public keys contained in the ring,
there must exist δN

i � δN
k , i≠ k, so the following hold:

H · e⊤i � S · δN
i � s⊤i ,

H · e⊤k � S · δN
k � s⊤i ,

⎧⎨

⎩ (30)

where si stands for the i-th column of S.
Since we supposeA breaks the linkability of the scheme,

there is T · e⊤i ≠T · e⊤k . Tus, we have ei ≠ ek. Otherwise, it
contradicts the previous assumption. Terefore, by equation
(30), we have H · (e⊤i ⊕ e⊤k ) � 0⊤. It implies that a PPT A is
able to break the CF problem which contradicts the in-
tractability of the CF problem. □

Theorem 26. Our LRS scheme satisfes nonframeability in
the random oracle model based on the GSD problem and the
simulation extractability of Algorithm 2.

Proof. We set the following two hybrid games to explain that
breaking the nonframeability property is as intractable as
solving the GSD problem.

G0: Tis is a real nonframeability game regarding the
challenge public key pkπ . In this game,C runs KeyGen

to get pk � (H,T, s1, . . . , sN) and sk � (e1, . . . , eN).
Te adversary A submits queries to the given oracles
Sign(·) and Co(·) with the limitation that he cannot
query the corruption oracle Co(·) with the public key
pkπ .
G1: C employs the simulator of the NIZKAoK to

output the parameters and selects yi←
$
Zk

2, i � [N].
Ten, C establishes an empty table. When receiving
a query (j, M), C frst checks if a pair (j, M, rj) exists
in the table. If it does, C employs the simulator S2 to
produce the signature with the vector rj. If not, rj is set

as rj � r←$ Zk
2.C records the pair (j, M, rj) in the table

and produces the signature combining rj by employing
the simulator S2. Since the underlying protocol has the
zero-knowledge property, it is impossible for a PPT
adversary to distinguish Game 1 from Game 0

Ten, we show that it is impossible to successfully attack
in G1. Assume A can forge a pair (M, σ � (r, v)) such that

(1) Ver(pk, M, σ) � 1
(2) Link(pk, M, σ, M∗, σ∗) � 1, the signature σ∗ returned

by C on a signing query (π, M∗)

Since (σ � (r, v), σ′ � (r∗, v∗)) can be linked, we have
r � r∗. Since the underlying noninteractive protocol ach-
ieves the simulation-extractability, there is an extractor that
puts v as input and returns the witness w � (e, δN

π ) satisfying
the following equation:

H · e⊤ � y⊤π ,

T · e⊤ � r∗⊤.

⎧⎨

⎩ (31)

However, since the vector yπ is output by the simulator
and the vector r∗ is sampled from Zk

2 in G1, it means the
adversary A can break the GSD problem. Terefore, this is
a contradiction, which means that there is no way of
breaking the nonframeability of our LRS scheme. □

5. Parameters and Key Size

We make an analysis of the key and signature size and give
the parameters for our scheme under 80-bit security.

(1) Public key size: the public key is composed of (H,

T, S) ∈ Zk×n
2 × Zk×n

2 × Zk×N
2 and its size is k(2n +

N) bits.
(2) Private key size: the private key ei ∈ Zn

2 is n bit-size.
(3) Signature size: the signature σ is composed of

a transcript v and a vector r. In detail, the signature
size contains the following parts:

(i) Te commitment CMT is 6λ bit-size.
(ii) If the challenge ch � 0 and ch � 1, the response

resp is n + N + nlogn + l + 2λ bit-size; other-
wise, the response resp is 2(n + N) + 2λ bit-size.
Tus, the size of response resp is no more than
n(log n + 1) + N+ log N + 2λ bit-size.
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(iii) Te vector r is k bit-size and the underlying
protocol is repeated p times. Terefore, the
signature size is no more than by p(n(log n +

1) + N + log N + 2 + 8λ) + k bit-size.

We use seeds to replace permutations in the underlying
protocol to reduce the signature size.

Te parameters should satisfy not only that the SD
problem and the GSD problem are hard but also that the
distributions of si are indistinguishable from the uniform
distribution, for any i ∈ [N].

According to Lemma 14 and the information set decoding
algorithm [42], the parameters (n, k, w) were chosen as (2800,
600, 132) so that the CF problem and the GSD problem are
intractable under the 80-bit security, and the statistical dis-
tance of the distribution si between the uniform distribution is
2− 80, for any i ∈ [N]. Te positive integer w is moderately
larger than the GV bound but belongs to the difcult range of
the CF problem and the GSD problem.

Remark 27. For the intractability of the GSD problem, k
does not exceed n/4.

We perform our scheme on an Intel Core i7-8750H
CPU@2.20GHz and 4GB of memory. For each set of pa-
rameters, the performance of our LRS scheme is presented in
Table 1.

6. Analysis of Ren et al.’s Scheme

We frst describe Ren et al.’s scheme [19] in Algorithm 4 and
then analyze a serious weakness in their scheme. Let
A,B←F(n−k)×n

q be two matrices and H: H(·)⟶ Fq be
a hash function. Teir scheme is built as follows.

Te above scheme is not safe because the attacker is able
to obtain the private key from a large number of signatures.

Observed that the signature σ � (d1, z1, . . . , zN, tπ)

signed by Uπ, except zπ is generated by the private key eπ,
other zi are randomly generated during the signing process.
So the distribution of zπ, determined by eπ , is diferent from
the other distributions of zi, i � [N], i≠ π. If an adversaryA
can obtain multiple signatures that are linked to each other,
he can perform statistical analysis on these signatures to
obtain the identity of the signer. Terefore, A can obtain

Table 1: Performance of our LRS scheme.

Log N PK size Average signature size Sign (s) Ver (s)
4 411KB 66KB 0.040 0.024
8 428KB 71KB 0.040 0.024
12 710KB 160KB 0.053 0.031
16 5.20MB 1576KB 0.240 0.132
20 77.20MB 24.2MB 3.428 1.764

(1) Public parameters: n, k, w ∈ N.
A←$ Fk×n

q ,B←$ Fk×n
q

(2) KeyGen: User Ui, i ∈ [N]:
(i) Samples ei ∈ Fn

q and w(ei)≤w.
(ii) Calculates s⊤i � A · e⊤i .

(3) Sign: In order to sign the message m, Uπ :
(i) Calculates r⊤π � B · e⊤π .
(ii) Samples u←Fn

q with wt(u)≤w.
(iii) Sets dπ+1 � H(L, rπ , m,A · u,B · u)

For i � π + 1, . . . , 1, . . . , π − 1.
(iv) Samples zi←Fn

q with wt(zi)≤ 2w.
(v) Sets di+1 � H(L, rπ, yi,1, yi,2, m, ), in which:

y⊤i,1 � A · z⊤i − dis
⊤
i ,

y⊤i,2 � B · z⊤i − dir
⊤
π .

(vi) Sets zπ � dπeπ + u.
(vii) Outs the signature σ � (rπ , d1, z1, . . . , zN).

(4) Ver: Given the signature σ, the verifer:
(1) For i � [N], calculates

y′⊤i,1 � A · z⊤i − dis
⊤
i ,

y′⊤i,2 � B · z⊤i − dir
⊤
π ,

di+1′ � H(L, rπ , yi,1′, yi,2′, m).

(2) If d1 � H(L, rπ , yN,1′, yN,2′, m) � dN+1 and wt(zi)≤ 2w for i � [N], σ is accepted, otherwise rejected.

ALGORITHM 4: Ren et al.’s LRS scheme.
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σ′ � (dπ , zπ , tπ) by removing those zi not generated by eπ . In
other words,A gets a lot of signatures generated by the same
signer.

A can compute zπ′ � d−1
π u + eπ . And the random vector

u′ � d−1
π u is of lowHamming weight, and hence, the support

set of u′ is small. Terefore, Persichetti [23] points out that
a simple statistical analysis will recover the private key eπ .
Te problem stems from the fact that the small weight vector
u that is added to dπeπ is not sufcient to cover up the
support of the private key.

Our analysis suggests that this scheme not only fails to
satisfy anonymity but also leaks the secret of the signer.

7. Conclusion

In this paper, we put forward a newLRS scheme, which achieves
existential unforgeability, anonymity, nonframeability, and
linkability since the intractability of the CF problem, the DSD
problem, and the GSD problem.Te key point of this work is to
construct a Stern-like ZK protocol in which a prover can prove
that he is a member of this ring with a certain tag generated by
his private key. Te sizes of public keys and signatures of our
scheme are linearly related to the size of the ring N. We ran this
schemewith diferent numbers of users on a computer and gave
the corresponding results. Finally, we point out that Ren et al.’s
scheme is insecure because an adversary can get the private key
of the signer by doing a simple statistical analysis.
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