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With the vigorous development of the Internet, the ecosystem of cyber-physical systems is also developing at a high speed, but
cyber-physical systems may be accompanied by unknown vulnerabilities in the process of concrete implementation. Tus, the
number of vulnerabilities in cyber-physical systems has been increasing year by year. Te vulnerability evaluation speed cannot
keep up with the vulnerability exposure speed. Te traditional manual evaluation method can no longer efectively deal with such
large-scale vulnerabilities, resulting in a backlog of vulnerabilities.Terefore, the vulnerability evaluation results have a certain lag.
To address this problem, the paper proposes a vulnerability severity assessment method based on the distillation model. Te
method frst uses data augmentation and integration of optimal subsets to improve the amount of information in the vulnerability
description text, then uses the DistilBERT model to characterize the text of the vulnerability description text, and then the
characterized feature vectors are classifed based on the linear layer to achieve the purpose of assessing vulnerability severity.
Compared with the current method of manual assessment based on the CVSS metric system, this method can automate the
assessment of vulnerabilities based on vulnerability description text, which improves the speed of vulnerability assessment, and
the assessment accuracy and other metrics achieved by this method are improved compared with similar studies. Tis approach
provides an automated solution for cyber-physical systems vulnerability assessment and can better address the current situation
where cyber-physical systems vulnerabilities are being exposed at an accelerated rate.

1. Introduction

Cyber-physical systems (CPS) is a set of physical devices
(hardware) controlled by computer algorithms (mostly
software), and CPS are becoming increasingly important in
the information society. However, with high heterogeneity,
large-scale deployment, and high dependency on private and
sensitive data, CPS is more vulnerable to threats from the
network. In recent years, there have been many cases of
attacks on CPS hardware, software, and data in the system
using vulnerabilities in the CPS, so CPS security needs to be
given high priority. Tis paper provides a priority basis for
CPS to repair vulnerabilities by evaluating the severity of
CPS vulnerabilities, so as to improve CPS security.

CPS vulnerabilities are faws in specifc implementations
of hardware, software, protocols, etc., or system security
policies that can enable an attacker to access or compromise

a system without authorization. Severity assessment of
vulnerabilities can be better for vulnerability severity rating
so that according to the severity rating of vulnerabilities to
prioritize those high-risk vulnerabilities that have a serious
threat to the system, this operation can save the cost and
time of vulnerability repair. According to the U.S. National
Vulnerability Database (NVD) data, vulnerabilities are
showing a trend of increasing year by year, as shown in
Figure1. As of September 1, 2022, the NVD has accepted
194,532 vulnerabilities in total. Since the beginning of this
year, a total of 16,506 vulnerabilities have been accepted, and
an average of nearly 70 vulnerabilities is accepted every day
[2]. In addition to the need for vulnerability assessors to
assess the severity of newly-added vulnerabilities, some
vulnerability exposed earlier due to changes in environ-
mental factors, such as the increase in the number of patch
installations, will also lead to changes in the severity of these

Hindawi
Security and Communication Networks
Volume 2023, Article ID 2118305, 14 pages
https://doi.org/10.1155/2023/2118305

https://orcid.org/0000-0001-8141-7032
https://orcid.org/0000-0003-4533-2706
https://orcid.org/0000-0002-4603-4666
mailto:shifan17@nudt.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2118305


vulnerabilities. Te vulnerability assessors also need to re-
evaluate this part of the vulnerability. More vulnerability and
fewer vulnerability assessors present a sharp contrast; in the
long run; vulnerabilities will inevitably appear a backlog
phenomenon. Tis leads to some vulnerability to determine
the severity of the time lag behind the time of vulnerability
exposure. Research by Chen et al. [3] and Ruohonen [4]
show that the vulnerability assessors assess the severity of
vulnerability lag behind the time of vulnerability exposure
more than 130 days. During this time, unscrupulous in-
dividuals may be able to exploit these vulnerabilities to create
threats and hazards to the system.Tere is an urgent need for
a method that can quickly assess the severity of vulnera-
bilities, both to reduce the workload of vulnerability as-
sessors and to improve network security. With the current
methods of vulnerability assessment, the speed of vulnera-
bility assessment can be improved by increasing the number
of assessors, but this approach will increase the cost for
security organizations, so a better way is to propose
a method that can automatically assess vulnerabilities.

One idea is to characterize and classify vulnerability
description text based on traditional machine learning
methods, and some studies also deepen the model feature
extraction capability based on deep learning algorithms, but
this part of the research does not address the problem of
multiple meanings of words and specialized terminology in
the cybersecurity domain because algorithms using, for
example, TF-IDF algorithms [5], rule-based statistical
methods [6], and word embedding [7], cannot capture the
contextual word relevance. For example, apple can mean
both an apple in fruit and Apple Inc. However, the specifc
meaning of apple can be known if the context is combined.
Tere are also some studies based on large models, such as
BERT [8], but the parameters of models such as BERT are

calculated in billions, and such a large model is bound to
have an impact on the speed of the training and evaluation
process. At the same time, the vulnerability description text
also has a small amount of text information, creating the
problem of data imbalance. According to statistics, the
average description text contained in each vulnerability is
about 40 words, and the NVD data show that the severity of
the vulnerability there is also a serious imbalance, high-risk
and medium-risk vulnerabilities occupy the vast majority of
the sample, while low-risk vulnerabilities and critical-risk
vulnerabilities occupy only a small part, if this part of the
data used directly for training, it will inevitably lead to model
bias and instability.

To address the above problems, this paper proposes
a vulnerability severity assessment method based on the
distillation model, which uses DistilBERT model to charac-
terize the vulnerability description text, because DistilBERT
model has been pretrained based on the general corpus, and
the model itself already contains more knowledge, which can
better extract the dependency relationship between features
based on contextual information, thus solves the problem of
multiple meanings of words and specialized terms, and then
the features are further extracted using the LSTM [9] and
CNN [10] algorithm, because for text classifcation tasks, the
sentiment polarity of sentences often consists of individual
words or phrases, and the positions of these decisive words
and phrases in the sentences are not fxed, and it is difcult to
capture such critical local information directly using the fully
connected layer, and the data will be passed through the
model in the process of the LSTM network can better solve
the above problems. Te article also addresses the problem of
low data information and data imbalance and uses methods
such as the data augmentation algorithm and optimal subset
integration to describe the text for a better solution.

Te experiments in this paper also validate the efec-
tiveness of our proposed method. Compared with the
current SOTA method, the accuracy of our evaluation is
96.62%, while the accuracy of SOTA is 93.95%, which is an
improvement of 2.67%.

To address the challenge of vulnerability assessment,
VulDistilBERT is proposed. Te article has the following
three main contributions:

(i) In this paper, we use the distillation model to better
solve the problem that the text features are not
strongly dependent and the word multiple mean-
ings and technical terms cannot be recognized well.

(ii) Tis paper compiles a vulnerability assessment
dataset based on NVD data and solves the problems
of insufcient information and data imbalance
based on data augmentation techniques and the
optimal subset integration.

(iii) Tis paper proposes a vulnerability severity as-
sessment framework based on the distillation
model, which can automate the assessment of
vulnerability severity levels. Tis method increases
the speed of evaluation and reduces the workload of
manual evaluation.
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Figure 1: Vulnerability growth trend from January 1, 2017, to
September 1, 2022. Te data comes from the U.S. National Vul-
nerability Database [1].
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2. Background

2.1. Te Common Vulnerability Scoring System. Te Com-
mon Vulnerability Scoring System (CVSS) is an open
framework developed by FIRST.Org, Inc. (FIRST) to charac-
terize and quantify vulnerabilities. CVSS consists of three
metric groups: the base metric group, the temporal metric
group, and the environmental metric group. Since major
vulnerability databases only provide base scores, the base
metric group is the most used. Te focus of this study is the
base metric group. Te base metric group refects the inherent
properties of vulnerabilities that remain unchanged over time
and across user environments.Te basemetric group generates
scores ranging from 0 to 10.Te CVSS score can also be shown
as a vector string, which is a textual way to represent the metric
value compactly. Te NVD, when using the CVSS, usually
gives a string representation of the description and the cor-
responding vulnerability metric values. Table 1 shows the eight
metrics and their meanings contained in the base metric group
of CVSS V3.1, as well as the possible values of the metrics. Te
metric values are substituted into the CVSS quantifcation
formula to obtain the base score. Finally, the base score can be
converted into a vulnerability rating [12–14].

2.2. DistilBERT Model

2.2.1. Te Meaning of Knowledge Distillation. Unlike
pruning and quantization in model compression, knowledge
distillation is a common method of model compression and
knowledge migration. Knowledge distillation is done by
constructing a small lightweight model and using the su-
pervised information of a larger model with better perfor-
mance to train the small model to achieve better
performance and accuracy. As the name suggests, the
teacher is responsible for teaching knowledge, and the
student is responsible for receiving and digesting it. Te fnal
goal is that the student has successfully transferred most of
the knowledge from the teacher’s brain to his or her own
brain, completing the knowledge distillation [15].

2.2.2. Purpose of Knowledge Distillation. It is not easy for
humans to learn a subject well, let alone a model with no
feelings and no brain.Te only thing it can do is to use its big
computing power to solve the problem; maybe a human can
distinguish the emotional color of a sentence at a glance,
while the machine will need constant trial and error cor-
rections to achieve a closer result with humans. Terefore,
this also leads to the large parameters of large models such as
BERT. Te parameters of the basic BERT model are about
115 million; however, this is still the only entry-level pa-
rameter in language models, which brings challenges for
model training, evaluation, deployment, and application. If
we can achieve or approach the efect that can only be
achieved by the raw large model with a lightweight model, it
can allow us to achieve two things in one. Experimental
results demonstrate that DistilBERT reduces the model size
by 40% and the inference operations are 60% faster while
retaining 97% of the performance [16].

2.2.3. Te Process of Knowledge Distillation. BERT is mainly
based on a series of attention layers stacked on top of each
other, so this means that the “hidden knowledge” learned by
BERT is contained in these layers. Te major diference
between BERT models is the number of layers N, which is
naturally proportional to the size of themodel. It follows that
the time taken to train the model and the time for for-
warding propagation also depends on N and, of course, the
memory used to store the model. Terefore, the logical
conclusion of distillation BERT is to reduce N. DistilBERT is
done by halving the number of layers and initializing the
student’s layer from the teacher’s layer. For example,
a distillation of the base BERT is done by distilling the 12-
layer BERT to obtain a 6-layer DistilBERT, frst pretraining
the BERT, and then distilling the 12-layer BERTwith a large-
scale prefeed of the training BERT to obtain it. Te
knowledge distillation process is shown in Figure 2.

3. Methods

Tis study aims to design an efcient approach using vul-
nerability description text to predict vulnerability severity.
Tis approach will help analysts quickly analyze the vul-
nerability severity levels. Te paper proposes a learning
method based on the DistilBERT model, which fne-tunes
the DistilBERT model to improve the model’s learning ef-
fciency and prediction efect.

3.1. Methodology Overview. Figure 3 depicts the paper’s two
primary phases: Te DistilBERTmodel transfer learning and
severity prediction. By employing DistilBERTmodel transfer
learning, a fne-tuned model will be developed to predict
vulnerability severity. Severity prediction is a four-step
process, i.e., data integration, text tokenization, token em-
bedding, and vulnerability severity prediction. Tese steps
are shown in Figure 3. First, data augmentation and optimal
subset integration operations are performed on the raw data,
and the integrated data is used as model input, then the
vulnerability description content is divided into numerous
tokens during the tokenization stage, and then the tokens are
embedded by the fne-tuned DistilBERTmodel. Finally, the
paper uses the linear function to predict the severity of
vulnerabilities. Te remainder of this section will provide
a detailed description of the framework.

3.2. DistilBERT Transfer Learning. DistilBERT transfer
learning fne-tunes the pretrained model utilizing the self-
built corpus collected in the NVD. Te pretrained Dis-
tilBERT is obtained by distilling the Bert model. DistilBERT
transfer learning begins with downloading the appropriate
pretrained DistilBERT model. In this study, the pretrained
model is “DistilBERT-base-uncased.” Ten, the domain
corpus is used to fne-tune the model. Te domain corpus is
constructed from 1999 to 2022 NVD vulnerability de-
scriptions. Te input and output relationships of the Dis-
tilBERT model are shown in the following equation:

e[l]
� fDistilBERT Θpre−DistilBERT, t􏼐 􏼑 (1)
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where t � [t1, t2, · · · , tn] is a sequence of the token list with n

tokens, which are tokenized based on the vulnerability
description text; e[l] � [e

[l]
1 , e

[l]
2 , · · · , e[l]

n ] is the pretrained
DistilBERT model’s l th layer token embedding;
Θpre−DistilBERT represents the parameters of the pretrained
DistilBERTmodel;fDistilBERT(·) is the conversion function of
t and e[l], determined by the DistilBERTstructure; e[l]

i is the l

th layer token embedding of the i th token ti, e
[l]
i ∈ R

H
[l]

DistilBERT ,
where H

[l]
DistilBERT is the DistilBERT l th layer hidden layer

size. By transfer learning, the parameters of DistilBERT are
changed from its pretrained state Θpre−DistilBERT to its fne-
tuned state Θf ine−tunedDistilBERT. Compared to training
a DistilBERTmodel from scratch, using transfer learning on
a DistilBERT model maintains a comprehensive model’s
high performance while avoiding the high training cost and
lack of domain data [17].

3.3. Vulnerability Severity Prediction

3.3.1. Data Integration

(1) Data Augmentation. Te statistics of the vulnerability de-
scription text showed that there was a serious imbalance in the
data labels, and the results are shown in Figure 4. CRITICAL,
HIGH, MEDIUM, and LOW accounted for 15.1%, 42.9%,
40.1%, and 1.9%, respectively. Te low percentage of low-risk
vulnerabilities may cause the trainedmodel to fail to accurately
predict low-risk vulnerabilities, which also afects the

robustness of the model. In this paper, we adopt the method of
data augmentation to solve the data imbalance problem. Data
augmentation (DA) is a representation of processingmore data
from the raw data without substantially increasing the data and
improving the quantity and quality of the raw data to approach
the value generated by more data volume to improve the
learning efect of the model. In this paper, we mainly adopt
synonym replacement (SR) and random deletion (RD) to
expand the sample with a small number of tags [18]. Synonym
replacement refers to randomly selecting n words from the
sentence that do not belong to the deactivated word set and
randomly choosing their synonyms to replace them. Random
deletion refers to randomly removing each word in a sentence
with a probability of p.

(2) Optimal Subset. Te analysis of the vulnerability de-
scription text shows that the average length of each vulner-
ability description statement is 43.77 words and 82.96% of the
vulnerability description statements are less than 64 words,
which is shown in Figures 5 and 6. When the model is trained
to a certain level, the prediction efect of the model can no
longer be improved, and even overftting will occur.

In this paper, we adopt the method of extracting CVSS
metrics and selecting the optimal subset (OS) of metrics to
be incorporated into the vulnerability description text to
improve the amount of textual information. Te current
latest version of CVSS is 3.1, whose base metric group
contains 8 metrics, and we investigate the impact of these 8
metrics on the fnal vulnerability severity classifcation. In
this study, CVSS metrics are frst combined according to the

Input

Input
Embedding

Position
Encoding

Teacher Student

Teacher
Output
Encoding

Student
Output
Encoding

Loss

Backpropagation

Figure 2: Distillation model working process. Students gain knowledge by learning from teachers.
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full ranking method, and then a variety of typical machine
learningmethods are selected to select the optimal subset [19],
and the relevant methods are random forest, decision tree,
KNN, AdaBoost, SVM, logistic regression, multilayer per-
ceptron, gradient boosting algorithm, and so on. Because the
optimal subset is selected to improve the fnal vulnerability
severity level classifcation efect, fnally this paper lists the
classifcation efect of related machine learning algorithms on
the combination of metrics, due to the reason of space, only
the frst two combinations with better efect in each category
are listed and the combination with the best efect is shown in
bold.Te results are shown in Tables 2 and 3.Te numbers in

the table refer to the metric names; please refer to Table 1 for
the specifc reference relationship. Te efects of the algo-
rithms are then combined to fnally determine the optimal
subset of each class of combinations, as shown in Table 4.

3.3.2. Model Building

(1) Input Layer. Te main function of the input layer is text
tokenization. Text tokenization is a data preprocessing
process in which the description text X � [V1, V2 · · · , Vn]

are turned into token sequences T � [t(1), t(2), · · · , t(n)],
t(i) � [t1, t2, · · · , tk] is the token sequences obtained from the

Fine-tuned Distilbert model

Classifier 

output

Vulnerability
description corpus

Feature
extraction

layer

Output layer

Input layer

Optimal subset Data augmentation

Input

...

Data integration layer

Pre-trained Distilbert model

Self-built vulnerability corpus

[CLS] token2 token3 ... [SEP]

e[l]
[CLS] e[l]

[token2] e[l]
[token3] e[l]

[SEP]...

Tokenization

Token embedding

Vulnerability severity prediction

Figure 3: Te framework structure of the algorithm in this paper. Te framework mainly includes the data integration layer, input layer,
feature extraction layer, and output layer.
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description Vi; k is the maximum sequence length of the
preset token. Te symbol tj denotes the j th token obtained
from the characterization of the description text Vi,
i ∈ 1, 2, · · · , n{ }, j ∈ 1, 2, · · · , k{ }.

(2) Feature Extraction Layer. When text tokenization is
done, the result is what goes into token embedding. When
the fne-tuned DistilBERT is given a token list t, diferent
transfer layers will give diferent levels of token embedding.
For instance, this is how the token embedding of the layer l

from the fne-tuned DistilBERT is shown as follows:

e[l]
� fDistilBERT Θf ine−tunedDistilBERT, t( 􏼁 (2)

Similar to (1), t � [t1, t2, · · · , tk] is a token sequence that
consists of k tokens, e[l] � [e

[l]
1 , e

[l]
2 , · · · , e[l]

n ] represents the l

th layer of token embedding. e
[l]
i is the i th token ti,

e
[l]
i ∈ R

H
[l]

DistilBERT , where H
[l]
DistilBERT is the DistilBERT l th layer

hidden size.

(3) Output Layer. In the research, we utilize the fully con-
nected layer as a classifer. It can perform a linear trans-
formation on the incoming data. Te following is the
formula to use: 􏽢yi � Wke[L] + bk, 􏽢yi is the possible category
of the vulnerability severity, Wk and bk are the functions’
weights and biases, e[L] is the token embedding of the fnal
layer output.

4. Experiments and Results

4.1. Experimental Data and Experimental Setup. Te paper
uses data from the US National Security Vulnerability
Database [20], which contains all security vulnerabilities
released from 1999 to 2022. Te vulnerability description
information in the web page is used as the dataset’s text
item, and the severity of vulnerabilities is processed to label
items. Tere are four types of labels in the dataset, which
correspond to the severity of four types of vulnerabilities,
i.e., critical risk, high risk, medium risk, and low risk. Te
collected dataset is represented as D � X, Y{ }. Examples of
datasets are shown in the following Table 5. Te vulnera-
bility description item in the table is the input of the model,
and the severity item is the label of the model. After
processing, the dataset contains 105,984 vulnerability
samples. Te dataset was split into the training and test
datasets in the following proportions: 85%: 15%. Te sta-
tistics indicate that 99.8% of vulnerability descriptions are
less than 256 words, with an average of 43.77 words per
sample. Te pretrained DistilBERTmodel used in the paper
is the “DistilBERT-base-uncased” model [21]. In the data
integration phase, the value of SR is set to 0.05 and the value
of RD is set to 0.1. In the integration of the optimal subset,
the integration is the optimal subset composed of four
metrics: PR, UI, C, and I. All vulnerability descriptions
were used to fne-tune the pretrained DistilBERT model.
Two NVIDIA GeForce RTX 3090 GPUs were used for fne-
tuning and training.
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Figure 5: Te distribution of the number of words in the vul-
nerability description text. Te maximum number of words is in
the range of 32–64.
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4.2.AblationExperiments. In this section, we set up multiple
groups of control experiments to compare the classifcation
efects of several pretrained models in fne-tuned and non-
fne-tuned states, set up the efects of average pooling,
maximum pooling, and no pooling on the classifcation
results, and compare the diferences in the efects of the
linear layer, CNN, and LSTM methods as classifers. It is
demonstrated that the fne-tuned DistilBERT has a smaller

size, faster inference speed, and top prediction results
compared to other pretrained models.

4.2.1. Pretrained Model Efect Analysis. Pretrained models
are a class of deep learning frameworks that have been
trained on a large amount of data and can usually be used
directly for downstream tasks, but since the data distribution
at the time of pretraining may not be the same as that of the
downstream tasks, themodels may not be well adapted to the
downstream tasks, so when pretrained models are used, they
are usually fne-tuned on the existing data. In this study, four
pretrained models were selected for the vulnerability as-
sessment task, and their vulnerability classifcation efects
were compared in the fne-tuned and non-fne-tuned states,
respectively. Te four pretrained models are BERT, XLNET
[22], ROBERTA [23], and DistilBERT.Te results are shown
in the following table. Table 6 shows the efect of the test set
on each pretrained model and Table 7 shows the efect of the
test set on each fne-tuned model with the best number of

Table 2: Random forest, decision tree, AdaBoost, and KNN algorithms for evaluation results of metric combinations. Taking the frst row of
the random forest algorithm as an example, the vulnerability severity assessment using only one metric, 5, can still achieve an accuracy rate
of 65.39%.

Random forest Decision tree AdaBoost KNN
Metric combination Accuracy Metric combination Accuracy Metric combination Accuracy Metric combination Accuracy
5 0.6539 5 0.6539 5 0.6539 5 0. 539
6 0.  87 6 0.  87 6 0.  87 7 0.6523
0, 6 0.6749 0, 6 0.6749 0, 6 0.6749 0, 7 0. 581
5, 6 0. 7 5 5, 6 0. 7 5 5, 6 0. 7 5 3, 5 0.6578
2, 3, 5 0.7785 2, 3, 5 0.7785 2, 3, 5 0.7785 0, 2, 6 0.7637
2, 3, 6 0.8238 2, 3, 6 0.8238 2, 3, 6 0.7694 2, 3, 6 0.8239
2, 3, 5, 6 0.8894 2, 3, 5, 6 0.8894 2, 3, 5, 6 0.8882 2, 3, 5, 6 0.8804
2, 3, 5, 7 0.8841 2, 3, 5, 7 0.8841 2, 3, 5, 7 0.8841 2, 3, 5, 7 0.8646
0, 2, 3, 5, 6 0.9280 0, 2, 3, 5, 6 0.9281 0, 2, 3, 5, 7 0.9225 0, 2, 3, 5, 6 0.92 2
0, 2, 3, 5, 7 0.9225 0, 2, 3, 5, 7 0.9225 1, 2, 3, 5, 7 0.9123 0, 2, 3, 5, 7 0.9219
0, 1, 2, 3, 5, 6 0.9574 0, 1, 2, 3, 5, 6 0.9575 0, 1, 2, 3, 5, 6 0.9527 0, 1, 2, 3, 5, 6 0.95 0
0, 2, 3, 5, 6, 7 0.9525 0, 2, 3, 5, 6, 7 0.9523 0, 1, 2, 3, 5, 7 0.9480 0, 2, 3, 5, 6, 7 0.9493
0, 1, 2, 3, 4, 5, 6 0.9699 0, 1, 2, 3, 4, 5, 6 0.9699 0, 1, 2, 3, 5, 6, 7 0.9850 0, 1, 2, 3, 4, 5, 6 0.9685
0, 1, 2, 3, 5, 6, 7 0.9852 0, 1, 2, 3, 5, 6, 7 0.9849 0, 2, 3, 4, 5, 6, 7 0.9640 0, 1, 2, 3, 5, 6, 7 0.9844

Table 3: SVM, logistic regression, multilayer perceptron, and gradient boosting algorithms for evaluation results of metric combinations.

SVM Logistic regression Multilayer perceptron Gradient boosting
Metric combination Accuracy Metric combination Accuracy Metric combination Accuracy Metric combination Accuracy
5 0.6539 5 0.6539 5 0.6539 5 0.6539
6 0.  87 6 0.  87 6 0.  87 6 0.  87
0, 6 0.6749 5, 6 0. 7 5 0, 6 0.6748 0, 6 0.6749
5, 6 0. 7 5 5, 7 0.6701 5, 6 0. 7 5 5, 6 0. 7 5
2, 3, 5 0.7785 2, 3, 6 0.797 0, 3, 6 0.7352 2, 3, 5 0.7785
2, 3, 6 0.8238 2, 5, 7 0.7093 2, 3, 5 0.7774 2, 3, 6 0.8238
2, 3, 5, 6 0.8892 2, 3, 5, 7 0.87412 2, 3, 5, 7 0.8823 2, 3, 5, 6 0.8887
2, 3, 5, 7 0.8839 2, 3, 6, 7 0.8275 2, 3, 6, 7 0.8461 2, 3, 5, 7 0.8810
0, 2, 3, 5, 6 0.9274 1, 2, 3, 5, 7 0.89 2 0, 2, 3, 5, 7 0.9123 0, 2, 3, 5, 6 0.9244
0, 2, 3, 5, 7 0.9218 2, 3, 5, 6, 7 0.8935 1, 2, 3, 5, 6 0.9069 1, 2, 3, 5, 6 0.9187
0, 1, 2, 3, 5, 6 0.9575 0, 2, 3, 5, 6, 7 0.9130 0, 1, 2, 3, 5, 7 0.9265 0, 1, 2, 3, 5, 6 0.9443
0, 2, 3, 5, 6, 7 0.9522 1, 2, 3, 5, 6, 7 0.9271 1, 2, 3, 5, 6, 7 0.9424 0, 2, 3, 5, 6, 7 0.9488
0, 1, 2, 3, 4, 5, 6 0.9691 0, 1, 2, 3, 5, 6, 7 0.948 0, 1, 2, 3, 5, 6, 7 0.9 1 0, 1, 2, 3, 5, 6, 7 0.9792
0, 1, 2, 3, 5, 6, 7 0.9845 1, 2, 3, 4, 5, 6, 7 0.9252 1, 2, 3, 4, 5, 6, 7 0.9470 0, 2, 3, 4, 5, 6, 7 0.9544

Table 4: Te optimal subset selected for each combination.

Optimal subsets Included metrics
Optimal subset with 1 metric I
Optimal subset with 2 metrics C, I
Optimal subset with 3 metrics PR, UI, I
Optimal subset with 4 metrics PR, UI, C, I
Optimal subset with 5 metrics AV, PR, UI, C, I
Optimal subset with 6 metrics AV, AC, PR, UI, C, I
Optimal subset with 7 metrics AV, AC, PR, UI, C, I, A
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epochs taken as the number of epochs with the smallest
validation loss. From the data in the table below, it can be
seen that the DistilBERTmodel performs better on the test
set in terms of accuracy and precision before fne-tuning,
and requires fewer training epochs, while the performance
after fne-tuning is generally on par with other models and
exceeds them in some metrics. Table 8 gives a comparison of
the performances.

4.2.2. Pooling Efect Analysis. Te pooling layer can further
aggregate the upstream features, which can efectively reduce
the size of the parameter matrix, thereby reducing the
number of parameters in the fnal connection layer, so
adding a pooling layer can speed up the computation and
prevent overftting. We analyze the pooling efect for the
fne-tuned DistilBERT models with maximum pooling,
minimum pooling, and no pooling, respectively [24]. Te
results are shown in Table 9. From the data in the following
table, it can be seen that the fnal classifcation efect is not
much improved for the vectors obtained from the pretrained
model and then pooled, and it is even not as good as the
efect without pooling.

4.2.3. Data Augmentation Efect Analysis. In this paper, the
vulnerability descriptions labeled low were amplifed by 15
times, and the vulnerability descriptions labeled critical were
amplifed by 2 times, while the number of other category
labels remained unchanged. Te raw data sample size is
105,984, and after amplifcation, the sample size is 150,159.
Te percentage of each category is shown in Figure 7. To
evaluate the impact and efect of augmented data, the in-
tegrated optimal subset of data, and both data augmentation
and the integrated optimal subset of data on vulnerability
severity prediction, we determined the token embedding
model as a fne-tuned DistilBERTwithout pooling. Te data
is also validated using diferent classifers under the same
dataset. Table 10 gives the evaluation results of diferent
classifers in the vulnerability description text with data
augmentation; Table 11 gives the evaluation results of dif-
ferent classifers in the vulnerability description text with
integrated optimal subset; and Table 12 gives the evaluation
results of diferent classifers in the vulnerability description
text with both data augmentation and integrated optimal

subset. Analysis of the data in the table below shows that the
vulnerability description text with data augmentation im-
proves the model better than the vulnerability description
text incorporating the optimal subset. In the vulnerability
description text with data augmentation, the accuracy of the
pretrained model improves by 9% over the raw data and the
accuracy of the fne-tuned model improves by 14% over the
raw data with the same classifer. In the vulnerability de-
scription text incorporating the optimal subset, the accuracy
of the pretrained model improves by 1% over the raw data,
and the accuracy of the fne-tuned model improves 15% over
the raw data with the same classifer, while the vulnerability
description text with both data augmentation and in-
corporation of the optimal subset has better results than the
single means, the accuracy of the pretrained model improves
19% over the raw data with the same classifer, and the
accuracy of the fne-tuned model improves 19% over the raw
data with the same classifer. Te accuracy of the pretrained
model improves by 19% over the raw data, 10% over the
data-enhanced text, and 18% over the text incorporating the
optimal subset. Te accuracy of the fne-tuned model im-
proved by 19% over the raw data, 5% over the data-
augmented text, and 4% over the text incorporated into
the optimal subset.

4.3. Comparison with Other SimilarWorks. In the study, the
accuracy, precision, recall, and F1 score of fne-tuned Dis-
tilBERT are compared with those of similar works. Te
results of other works are taken from the original paper.
Table 13 displays the pertinent data. Te results demonstrate
that our method enhances the performance of vulnerability
severity prediction.

4.4. Analysis of Results. Tables 6 and 7 give the classifcation
efects of diferent models in fne-tuning and pretraining
states using a linear layer on the raw data, combined with
training epochs, accuracy, and other data, DistilBERTmodel
is selected as the text characterization model, Table 8 gives
the improvement efect of DistilBERT model in the fne-
tuning state compared with the pretraining state. From the
data, it can be seen that in the fne-tuned model, the metrics
are signifcantly improved, thus proving that the fne-tuning
approach does have a signifcant improvement on the task.

Table 5: Sample example of part of the dataset.

CVE ID Vulnerability description Severity

CVE-2022-40980
Potential unauthenticated fle deletion vulnerability on Trend Micro Mobile
Security for Enterprise 9.8 SP5 could allow an attacker with access to the

Management Server to delete fles.Tis issue was resolved in 9.8 SP5 Critical Patch 2
Critical

CVE-2022-3079
Festo control block CPX-CEC-C1 and CPX-CMXX in multiple versions allow
unauthenticated, remote access to critical webpage functions which may cause

a denial of service
High

CVE-2022-38846
EspoCRM version 7.1.8 is vulnerable to missing secure fag allowing the browser to
send plain text cookies over an insecure channel (HTTP). An attacker may capture

the cookie from the insecure channel using MITM attack
Medium

CVE-2022-39850 Improper access control in mum_container_policy service prior to SMR Oct-2022
release 1 allows allows unauthorized read of confguration data Low
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Te efects of diferent pooling efects on the model clas-
sifcation are given in Table 9. From the data in the table, it
can be concluded that adding a pooling layer does not
improve the model performance well, but increases the
complexity of the model. Tables 10–12 give the control
results of diferent information augmentation methods.
From the data in the table, it can be analyzed that CNN,

LSTM, and other complex networks do not improve the
classifcation efect of the model well, probably because fne-
tuned DistilBERT model has already characterized the
features of the model well, even if a deeper network is used
for feature extraction, its efect will not be better than the
simple linear layer efect. Moreover, the data in Tables 10–12
can be analyzed to conclude that performing information

Table 6: Results of evaluating the raw dataset with the pretrained model.

Models Best epoch Loss Accuracy Precision Recall F1 scores
BERT 26 1.038 0.54 0.42 0.33 0.32
XLNET 48 0.978 0.5 0.41 0.3 0.35
ROBERTA 74 1.043 0.54 0.34 0.32 0.29
DistilBERT 24 1.015 0.5 0.42 0.35 0.34

Table 7: Results of evaluating the raw dataset with the fne-tuned model.

Models Best epoch Loss Accuracy Precision Recall F1 scores
Fine-tuned BERT 2 0.580 0.77 0.75 0.62 0.66
Fine-tuned XLNET 4 0.570 0.78 0.74 0.65 0.68
Fine-tuned ROBERTA 4 0.5  0.78 0.76 0.65 0.68
Fine-tuned DistilBERT 4 0.571 0.78 0.7 0. 8 0.70

Table 8: Performance comparison between pretrained model and fne-tuned model.

Models Pretrained DistilBERT Fine-tuned DistilBERT Improvement (%)
Best epoch 24 4 500
Loss 1.015 0.571 43.74
Accuracy 0.56 0.78 28.21
Precision 0.42 0.76 43.59
Recall 0.35 0.68 48.53
F1 score 0.34 0.70 51.43

Table 9: Results of pooling efect comparison using fne-tuned DistilBERT model.

Models Pool Best epoch Loss Accuracy Precision Recall F1 scores

Fine-tuned DistilBERT
Mean 3 0.585 0.77 0.78 0.64 0.67
Max 4 0.588 0.77 0.75 0.64 0.67
CLS 4 0.571 0.78 0.76 0. 8 0.70

28.3%
21.4%

30.3%
20.1%

CRITICAL
HIGH

MEDIUM
LOW

Figure 7: After data augmentation, the proportion of each category in the dataset.
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augmentation does have a better enhancement efect on the
model compared to the raw dataset, where the dataset
combining data augmentation and optimal subset in-
tegration has the best efect, reaching 97% accuracy, ahead of
other current methods.

4.5. Discussion. Te experimental results show that the fne-
tuned DistilBERT model does have a better prediction ca-
pability for vulnerability severity, which benefts from both
the power of the pretrained model itself and the knowledge
provided by the fne-tuned corpus. Compared with tradi-
tional machine learning and deep learning, the DistilBERT
model obtains a large amount of general knowledge from the
large-scale corpus and domain knowledge from the fne-
tuned corpus, which is the key to the successful application

of the large model to downstream tasks. Tis knowledge
compensates for the difculties caused by insufcient data in
downstream tasks, thus signifcantly improving them. In
addition, the results show that pooling the fne-tuned
DistilBERT model followed by a pooling layer and classi-
fcation followed by a deep learning model do not further
improve the model, which also indicates that the DistilBERT
model has already performed a good feature extraction of the
data, and even adding other modules cannot optimize the
features further, but rather increases the complexity of the
model, which is not conducive to the application of the
model. After the optimal subset integration and data en-
hancement, the model efect has been improved. Te key is
that the data enhancement technique generates new data by
perturbing the data itself to a certain extent, and the model
improves its generalization ability by continuously learning

Table 10: Results of comparing the performance of diferent classifers on a data-augmented dataset.

Models Classifers Best epoch Loss Accuracy Precision Recall F1 scores
Pretrained DistilBERT Linear 32 0.927 0.65 0.66 0.65 0.65
Fine-tuned DistilBERT Linear 3 0.221 0.92 0.92 0.92 0.92
Fine-tuned DistilBERT CNN 4 0.225 0.91 0.92 0.92 0.92
Fine-tuned DistilBERT LSTM 3 0.228 0.91 0.92 0.92 0.92

Table 11: Results of comparing the performance of diferent classifers on the dataset integrated with the optimal subset.

Models Classifers Best epoch Loss Accuracy Precision Recall F1 scores
Pretrained DistilBERT Linear 31 1.035 0.57 0.43 0.34 0.31
Fine-tuned DistilBERT Linear 4 0.231 0.93 0.88 0.87 0.87
Fine-tuned DistilBERT CNN 4 0.237 0.93 0.90 0.87 0.88
Fine-tuned DistilBERT LSTM 4 0.234 0.93 0.86 0.90 0.88

Table 12: Te results of comparing the performance of diferent classifers on the dataset with the optimal subset integrated and data
augmented.

Models Classifers Best epoch Loss Accuracy Precision Recall F1 scores
Pretrained DistilBERT Linear 34 0.814 0.75 0.77 0.76 0.76
Fine-tuned DistilBERT Linear 2 0.095 0.97 0.97 0.97 0.97
Fine-tuned DistilBERT CNN 2 0.093 0.97 0.97 0.97 0.97
Fine-tuned DistilBERT LSTM 2 0.092 0.97 0.97 0.97 0.97

Table 13: Comparison of results related to similar works.

Researchers Feature extraction
method Classifers Accuracy (%) Precision (%) Recall (%) F1 scores

(%)
Khazaei et al. [25] TF-IDF Fuzzy system 88.37 — — —

Spanos et al. [26] Document-term matrix
Decision tree 79.12 75.54 71.26 73.02

Neural network 78.26 73.59 70.24 71.68
SVM 79.53 78.49 68.21 71.50

Nakagawa et al. [27] One-hot CNN 72.50 — — —
Wang et al. [28] Feature vector PCA+XGBOOST 92.38 — — —
Han et al. [29] Word embedding 1-Layer CNN 81.60 81.80 81.50 81.60

Liu et al. [30] Text mining

XGBoost 87.30 — — —
CNN 92.04 — — —
LSTM 93.73 — — —

TextRCNN 93.95 — — —

Our method
Fine-tuned DistilBERT with DA Linear 90.64 91.92 91.92 91.83
Fine-tuned DistilBERT with OS Linear 92.80 88.32 87.26 87.07

Fine-tuned DistilBERT with DA and OS Linear 96.62 97.11 97.06 97.05
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a large amount of new data, and the optimal subset also
further increases the information content of the data.
However, the current model has problems, such as large
number of parameters and low interpretability. In future
research, we will further study the optimization and in-
terpretability of the model in order to make the model have
better application capability.

5. Related Work

Vulnerability assessment is one of the research topics in the
feld of cyberspace security, which is centered on threat
assessment, risk level assessment, and vulnerability rating
score for vulnerabilities. Current research on vulnerability
assessment is mainly based on quantitative research and
model-based research.

Te CVSS is the de-facto vulnerability assessment
standard, andmany studies have been conducted based on it.
Spanos et al. [31] has adjusted the weights and proposed
a method called the Weighted Impact Vulnerability Scoring
System (WIVSS). Based on this, Luo et al. [32] analyzed that
CVSS cannot distinguish software vulnerabilities with the
same score but diferent severity levels. A software vul-
nerability rating method, SVRA, was proposed, which uses
a vulnerability database to analyze the frequency of CVSS
metrics at diferent times, and then gives equations for
exploitability and impact scores based on these frequencies.
Wang et al. [33] considered that CVSS metrics ignore the
impact of vulnerabilities on specifc networks, i.e., the same
vulnerabilities that exist in diferent network environments
are assigned duplicate values, and the attack graph still
sufers from scalability and readability issues. To address the
above issues, the authors innovatively propose a vulnera-
bility risk assessment method based on heterogeneous in-
formation networks. Tis method takes into account the
exploitability of vulnerabilities, the impact of vulnerabilities
on network components, and the importance of vulnerable
components. Te above three articles represent three di-
rections of such research, i.e., focusing on the inadequacy of
CVSS evaluation weights, the inadequacy of CVSS evalua-
tion methods, and the inadequacy of CVSS evaluation
metrics, but the above methods are mostly based on
quantitative formulas to assess vulnerabilities, and the
metric values required for the assessment process still need
to be extracted manually, which does not signifcantly im-
prove the speed of hole assessment.

Te model-based approach, on the other hand, hopes to
take advantage of machine learning algorithms to automati-
cally extract features through algorithms to avoid the bias
brought about by manual extraction of features, and the main
idea is to characterize and classify vulnerability description
statements based on machine learning methods. Khazaei et al.
[25], Wang et al. [28], Han et al. [29], and Liu et al. [30] have
characterized vulnerability descriptions using traditional word-
vector algorithms. However, such methods do not consider
contextual information, which may contain rich information
that could enhance the fnal prediction. Based on these studies,
Spanos et al. [26], Ali [34], Ameri et al. [35], and Kudjo et al.

[36] apply traditional machine learning algorithms and deep
learning algorithms to CVSS score prediction. Te in-
troduction of deep learning algorithms has improved feature
extraction to a certain extent. Tese methods bring conve-
nience toCVSS assessmentwork. Shahid andDebar [37], Gong
et al. [38], and Costa et al. [39] applied pretrained models and
deep learning algorithms to vulnerability metric prediction
work. However, these methods do not give the fnal vulner-
ability severity level prediction. Tis can be used as a basis for
more in-depth research.

At present, research on vulnerability assessment still has
common problems to be studied, such as the unscientifc
establishment of the metric system, inadequate mining of
text dependencies, complex model structure, etc. With the
development of deep learning, some problems have been
solved, but with the development of the network, some new
problems have emerged in front of researchers, such as the
problem of vulnerability hazard assessment, because the
vulnerability hazard should not only consider the vulnera-
bility itself attributes, such as vulnerability severity, but also
need to consider the vulnerability external attributes, such as
how much vulnerability afects assets. Tese issues also need
to be studied.

6. Conclusion

Tis paper proposes an automatic vulnerability severity
assessment method based on the distillation model to solve
the problem of slowmanual vulnerability assessment of CPS.
Te method frst enhances the amount of text information
using data augmentation and integration of optimal subsets
to solve the data imbalance problem, then characterizes the
vulnerability description text using the fne-tuned Dis-
tilBERTmodel to efectively extract the features of the text.
Finally, the linear layer is used to classify the characterized
vectors. In this paper, multiple groups of ablation experi-
ments are conducted on data of 105,984 vulnerabilities, and
the experimental results show that the current method
achieves state-of-the-art performance in vulnerability se-
verity assessment, and the method can achieve 97% as-
sessment accuracy. In the future, we will consider CPS
vulnerability assessment from diferent dimensions of vul-
nerability attributes, such as asset dimension and environ-
ment dimension, to build a set of metrics systems in line with
vulnerability severity assessment and solve the problem of
inaccurate vulnerability hazard assessment.
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