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Blockchain interoperability promotes value delivery, application expansion, and ecological compatibility across heterogeneous
blockchain systems. However, the contract framework and virtual machine construction in these systems are signifcantly
diferent, and crosschaining becomes a challenging issue for system universality and compatibility. Starting from this problem, in
this study, we propose VM-Studio, a crosschain smart contract verifcation and execution scheme to migrate the virtual machines
(VMs) from the origin blockchain to the target blockchain. In our scheme, the migrated VMs are loaded as independent
components enclosed in containers. We also design a unifed system schedule to enable VM-Studio to allocate transactions into
diferent containers. Loaded with origin blockchain VMs, these containers can accordingly solve crosschain transaction execution
and smart contract verifcation. We implement VM-Studio and evaluate the transaction execution performance in the origin
environment withmultiple blockchains and the container environment. Experiment results demonstrate that VM-Studio achieves
broad universality without compromising the execution performance of original blockchain transactions.

1. Introduction

A major beneft provided by blockchain is the ability to
connect isolated individuals in a direct peer-to-peer way.
Since Nakamoto [1] proposed Bitcoin in 2008, blockchain
technology has been developed for over a decade, and
various blockchain systems emerge constantly innovating in
many aspects, such as consensus security [2, 3], privacy
protection [4, 5], smart contract computing [6, 7], and
blockchain scalability [8, 9]. However, this has also led to the
phenomenon that they have formed separate value systems.
Te information barrier across heterogeneous blockchain
systems makes value circulation and information trans-
mission a complex problem. Terefore, crosschain tech-
nology, also known as interoperability [10], is equally
important as a fundamental property to establishing Web3
ecosystems.

Crosschain technology is mainly oriented towards two
aspects of the issue between blockchains, one is value

exchange and the other is data transfer [11]. In the early
understanding of crosschain technology, people only cared
about how their assets were transferred from the one chain
to another [12]. With the advent of the era from blockchains
are smart contracts, assets no longer exist in the form of pure
native tokens in the blockchain transaction sheet and tokens
defned and managed by smart contracts gradually occupy
the mainstream market [13]. In addition, in various smart
contract ecosystems, algorithms [14] and components with
powerful functions and data precipitation abound, making
many blockchains have unique crosschain value. In order to
make the crosschain value and mean of blockchain wide-
spread, for a specifc blockchain, we call it original block-
chain. In the crosschain scenario, we will consider all aspects:
transfer the value in the transaction order, call the algorithm
controlled by the smart contract, and evenmigrate the upper
Dapp application.

We note that the core of the above crosschain services is
to verify the correctness of transaction orders and smart
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contracts on other blockchains on the chain. It is not very
easy to achieve between heterogeneous blockchains with
diferent consensus mechanisms, single constructs of
transactions, underlying contracts, and data interfaces. Te
existing crosschain projects need to negotiate with the target
chain, including agreement, consensus, a trusted mid-
dleman, side-chain return to the target chain confrmation,
and other operations. Tese schemes have a common
problem: they are limited by the contract of the target chain
and the architecture of the underlying virtual machine.
When the contract language of the target chain is changed or
the virtual machine of the target chain is upgraded, the
corresponding crosschain scheme is no longer available.
Terefore, a universal and multichain compatible universal
scheme is needed for crosschain operation.

Considering the following scenario, two blockchains, the
original blockchain and the target blockchain, are denoted as
CO and CT, respectively. Te state data controlled by the
contract on CO are transported to CT, which is used for the
construction of crosschain transactions by CT. Tis process
can be easily achieved if CT supports smart contracts and is
compatible with CO’s virtual machine (VM). As a result,
crosschain smart contract verifcation can be easily realized by
inputting the relevant transaction order and smart contracts
from CT into CT’s VM. However, the diferences in consensus
mechanisms, contract construction, and virtual machine
construction between two blockchains become a huge hin-
drance. It is not easy to achieve interoperability due to their
heterogeneity. If the underlying logic code of CT’s VM is
modifed or the data structures on CO are modifed to be
compatible with the CT’s VM, the problem can be greatly
mitigated. Moreover, it is also difcult for CT to access the
crosschain system for other heterogeneous blockchains. It can
be seen that the construction of crosschain verifcation and
execution schemes for smart contracts requires rigorous
requirements on VM construction for both parties.

To sum up, after the abovementioned analysis, we give the
primary motivation of the proposed scheme here. We note
that crosschain technology mainly involves three parts: the
transfer of value in the transaction order, the crosschain
invocation of smart contracts, and the transplantation of
Dapp ecology. All of them are related to the underlying
verifcation logic of the blockchain virtual machine. We were
inspired by Nervos CKB Polyjuice [15], which ran an EVM
instance using CKB VM to implement a blockchain running
a native account model within a blockchain of UTXOmodels.
We believe that if this part of executing transactions and
verifying smart contracts of blockchain virtual machines is
decoupled separately and encapsulated by accessible unifed
services, crosschain execution and verifcation of transactions
and contracts on heterogeneous blockchains can be realised,
and it has the characteristics of strong universality, is easy to
deploy and start, and is easy to upgrade.

1.1. Our Solution. We propose VM-Studio, a universal
crosschain smart contract verifcation and execution
scheme. We address the interoperability problems across
heterogeneous blockchains by transforming the verifcation

and execution of smart contracts into virtual machine mi-
grations. Supposing to verify the contract states of CO on CT,
we load the virtual machine image of blockchain CO into
a bare container. In an execution environment of CT, CO’s
transaction order is imported into the container as an atomic
task. Ten, CO’s VM execution environment can be simu-
lated to verify and execute relevant transaction orders and
smart contracts. VM-Studio allows any blockchain system to
import its VM image into an empty container of another
VM-Studio component (heterogeneous blockchain node),
making the execution environment a container service-
+ virtual machine image. Ten, VM-Studio can manage and
invoke all types of containers through scheduling tools. Due
to the characteristics of container service, our scheme has no
additional requirements on the VM construction among
heterogeneous blockchains, showing strong universality.
Based on that, our contributions are summarised as follows:

(i) We propose VM-Studio, a universal crosschain
smart contract verifcation and execution scheme.
We give the concrete construction of VM-Studio
and elaborate on the message execution processes
and crosschain verifcation of smart contracts.

(ii) We analyze the advantages of the VM-Studio
scheme, including its correctness, universality,
and low overhead in the execution of origin
transactions and smart contracts.

(iii) We conduct experiments on crosschain smart
contracts’ verifcation and execution performance
overhead. We compare them with the running re-
sults of each origin blockchain. We conclude that
VM-Studio has satisfactory performance outcomes.

1.2. Our Advantages. Compared to more common cross-
chain tools, our solution has the following advantages:

(i) VM-Studio is compatible with a wide range of
heterogeneous blockchains. Compared with the
more traditional crosschain schemes, such as
[12, 16], our scheme faces all heterogeneous
blockchains that support virtual machines and has
no specifc requirements on the single transaction
structure and smart contract architecture of the
blockchain itself, which is convenient for the unifed
transplantation of all kinds of blockchains.

(ii) Te native blockchain environment is relatively
secure, and its VM is easy to upgrade. Existing
crosschain projects [17, 18] that use side chain, relay
chain, or parallel chain architecture require addi-
tional data interfaces outside the chain for cross-
chain verifcation and face tricky data availability
problems when the chain version is upgraded. Our
solution will be native blockchain transactions and
smart contracts executed in their encapsulated
original environments to maximize the security of
the transaction execution process.

(iii) Te scheme has a simple structure and is easy to
implement. Compared with some recent research

2 Security and Communication Networks



[19, 20], the blockchain is used as the crosslink
mechanism, supplemented by a consensus mecha-
nism to ensure security; alternatively, some solutions
[19] achieve cross-chain interoperability by using
a unifed programming language to call the smart
contracts on diferent chains; they have specifc dif-
fculties in the implementation; that is, the con-
struction of crosschain environments puts forward
higher requirements. Our solution decouples the
functions of blockchain virtual machines and wraps
the templates for verifying transactions and smart
contracts separately into containers. In the simplest
case, our crosschain verifcation can be implemented
in the local environment of nodes.

1.3. Paper Structure. Section 1 describes the scientifc
problems, solutions, contributions, and advantages pro-
posed in this study. Section 2 provides related work. Section
3 defnes the parameters and assumptions. Section 4 in-
troduces the main construction of the VM-Studio scheme
and presents the detailed workfow of four types of VM-
Studio messages. Section 5 gives our experimental design
and corresponding results. Section 6 discusses the perfor-
mance and application of VM-Studio from diferent per-
spectives. Last, Section 7 concludes this study.

2. Related Work

2.1. Smart Contract. A smart contract is essentially a piece of
the program stored on the blockchain that can be automatically
executed according to specifed contract rules. Te concept of
a smart contract was frst proposed by Szabo [21] in 1994,
aiming to build an efcient contract without ambiguity that
could be enforced with the help of code. Ten, smart contracts
were widely adopted with the advent of Ethereum [22]. In
Ethereum, smart contracts are executed inside the Ethereum
Virtual Machine (EVM) and are isolated from external envi-
ronments. To ensure the reasonable usage of resources,
Ethereum adopts the gas billing standard, where any computing
operation needs to pay a certain amount of gas as the cost,
including the creation, call, data acquisition, and other contract
operations. EoS [23] claims to propose a set of smart contract
systems that are easier to develop, which solves the problems of
low performance and high fees of Ethereum smart contracts.
Hyperledger Fabric [24] is an open license blockchain designed
for crossindustry development among enterprises. It is built on
Linux with good modularity and structural characteristics [24].
It provides reliable services for many industries, as well as high
portability and versatility. Chaincode, the smart contract on
Hyperledger Fabric, runs in a Docker container. It is a program
that can query or change the ledger’s state. Te fnal execution
results are synchronized to every node in the network.However,
due to the alliance chain’s centralization concerns, Hyperledger
Fabric is unsuitable for the public chain.

2.2. Blockchain Interoperability. Blockchain in-
teroperability technologies focus on the verifable transfer
of on-chain tokens and states across diferent chains [11].

Typically, three types of methods have been adopted:
hash-time lock, third-party crosschain, and sidechains/
relays mechanisms.

2.2.1. Hash-Time Lock. Te hash-time lock mechanism [16]
adopts two core techniques: hash lock and time lock. Two
parties frst need to establish a communication channel.
Ten, the two locking techniques are used to lock their on-
chain assets, and the negotiated hash value is used to unlock
the on-chain holdings of the other party for crosschain
exchanges. Te hash-time lock has apparent disadvantages:
both parties have to hold the corresponding accounts on two
chains with sufcient assets, and both blockchains must
support smart contracts for contract executions.

2.2.2. Tird-Party Crosschain. Te third-party crosschain
mechanism, such as the notary mechanism [25], in-
troduces a trusted individual or group as the notary by
tracking the status of two chains, collecting evidence, and
verifying the transaction to facilitate the crosschain trade.
It can support the interoperability of heterogeneous
blockchains. However, the solution can only support the
crosschain functions for origin token exchanges, and both
sides connected by the crosschain transactions have to
bear signifcant centralization risks. Hash-time lock and
third-party mechanisms are subject to architectural and
security constraints [26].

2.2.3. Sidechains/Relays. Te sidechains/relays crosschain
mechanism [12, 17, 18, 27] solves the centralization risk.
Assets on the main chain and sidechains are mapped one by
one through the two-way anchoring technology. Te lock
and release mechanism realizes the bidirectional workfow
between the main chain and side chains. Te solution has
advantages: it supports the invocation of a crosschain smart
contract, which is no longer limited to simple token ex-
change [28]. However, it sufers the drawback of high costs
because its adoption is limited. Among sidechains/relays
schemes, the best known are Cosmos [17] and Polkadot [18].
Polkadot is a crosschain platform that combines heteroge-
neous chains. It realizes the network-wide difusion of user
anonymity and formal verifcation through parachains. In
Polkadot, transactions on each parachain can be passed to
other chains through the bridge, and these transactions can
be executed and verifed by multiple chains. However,
Polkadot has problems such as difculties in selecting
a validator, governance, forming parachains, or intrans-
parency of validator election [29]. Cosmos aims to build an
interconnected blockchain ecosystem. It provides a relatively
complete and convenient way of facilitating crosschain in-
teraction through the Tindermint consensus engine, the
Cosmos SDK modular development framework, and the
interblockchain communication protocol. However, the
system is relatively complex, which is difcult for the de-
velopers to understand, due to factors, such as its economic
model and market competition, Cosmos sufers the pressure
from nonpure technical reasons.
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In addition, several studies on heterogeneous blockchain
crosschain also deserve attention [19, 20]. HyperService [19]
is a heterogeneous crosschain framework that programmers
can freely develop. It provides a unifed Dapp programming
language at the bottom of the native blockchain and sup-
ports crosschain communication with smart contract con-
struction. However, the development framework proposed
by HyperService is relatively complex, such as the specifc
format of data, dynamical checks for accuracy, and data
input interface requirements, which lack universality. Te
scheme proposed in this study has a lower migration cost
than HyperService in terms of the new blockchain virtual
machine because the former only requires simple VM image
encapsulation and loading, while the latter needs to develop
the underlying contract logic of the new blockchain into
a unifed interface, according to the relevant developer
documents. When the smart contract or virtual machine
version of the native blockchain needs to be upgraded, the
HyperService must be redeveloped according to the new
rules. Our solution only needs to call a virtual machine
image of the latest version. Blockchain Router [20] estab-
lishes a set of crosslink routing rules for multiple blockchains
to establish the routing path for crosschain communication.
Te process of crosschain data verifcation is completed by
the nodes of the block link, which is diferent from the focus
of this study.

3. Parameters and Assumptions

We denote a blockchain system by C. For multiple block-
chain systems, use C1, · · · , Ci, · · ·, where i is a variable
positive integer. For a blockchain system Ci, we make the
following assumptions.

3.1. Chain Identifer. Every blockchain system, or chain, has
a unique identity.Te genesis block is identifed with a string
of hash value GenesisHash. For the blockchain Ci, we defne
its identifer idCi

as follows:

idCi
� HCi

GenesisHashCi
 . (1)

Here, HCi
is a hash function, where a random string of

length 0, 1{ }∗ is mapped to the range of idCi
’s values.

GenesisHashCi
represents the hash value of the genesis block

on Ci.

3.2. Chain State. By default, the state model of blockchain
can be applied to both the UTXO and the account-based
blockchains. For generality, we defne the state model as
follows.

Defnition 1 (chain state). For the blockchain Ci, we defne,
when it is based on the account model, we denote the set of
states corresponding to all accounts as the chain state of Ci;
when it is based on the UTXO model, the set of states
corresponding to all UTXOs is called the chain state of Ci.

It is worth noting that for the blockchain system with the
account model, the chain state can be equivalent to the

corresponding state root in the block header of the latest
block, such as the concept of the world-state MPT root in
Ethereum. For the blockchain systemwith the UTXOmodel,
the chain state represents the set of outputs of all trans-
actions for which the input from subsequent transactions
has not been referenced: the set of all existing UTXOs on the
blockchain. In either case, we abstract the chain state as
a snapshot, which can refect the latest state or data set of the
blockchain in real time. Equivalently, there is a more
straightforward method: execute all transactions on the
blockchain in order, from the genesis block to the latest
block. It can be seen that their essences are very similar.

Terefore, in this study, we mainly express the per-
spective of the account-based blockchain to have a more
intuitive understanding. As described above, by specifying
the chain state as a pointer feld in the block header of the
latest block, we can calculate and verify the states through
the batch acquisition of transaction data. If all the trans-
actions are known, the state database of the corresponding
data structure can be calculated by existing rules. Ten, the
chain state pointer can be extracted by the corresponding
rules. Te correctness of the obtained block data can be
verifed by comparison. With the continuous generation of
new caches, we can verify the correctness of new transaction
orders by calling the cached snapshot. In addition, to fa-
cilitate the construction of invocation instances for cross-
chain smart contracts, we defne a multichain system:

Defnition 2 (multichain). A multichain system M(n) is
a multichain system consisting of a series of parallel
blockchains M � C1, ..., Cn (n≥ 2) if for any i ∈ [1, n], and
for any j ∈ [1, n], there is idCi

≠ idCj
.

Te above feature ensures that a multichain system
M(n) does not contain two identical blockchains, even
though their genesis blocks are consistent. Equivalently,
when the Genesis blocks of two blockchains are the same, we
allow the sets of states to be diferent, indicating that the two
blockchains are branched from the same chain. Neverthe-
less, we do not care about this situation.

In addition, we introduce several concepts mentioned in
the previous section. Consider the crosschain scenario of
two blockchains, where we call the crosschain from the
origin blockchain to the target blockchain, denoted by CO

and CT, respectively.

4. Main Construction of VM-Studio

In this section, we begin with an overview of the main
construction of VM-Studio, including its fve main com-
ponents and four message types. Later, in 4.2, we give the
details of the four types of messages, the interaction process
of the fve main components of VM-Studio, the specifc
structure of the messages, and the verifcation process of
the data.

4.1. Overview. Te main construction of VM-Studio is
shown in Figure 1. As a general chain state execution
construction, VM-Studio components are attached to the
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network nodes of a relay blockchain. Te following sec-
tions will present concrete examples of running cross-
chain smart contracts under the intermediate blockchain.
VM-Studio consists of fve main modules: the dispatcher,
which is responsible for overall dispatch, message input,
and output; the loader is responsible for loading the VM
image; the executor, which executes containers loaded
with blockchain VMs; the container library, which stores
the containers loaded with virtual machines; and the
database, which is responsible for storing a snapshot of
states as a database.

4.1.1. Te Dispatcher. It is the core component of VM-
Studio. It receives the input and output messages of mes-
sage instructions externally and processes messages
internally.

Te dispatcher mainly receives four types of messages:
MessageI, Preload mainly used to verify the correctness and
integrity of packets and update the block synchronization
height to start the subsequent formal loading process.
MessageII, load, is mainly used to load the prepared virtual
machine image into the empty container, transport it to the
container library for storage, and open the access interface
between it and the corresponding blockchain ledger in the
database to start the subsequent execution process. Messa-
geIII, Execute is mainly used to manage atomic transaction
order messages through the cluster, and the container
verifes transactions and executes smart contracts. Messa-
geIV, Preload and Update, both the preload and virtual
machine version update functions. Te dispatcher frst
performs a preload process.

For the above four messages, the dispatcher has diferent
message channels to process them:MessageI,MessageII, and
MessageIV will be included in the loading channel; Messa-
geIII is included in the execution channel and scheduled by
the cluster management, an internal component of the
dispatcher. Tis is because MessageIII is the atomic trans-
action order obtained after the block data are split, and the
quantity is millions of times that of other types of messages.
In order not to delay the processing of other types of
messages but also to allocate the core resources for Mes-
sageIII, MessageIII is included in an independent message
channel.

4.1.2. Te Container Library. Te container library is the
container warehouse of VM-Studio, which is used to store
containers after loading and presents the call interface with
the blockchain id as the index. Cluster Management cen-
trally arranges for the executor to call the container library.

4.1.3. Te Database. Te database is the back-end database
of VM-Studio, which stores the blockchain ledger, state
snapshot, state database, and virtual machine image. It
presents the call interface with the blockchain id as the
index. Te VM can be directly called by the container where
the VM of the corresponding blockchain resides.

4.1.4. Te Loader. Te loader is the loading center of VM-
Studio. Te loader is used to load virtual machine images
into empty containers for MessageII services.

4.1.5. Te Executor. It is the executor management center of
VM-Studio. Triggered by MessageIII, the Cluster Manage-
ment component of the dispatcher will send the call in-
struction to the executor for containers. Te executor will
then call the corresponding container in the container li-
brary through the call interface, that is, characterized by id.

Next, we will describe the workfow and interactions of
VM-Studio after each type of message is given.

4.2. Details of the Scheme. In this section, we describe in
detail how VM-Studio performs crosschain execution and
verifcation of transactions and smart contracts when re-
ceiving the mentioned four types of messages, including
those actively sent by nodes and those automatically gen-
erated by the dispatcher. Te overall process is shown in
Figure 2. Each type of message is a dataset packet dp

consisting of a header dphead and a body dpbody, while dpbody
is mainly composed of block data.

4.2.1. Message Signature. First, we formally describe the user
identity and signature of the node. In our setting, VM-Studio
is positioned as a general blockchain crosschain data veri-
fcation component; in a given blockchain system, a node
that has installed and instantiated VM-Studio can verify

The dispatcherThe loader

The executor

The container
library

The database

Message Input

Message Output

Loading Channel

Execution Channel

Cluster management

Figure 1: Te structure of VM-Studio.
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crosschain data in the blockchain system. Considering that
the identity of a node as a chain user is not fxed in diferent
chain environments, we use a common representation of the
public chain here. We have abstracted the more traditional
blockchain mechanisms, such as Bitcoin and Ethereum. For
amore detailed description, please refer to [1, 22]. For a node
to sign the message M, the following three algorithms are
formally defned, including the key generation algorithm
KeyGen, the signature algorithm Sig, and the signature
verifcation algorithm VerifySig.

KeyGen(λ, cp)⟶ pk, sk, add r. λ is a security param-
eter, and cp is a blockchain parameter that contains in-
formation, such as the version byte of the blockchain used to
distinguish between the main network and the test network.
When a node joins the blockchain network, the private key
sk is generated by a random number in a specifc range and
the public key pk is generated by sk in a trapdoor reversible
way. Finally, the address add r is generated by an irreversible
algorithm: the address of the node’s account in the block-
chain network. It should be noted here that, frst, the range
of random numbers used to generate sk is determined by the
security parameter λ. Second, we generally assume that the
irreversible algorithm used is the hash function, HCi

, and the
calculation process is add r � cp

�����HCi
(pk).

Sig(M, sk)⟶ sigM. sigM is the result of signing the
message M for a node using its own private key sk.

VerifySig(sigM, M, pk)⟶ 0, 1{ }. If the signature ver-
ifcation is successful, output is 1; otherwise, output is 0.

In general, in the practical application of blockchain, the
message signature’s object may be the message’s hash value.
In verifying the signature, it is necessary to verify that the
related address add r is from the specifc chain version cp

and matches the public key pk. In Algorithm 1, we present
the verifcation procedure of the message signature when the
input is (sig, pk, add r, cp, M∗).

4.2.2. MessageI, Preload. MessageI is initiated by the node or
automatically initiated by the dispatcher after MessageIV is
processed. In the previous article, we mentioned that

MessageI is used to verify the correctness and integrity of
data packets and update the block synchronization height to
enable subsequent formal loading processes. WhenMessageI
is correctly processed by the dispatcher, the dispatcher will
automatically generate MessageII and send it to the input of
the dispatcher’s message channel. Te specifc process is as
follows:

(i) Step 1. Input MessageI to the dispatcher.
(ii) Step 2. Te dispatcher parses MessageI into

type, vppsig, hstart, hend, id . (2)

Te detailed structure of MessageI is listed in
Table 1. According to type, the message type is
MessageI.

(iii) Step 3. Te dispatcher operates Algorithm 2, and
accordingly outputs

dphead, dpbody,maxheight, err ←PreLoad dphead, dpbpdy .

(3)

If err equals to 1, break the process.
(iv) Step 4. Te dispatcher parses dphead to

id, hstart, hend, vppsig , (4)

and sends

dpbody, hstart, hend, id , (5)

as MessageII to the dispatcher’s message channel.

4.2.3. MessageII, Load. MessageII, Load is automatically
initiated by the dispatcher after MessageI is processed. Its
main functions include loading the prepared virtual machine
image into an empty container, transporting it to the
container library for storage, and opening the access in-
terface between it and the corresponding blockchain data-
base for subsequent executions. WhenMessageII is correctly

Message IV:
Preload&Update 

Message III:
Execute 

Message II:
Load 

Message I:
Preload 

Message
Input

Interface 

Loading
Channel

Execution
Channel

Node Input
New Message I

New Message II

Node Input

New Message III Cluster
Management

The Executor The database

Update VM

New Message I

Algorithm1
Preload Update snapshot

New Message II

from The
Container

Library

Algorithm2
Preload&Update

+ =Load

The Loader
Update

Container

New Message III

Start
the Interface

The Dispatcher

The Legend

VM Naked
Container 

Container Where
VM is Loaded 

Cluster
Management

Blockchain
Database

Blockchain
Transaction

Figure 2: Te operation fow of four kinds of messages.
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Input: sig, pk, add r, cp, M∗

Output: b

Initialization: 1⟵b

If VerifySig(sig,HCi
(M∗), pk)! � 1 then

0⟵b;
return b;

end
If add r! � cp

�����HCi
(pk) then

0⟵b;
return b;

end
return b

ALGORITHM 1: VerifyMessageSig.

Table 1: Message structure of MessageI.

Parameters Meanings
type Message type and it has the value I

vppsig

Publicly verifable signature parameters, including parameters related to node
identity:
(i) sig: the node’s signature for hashdp

(ii) pk: the node’s public key
(iii) add r: the node’s address in blockchain network
(iv) cp: the blockchain parameter that contains information such as the version byte
of the blockchain used to distinguish between the main network and the test
network
(v) hashdp: the hash value of the data package

hstart Te starting height of the synchronization block
hend Te ending height of the synchronization block
id Te identifer of the blockchain from which the packet originated

Input: dphead, dpbody
Output: dphead, dpbody, maxheight, err
Initialization: 0⟵b, 0⟵err, 0⟵maxheight
parse (id, hstart, hend, vppsig)⟵dphead
parse (sig, pk, add r, cp, hashdp)⟵vppsig
parse GenesisHash ∈ dpbody
run b⟵VerifyMessageSig(sig, pk, add r, cp, hashdp), b ∈ 0, 1{ }

If b �� 0 then
1⟵err;
return err;

end
If H(GenesisHash)! � id then
1⟵err;
return err;

end
query sn and maxheight for id

If hstart >maxheight or maxheight≥ hend then
1⟵err;
return err;

else
hstart⟵maxheight;
maxheight⟵hend;

end
package dphead⟵(id, hstart, hend, vppsig)

return dphead, dpbody, maxheight, err

ALGORITHM 2: Preload.

Security and Communication Networks 7



processed by the dispatcher, the dispatcher will automati-
cally generate MessageIII and send it to the input of the
dispatcher’s message channel.Temain process is as follows:

(i) Step 1. Input MessageII to the dispatcher.
(ii) Step 2. Te dispatcher parses MessageII to

type, dpbody, hstart, hend, id . (6)

Te detailed structure of MessageII is listed in
Table 2. According to type, the message type is
MessageII.

(iv) Step 3. Te dispatcher loads the blockchain VM
corresponding to blockchain id and inputs it to the
loader. Meanwhile, the database interface corre-
sponding to blockchain id is opened to the loader.

(v) Step 4. Te loader uses the bare container to load
the corresponding VM, which is expressed as
Container(VM(id)).

(vi) Step 5. Te loader links Container(VM(id)) to the
interface of blockchain id in the database.

(vii) Step 6. Te loader starts Container(VM(id)) and
synchronizes blockchain id ledger from hstart to
hend to load data.

(viii) Step 7. After data are loaded, the dispatcher parses
dpbody to atomic transactions and transmits each
transaction to the input of the dispatcher’s message
channel in the form of MessageIII.

4.2.4. MessageIII, Execute. MessageIII, Execute is automat-
ically initiated by the dispatcher afterMessageII is processed.
Its main use is to distribute atomic transaction in single
messages through Cluster Management to the corre-
sponding container, which then, guided by the executor,
validates the transaction and executes the smart contract.

(i) Step 1. Input MessageIII to the dispatcher.

(ii) Step 2. Te dispatcher parses MessageIII into

(type, id, tx). (7)

Te detailed structure of MessageIII is listed in
Table 3. According to type, it is MessageIII. Te
dispatcher allocates this message to the execution
channel.

(iii) Step 3. Te executor passes the corresponding tx to
the working Container(VM(id)) according to the
id information in Message. If the container is not in
working state, the executor fetches
Container(VM(id)) from thecontainerlibrary
according to id.

4.2.5. MessageIV, Preload and Update. MessageIV, Preload
and Update is initiated by the node itself and can be regarded
as an extended version of MessageI. It can preload and
update virtual machine versions. Te dispatcher will frst
perform a preload process and then determine whether the
virtual machine of the corresponding blockchain needs to be
updated. If so, the virtual machine image stored in the
database will be updated. After the update, the dispatcher
will automatically generateMessageI and moreover feed it to
the input part of the dispatcher’s message channel. Te main
process is as follows:

(i) Step 1. Input MessageIV to the dispatcher.
(ii) Step 2. Te dispatcher parses MessageI into

type, vppsig, hstart, hend, id, VM − version . (8)

Te detailed structure of MessageIV is listed in
Table 4. According to type, the message type is
MessageIV.

(iii) Step 3. Te dispatcher operates Algorithm 3 and
then outputs

dphead, dpbody,maxheight, isupdate, err ←PreLoad&Update dphead, dpbpdy . (9)

If err equals to 1, break the process.
(iv) Step 4. If isupda te equals to 1, dispatcher parses

dphead into

id, hstart, hend, vppsig, VM − version . (10)

Te dispatcher updates the virtual machine corre-
sponding to blockchain id of the database to the
VM − version version. Te dispatcher packages

dphead← id, hstart, hend, vppsig , (11)

and sends (dphead, dpbody) as MessageI to the input
of the dispatcher’s message channel.

(v) Step 5. If isupda te does not equal to 1, dispatcher
will parse
dphead to (id, hstart, hend, vppsig, VM − version) and
sends

dpbody, hstart, hend, id , (12)

as MessageII to the dispatcher’s message channel.

5. Implementation and Experiment

In this section, we implement the VM-Studio prototype and
report our experiment results by comparing our prototype
with the original blockchain node implementations. We
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implemented our prototype in three unstable, dynamic
environments and applied it to than 1,300,000 blocks with
1,000,000 transactions for testing.

5.1. Implementation Details. We use an elastic compute
server with a 2.1GHz Intel Xeon(R) gold 6,230 CPU, a 32GB
of 2,400MHz DDR4 memory, a 1TB solid state disc, and an
Ubuntu 18.04 operating system to implement the proposed
system. Te node implementation (Go-Ethereum) was
modifed and could interact with the premade containers,
which loaded virtual machines from each involved block-
chain; we also employed the go-metrics package to addmetrics
to measure the execution time of the contract call function,
the contract create function, and the RPC communication
function. Full nodes are running on a proof-of-work
blockchain named Ropsten, while operating on a proof-of-
authority blockchain named Görli and the blockchain with
a hybrid consensus engine named BnB Smart Chain (BSC, for
short). For each blockchain, we test our prototype with more
than 1,300,000 blocks and up to 1,000,000 transactions. Ten,
we compare the overhead of the origin VM with our
implementation. Te results are as follows.

5.2. Experiment Results. As described above, we run ex-
periments on three blockchain networks: Ropsten,Görli, and
BnB Smart Chain. To test out the performance of our
prototype system, we measure the overhead of both the RPC
communication and the virtual machine computation; after
that, we conduct an overall overhead comparison between
the VM-Studio and the origin system. Te full node of each
blockchain is deployed on the elastic compute server
mentioned previously.

Firstly, we discuss the virtual machine computation
overhead of VM-Studio. Te three blockchain networks
contain diferent transaction sets, resulting in diferent
computation performances. As shown in Figure 3, the av-
erage computation overhead of the Ropsten blockchain goes
up during the frst 10,000 transactions and reaches the
highest point of around 285microseconds and then goes
slightly down to about 150microseconds until the total of
1,000,000 transactions are applied. Comparing the perfor-
mance of our prototype system with the original system, the
latency our system adds on is less than 35microseconds,
which may be a result of the data exchange between diferent
functions inside the container. From our view, the added
latency is acceptable for production usage.

Table 3: Message structure of MessageIII.

Parameters Meanings
type Message type and it has the value III

id
Te identifer of the blockchain from which the packet originated, which equals to

that in MessageII
tx An indivisible atomic transaction

Table 4: Message structure of MessageIV.

Parameters Meanings
type Message type and it has the value IV

vppsig

Publicly verifable signature parameters, including parameters related to node
identity:
(i) sig: the node’s signature for hashdp

(ii) pk: the node’s public key
(iii) add r: the node’s address in blockchain network
(iv) cp: the blockchain parameter that contains information such as the version byte
of the blockchain used to distinguish between the main network and the test
network
(v) hashdp: the hash value of the data package

hstart Te starting height of the synchronization block
hend Te ending height of the synchronization block
id Te identifer of the blockchain from which the packet originated
VM − version Te VM version of the blockchain from which the packet originated

Table 2: Message structure of MessageII.

Parameters Meanings
type Message type and it has the value II
dpbody Te body of the data packet, which contains the block data of the blockchain

hstart
Te starting height of the synchronization block, included in the outputs of

MessageI
hend Te ending height of the synchronization block, included in the outputs ofMessageI

id
Te identifer of the blockchain from which the packet originated, which equals to

that in MessageI
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As for the BnB smart contract blockchain network, re-
ferring to Figure 4, the average computation overhead
continues going down to about 10microseconds within the
frst 10,000 transactions. Ten, it keeps rising until it hits the
summit of more than 1,600microseconds when the virtual
machine goes through the entire 1,000,000 transactions. Te
performance of both systems is relatively close, and our
system performs slightly better when 1,000, 100,000, and
1,000,000 transactions come in. Te reason is that trans-
actions in the BnB SmartChain blockchain network are often
related to more sophisticated smart contract codes. Tere-
fore, our efcient EVM implementation presents better
performance. VM-Studio ofers about 8% performance
improvement (computed by (VO − OO)/OO, where VO

stands for VM-Studio overhead and OO stands for origin
overhead) though it is on a microsecond scale.

Figure 5 shows the average computation overhead on the
Görli blockchain network. Te overhead fuctuates. It hits
the summit of about 500microseconds when the virtual

machine executes about 10,000 transactions and comes
down to 270microseconds when 100,000 transactions come
in. Te performance diference is pretty apparent, and the
statistics indicate that the highest performance gap between
the two systems is around 40microseconds when 10,000
transactions are executed.

Besides the computation overhead of the system, we also
investigate the RPC communication latency added by VM-
Studio. We use gRPC to transfer the RLP-encoded [22]
transaction data between the Geth client and the virtual
machine container. Figure 6 describes the average com-
munication overhead of VM-Studio, which is caused by the
data exchange between the Geth client and the virtual
machine container. Te communication overheads that
VM-Studio adds when running on the Görli and Ropsten
show downward trends. Tey start at about
2,000microseconds when 1,000 transactions are executed
and fnally go down to about 400microseconds. However,
unlike the previous results, the overhead on the BSC stayed
stable at about 300microseconds during the whole

Input: dphead, dpbody

Output: dphead, dpbody, maxheight, err

Initialization: 0←b, 0←err, 0←maxheight parse (dphead, VM − version)←dphead

run Algorithm 2: (dphead, dpbody, naxheight, err)←Preload (dphead, dpbody)

query VM version version for id

If VM − version> version then
1←isupda te;

end
package dphead←(id, hstart, hend, vppsig, VM − version)

return dphead, dpbody, maxheight, isupda te, err

ALGORITHM 3: Preload and Update.
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Figure 3: Te average computation overhead on the Ropsten
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procedure. Te diferences may mainly result from the
characteristics of diferent blockchain systems, as the Görli
and Ropsten are test networks that might contain some large
transactions when they are frst launched. While the BSC is
the main network, its users will be more likely to consider
the size of each transaction.

Finally, we put the computation overhead and the RPC
communication overhead together to inspect the overall
overhead of the VM-Studio. As we can see from Figure 7, the
latency VM-Studio adds on continuously goes down with

the increment of the transactions. Te extra overhead stays
about 450microseconds when the 1,000,000 transactions are
executed, mainly due to the RPC communication overhead
that the VM-Studio adds. Furthermore, the situation on
Görli is quite similar, which we can read in Figure 8, and the
communication overhead is the main factor that afects the
performance of the VM-Studio. As for the BSC, Figure 9
indicates that the performance of VM-Studio is quite close to
that of the origin system. With about 300 extra microsec-
onds, the diference between the performances of both
systems is stable.

In conclusion, our experiments show that VM-Studio
achieves availability. Due to the size of the transactions and
the smart contract codes related to them, the prototype
system’s performance varies. As for communication costs,
VM-Studio may add up to about 2000microseconds to the
origin system, mainly due to large transactions. Moreover,
when economic factors restrict the sizes of transactions in
the real-world production environment, the communication
overhead is about 400microseconds. Besides, the compu-
tation cost of the VM-Studio fuctuates around that of the
original system. Te maximal latency the VM-Studio adds is
less than 40microseconds, which is less signifcant com-
pared with the communication overhead. Above all, the
overhead added by the VM-Studio is majorly infuenced by
the communication overhead, which is about
400microseconds in the real-world production environ-
ment. Terefore, we conclude that the extra latency is
acceptable.

6. Discussion

6.1.Analysis ofVM-Studio Scheme. Te primary goal of VM-
Studio is to ensure correct executions of both origin
blockchain transactions and smart contracts. Here, as we
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know, the execution of smart contracts is based on trans-
actions. Terefore, we only discuss the correctness of
transaction executions in the origin blockchain under our
VM-Studio architecture.

We considered two factors in the architecture design of
VM-Studio. First, the numbers and types of origin block-
chains are various. VM-Studio is required to manage the
resources of corresponding blockchains in a unifed manner.
We schedule the packaged containers into the container
library for unifed management to facilitate the overall

migration or sharing of VM-Studio by nodes. Virtual ma-
chine re-encapsulation is not required; instead, the system
ofers unifed interfaces to facilitate frequent fetching by the
executor. In the database, containers provide the following
unifed interfaces: VM images, facilitating the frst container
loading and subsequent VM version checking and
upgrading. Also, state snapshots are used by a VM to load
data from the corresponding states and state database to
import data into internal virtual machine images. Second,
the origin blockchain transaction data are quite large, and
each transaction will be sent to the container for execution as
an atomic transaction. Terefore, the amount of transaction
data multiplied by the number of origin blockchains will be
millions. To solve the problem, we separate incoming
messages of such atomic transactions from single-digit
messages and place them in two diferent message queues.
Tus, the cluster management software can allocate a large
number of resources to the system for centralized processing
of transactions without delaying the processing of other
messages.

In addition, we have ensured this in the specifc process
design for four types of messages. First, when the message is
input to VM-Studio for the frst time, the system authen-
ticates the packet header of the message through Algo-
rithm 2. On the one hand, it verifes the signature of the
message source. On the other hand, it dynamically adjusts
the synchronization of the related origin blockchain in VM-
Studio to facilitate subsequent loading processes. Second,
VM images are loaded into containers from the origin
blockchain. Transactions according to the original order
have been continuously input into the container. Te
container’s internal execution environment and that of the
origin blockchain are entirely consistent, as long as the
origin blockchain consensus has no objections to transaction
results, which can ensure that transactions trading in VM-
Studio perform correctly. Tird, updating the virtual ma-
chine version will afect the transaction execution results.
Since the update frequency of the virtual machine version is
not high, we provide MessageIV to realize the update of the
virtual machine in the database by VM-Studio.

6.2. Universality and Overhead. We explain that the VM-
Studio solution is universal for the origin and target
blockchains. Here, we illustrate two aspects. First, for an
origin blockchain, the virtual machine means a machine that
can automatically execute specifc formats and certain types
of transactions, and the relevant execution rules and veri-
fcation rules have been hard coded inside the virtual ma-
chine. We load the virtual machine image into the container;
thus, the container contains all the virtual machine rules,
presenting corresponding data interfaces to the outside
environment. Second, VM-Studio can be regarded as a set of
components, which have little dependency on the block-
chain architecture, and can be deployed at any node of the
target blockchain. Terefore, VM-Studio also shows uni-
versality for the target blockchain. In addition, regarding the
performance of VM-Studio to execute transactions on the
target blockchain, in Section 6, experimental results have
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shown that executing transactions on VM-Studio is slightly
less efcient than those on the original system. Te reason is
that the transaction execution time related to sophisticated
contract codes is mainly afected by the virtual machine, and
the communication complexity inside and outside the
container is insignifcant in front of the computational
complexity of the established transaction execution program
of the virtual machine. However, the communication
complexity mentioned above will take the lead when con-
fronting simple transactions.

6.3. Read and Write Ability. We try to give a crosschain
smart contract invocation example based on VM-Studio.
Suppose that there exists a multichain system
M(n) � C1, ..., Cn−1, Cn , where C(n) is a blockchain ded-
icated to initiating crosschain smart contract calls with VM-
Studio components deployed on its nodes. While the VM
images of C1, ..., Cn−1  have been loaded into the VM-
Studio container and their blockchain ledger, VM (latest
version) images and state snapshots are stored in the VM-
Studio database. At this point, we can consider that the
blockchain Cn can run smart contracts on other chains.

As we know, calling a smart contract can be abstracted
into two basic instructions: Read and Write. For a general
blockchain system C, the usage of Read instruction only
reads the chain state SC but does not cause the change of SC.
Terefore, based on the world state of blockchain C and the
execution environment of virtual machines, the Read in-
struction does not need to participate in the consensus of C

to complete. However, the Write instruction directly
changes the chain state SC of the blockchain C. Tis process
requires the consensus of chain C. Terefore, if a crosschain
smart contract call transaction contains many Write in-
structions for diferent blockchain states, the system where
VM-Studio is located is difcult to achieve. In particular,
we specify that Write directives also include Read
directives.

Now, consider a simple case where there is at most one
crosschain smart contract call to a Write instruction. We
give the following example:

(i) Step 1. Construct a crosschain smart contract call
transaction, denoted as follows:

id � idCn
,Read C1, C2, · · · , Ci( ,Write(C(n)) . (13)

Te target chain of this transaction is C(n), in-
cluding chains C1, C2, ... , the Read instruction on
CI, and the Write instruction on the chain C(n).

(ii) Step 2. Submit this transaction to VM-Studio, thus
dividing it into i + 1 atomic transaction:

Read C1( , · · · ,Read Ci( ,Write Cn( . (14)

(iii) Step 3. Te above i + 1 atom transactions are pre-
sented to cluster management sequentially, and the
corresponding container is further invoked through
the executor to execute previous i atom
transactions.

(iv) Step 4. Call Container(VM(idC(n))) to perform
Write(Cn).

(v) Step 5. Trade execution results and submit

id � idCn
,Read C1, C2, · · · , Ci( ,Write(C(n)) , (15)

to the blockchain.

So far, we have achieved a simple single-write crosschain
smart contract call transaction by VM-Studio in the het-
erogeneous chain environment. In the above transaction

id � idCi
,Read C1, C2, · · · , Ci( ,Write(C(n)) , (16)

the transaction should be submitted to the blockchain Ci for
confrmation after the consensus. However, this problem
can be addressed if a VM-Studio component is used on
blockchain Ci.

Te invocation scheme of the crosschain smart contract
with a multiwrite type needs to be realized by the locking
mechanism and incentive mechanism under the premise of
VM-Studio, starting from the atomicity of crosschain
transactions. We will focus on this issue in the future.

7. Conclusion

Te heterogeneity of blockchain is one of the signifcant
factors hindering crosschain schemes. Tis study proposes
VM-Studio, a universal crosschain smart contract verifca-
tion and execution scheme. Te main idea of VM-Studio
design is to transform the compatibility and adaptation of
the original transaction execution construction, namely,
virtual machine construction, into the migration and en-
capsulation of origin blockchain virtual machines. By
establishing a close virtual machine container and providing
a unifed data interface, the transaction execution envi-
ronment of all VM-supported origin blockchains can be
simulated on the target blockchain to complete the verif-
cation of crosschain smart contracts. Trough theoretical
analysis and experimental verifcation, we conclude that
VM-Studio has negligible performance loss compared with
the origin blockchain when executing transaction orders
within the order of 100,000. Finally, we give an example of
a single-write invocation towards crosschain smart contracts
to demonstrate the feasibility and applicability of VM-
Studio.
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