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Te explosive growth of web-based technology has led to an increase in sophisticated and complex attacks that target web
applications. To protect against this growing threat, a reliable web attack detection methodology is essential. Tis research aims to
provide a method that can detect web attacks accurately. A character-level multichannel multilayer dilated convolutional neural
network (MC-MLDCNN) is proposed to identify web attacks accurately. Te model receives the full text of HTTP requests as
inputs. Character-level embedding is applied to embed HTTP requests to the model. Terefore, feature extraction is carried out
automatically by the model, and no additional efort is required. Tis approach signifcantly simplifes the preprocessing phase.
Te methodology consists of multichannel dilated convolutional neural network blocks with various kernel sizes. Each channel
involves several layers with exponentially increasing dilation sizes.Trough the integration of multichannel andmultilayer dilated
convolutional neural networks, the model can efciently capture the temporal relation and dependence of character granularity of
HTTP requests at diferent scales and levels. As a result, the structure enables the model to easily capture dependencies over
extended and long sequences of HTTP requests and consequently identify attacks accurately. Te outcomes of the experiments
carried out on the CSIC 2010 dataset show that the proposed model outperforms several state-of-the-art deep learning-based
models in the literature and some traditional deep learning models by identifying web attacks with a precision score of 99.65%,
a recall score of 98.80%, an F1 score of 99.22%, and an accuracy score of 99.36%. A useful web attack detection systemmust be able
to balance accurate attack identifcation withminimizing false positives (identifying normal requests as attacks).Te success of the
model in recognizing normal requests is further evaluated to guarantee increased security without sacrifcing web applications’
usability and availability.

1. Introduction

1.1. Background. Web applications are the gate to a great
deal of sensitive data. Te convenience of the Internet en-
ables a large number of attackers to interact with web ap-
plications. Attackers have been able to conduct massive
attacks more swiftly due to sophisticated and well-planned
attack strategies through a variety of network technology
tools. Web attacks continue to grow in both frequency and
severity daily. Internet users are particularly at risk for
threats that could result in monetary loss, identity theft, data
fraud, and a loss of trust in conducting business. It is es-
timated that by 2025, the fnancial loss will amount to $10.5

trillion [1]. Researchers are developing new theoretical
advancements to improve web security to reduce web
attacks [2].

1.2. Limits of PriorATRs. For more than a decade, numerous
studies have provided solutions that make use of machine
learning (ML) approaches to address web attack detection
difculties. However, it is believed that these kinds of so-
lutions have only achieved a limited level of adoption in
practice since they demand a signifcant amount of expert
efort to develop and maintain [3]. For many solutions in
this discipline, feature engineering is necessary to attain the
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desired performance.Te current approaches focus on using
bag-of-words feature engineering techniques, which reveal
details about the entity of a word included inside the dataset.
As a result, these techniques sufer from a lack of precise
representation of the sequence in the dataset. Moreover, ML
feature representations must be updated to keep up with the
most recent web attacks. Given that feature engineering is
frequently considered to be the most time-consuming
component of developing an ML system, deep learning
has drawn considerable attention for the detection of web
attacks.

Deep learning algorithms are a branch of ML that
employs artifcial neural networks. Tey are better than
conventional ML techniques as they can automatically learn
the expressive feature representation, the lexical pattern, and
the sequencing pattern of a given input while generalizing
the expressive data representation. Tey have demonstrated
an outstanding performance in many research felds such as
image processing [4], natural language processing [5],
speech recognition [6], computer vision [7], human activity
recognition [8–12], and cyber security felds [13, 14]. In
recent years, 1D convolutional neural networks (1D CNNs)
in particular have shown an impressive performance for text
classifcation [15, 16]. A considerable amount of research has
also been conducted for web security based on deep
learning-based approaches [17, 18]. Te preprocessing stage
of HTTP requests is greatly simplifed at the character level
in a number of deep learning-based approaches in the lit-
erature [2, 19]. Tese methods considered the HTTP re-
quests as a series of characters and attempted to capture the
character granularity dependencies to extract the pattern of
attacks.

Despite the state-of-the-art performance of deep
learning applications for web attack detection, they still have
limitations when it comes to capturing long-term relations.
For instance, in order to cover longer sequences, convolu-
tional neural networks (CNNs) require larger receptive
felds. Wider receptive felds necessitate more layers, and
additional layers lead to additional parameters and a more
challenging training procedure [20]. Another efective
technique for handling sequential data is the use of long
short-term memory networks (LSTMs), in which the re-
ceptive feld may equal the entire input. Yet, due to their
challenges in handling the issue of vanishing/exploding
gradients, LSTMs still have difculties in learning very long-
term relations [21].

1.3. Research Motivation. Dilated convolutional neural
networks (DCNNs) can be considered as a middle point of
CNNs and LSTMs [22]. Dilated CNN is a type of CNN in
which the flter has a defned spacing or dilation rate, en-
abling the network to increase its receptive feld without
adding more parameters. Dilated CNNs have the ability to
signifcantly grow receptive felds without afecting resolu-
tion or coverage [23]. Dilated CNNs have lately achieved
remarkable success in image segmentation [24], text clas-
sifcation, and text-to-speech [25, 26]. Tis study’s main goal
is to accurately identify web attacks using the full text of

HTTP requests while keeping the preprocessing phase as
simple as possible. Hence, the HTTP requests are regarded
as sequences of characters. Dilated CNNs’ efectiveness in
capturing long-term relations and dependencies in com-
parison to the shortcomings of LSTMs and CNNs served as
our motivation. In this study, a model based on dilated
CNNs is developed as a multichannel multilayer dilated
CNNs (MC-MLDCNNs). Te model takes the full text of
HTTP requests as the input, prepossesses them at the
character level, and passes them as vectors to the model for
the detection task.

Te proposed methodology is developed exclusively for
the detection of complicated and challenging patterns of web
attacks that traditional security techniques could fail to
recognize. It is expected that the proposed model will
perform better than several existing models in terms of
accuracy, false positive rate (FPR), precision, recall, and F1
score. It is predicted that the proposed methodology will
show its efciency in identifying web attacks, hence im-
proving the security posture of online systems and services.

1.4. Main Contribution. Tis study proposes a character-
level multichannel multilayer dilated convolutional neural
network (MC-MLDCNN). Te model’s architecture has the
following benefts:

(i) Since the full text of HTTP requests is analyzed at
the character level to automatically extract the
relevant and important features, the preprocessing
and feature extraction process is thereby greatly
simplifed. Te character-level strategy makes the
model adaptable and simple to apply since it does
not rely on external eforts to derive key features of
attacks.

(ii) Te dilated CNNs in the model’s structure help to
address the shortcomings of LSTM and CNNs in
terms of capturing long-term dependencies.

(iii) Te model benefts from the use of many channels
with diferent kernel sizes in order to extract a va-
riety of temporal relationships from the requests.

(iv) Each channel consists of stacking layers of dilated
CNNs with exponentially increasing dilation sizes.
Accordingly, receptive felds are expanded expo-
nentially. Tis strategy enables the model to extract
various temporal relations at diferent levels, cap-
ture high-ordered feature interactions, and conse-
quently discover complex and long-term
dependencies of inputs.

To the best of our knowledge, character-level MC-
MLDCNN is frst specifcally tailored to detect web attacks.
Te study’s main contribution is the methodology’s spe-
cifcally designed structure, which is based on dilated CNNs.
Te efectiveness of the proposed methodology for identi-
fying web attacks is investigated in the section Results and
Discussion. According to the obtained results conducted on
the CSIC 2010 dataset [27], the proposed methodology
outperforms several competitive state-of-the-art models in
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the literature in terms of accuracy, false positive rate, recall,
precision, and F1 score. In the feld of cyber security, our
developed model for detecting web attacks represents
a signifcant advancement that contributes to scientifc
knowledge in several ways.

1.4.1. Enhanced Attack Detection Accuracy. Te proposed
methodology closes a signifcant gap in current web attack
detection solutions by concentrating on both short-term and
long-term relationships of characters. Consequently, it can
extract the complicated pattern of web attacks efciently. In
comparison to conventional methods, it achieves higher
accuracy in identifying complex attacks by utilizing multi-
channel multilayer dilated CNNs. Tis increase in accuracy
makes the defense against web-based attacks more reliable.

1.4.2. Reduced False Positives. Any successful cyber security
system must focus on reducing false positive (identifying
normal requests as attacks) alerts. Te load on security
workers will be reduced as a result of our model’s reduction
in false alarms, which also lowers the possibility that actual
attacks might be missed. Tis enhancement helps create
a more efective security infrastructure and improved re-
source allocation.

1.4.3. Protection against Evolving Attacks. Intricate patterns
and hidden malicious activity are frequent components of
difcult-to-recognize attacks over the Internet, which can
elude detection by traditional security technologies. Te
fexibility and capability of the proposed methodology to
identify evolving attacks assist in the ongoing scientifc study
of risks associated with cyber security.

1.4.4. Data-Driven Insights. Te proposed methodology
produces useful information and insights about new attack
trends and patterns as part of its operation. To develop
proactive security measures and advance the feld of attack
intelligence more broadly, such information can be studied
to better comprehend cyberattacks.

1.4.5. Framework for Further Research. Future studies in the
area of web attack detection can build on the basis provided
by the proposed methodology. Researchers can expand on
its architecture by adding new features and optimizing al-
gorithms, promoting ongoing developments in the cyber
security industry.

In a nutshell, the proposed methodology contributes to
scientifc knowledge by pushing the limits of what is possible
in cyber security in addition to providing practical solutions
to the critical challenge of complicated web attacks. It is
a valuable advancement to the ongoing eforts for protecting
modern systems and infrastructure against novel attacks due
to its accuracy, decreased false positives, adaptability, and
possibility for further research.

Te proposed methodology could be deployed in many
locations in a security architecture as shown in Figure 1.
Figure 1(a) shows that MC-MLDCNN is located in between

a frewall and a web server. Figure 1(b) shows that MC-
MLDCNN is located in parallel to the web server to alert
security operators. Figure 1(c) shows that MC-MLDCNN is
used in place of a WAF, or even better, together with a WAF
to enhance its efcacy.

2. Related Work

Mehta et al. carried out a comparative assessment of ma-
chine learning methods for the goal of detecting SQL in-
jection, including logistic regression, random forest, SVM,
naive Bayes, decision trees, gradient boost, K-means clus-
tering, and KNN [28]. Te fndings of the experiment in-
dicate that logistic regression performs best. Louk and Tama
integrated bagging with gradient boosting decision tree
(GBDT) techniques such as gradient boosting machine
(GBM), LightGBM, CatBoost, and XGBoost to identify
anomalies in an intrusion detection system [29]. According
to the results, a combination of bagging and a gradient
boosting machine (GBM) achieves the highest performance.

Deep learning methodologies have been progressively
adopted in recent years and have shown promising results
when compared to traditional ML approaches. Te efec-
tiveness of deep learning approaches over conventional ML
techniques for the intrusion detection task is demonstrated
in an experiment conducted by Althubiti et al. using the
CSIC 2010 dataset [30]. Althubiti et al. extracted fve im-
portant features to train the LSTM. Te results of the study
demonstrate that Althubiti et al.’s deep learning-based
strategy beats a study [31] that used the same data with 9
extracted features and traditional ML techniques. Recurrent
neural networks (RNNs) are also employed in a publication
[32] to perform the same detection task on the NSL-KDD
dataset. RNN is fed and trained after a feature engineering
process. Te model’s performance is contrasted to bench-
mark ML algorithms. RNN performs better than MLmodels
according to the results of the experiment. Fang et al. in-
tegrated LSTMwith a bidirectional recurrent neural network
(BRNN) to estimate the cyberattack rates [33]. Xing et al.
conducted the experiments using self-collected data and
compared the fndings to hybrid models that included ML
algorithms as well as statistical prediction models like
ARIMA.

In a study for the identifcation of phishing attacks,
Kasim makes use of both machine learning and deep
learning techniques [34]. Te features are encoded using
a sparse autoencoder and a principal component in the
proposed approach’s feature engineering phase.With the aid
of the light gradient boosted machine model (LightGBM),
the encoded features are selected and categorized. Te
ISCX-URL dataset, which contains 77 distinct features, is
used for evaluation. Tese features include measures related
to the URL, host, domain, directory, fle, and more. Out of
the 154 features produced by the outputs of the principal
component and autoencoder, the top 20 features for the
study are chosen. In order to distinguish between regular
HTTP and attack, Dawadi et al. conducted a comparison
analysis between the two types of HTTP requests to extract
attack-indicating characteristics and features using IDS
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ISCX 2012, 2019 DDoS CIC, and CISC 2010 datasets [35].
Te relative features are given into a layered LSTMmodel for
the task of attack detection after the feature engineering and
preprocessing phase. For the evaluation stage, self-collected
data are utilized. Although the discussed proposed models
have achieved good performance, they are all highly reliant
on feature engineering.

Hao et al. suggested a model based on stacked Bi-LSTM
to detect web attacks [36]. Te URL and the body of the post
requests of the CSIC 2010 dataset are simply used. Te word
embedding technique is utilized to feed the input to the
model. Each word is converted into a word vector using the
Word2vec technique [37]. Similarly, Alaoui and Nfaoui used
Word2vec to feed the CSIC 2010 dataset’s HTTP method,
HTTP request, and payload to the model [38]. Alaoui and
Nfaoui employed an ensemble of LSTMs to identify web
attacks. Zhang et al. suggested a word-level CNN utilizing
the full text of the HTTP CSIC 2010 dataset [39]. Kernels of

diferent sizes are used to convolve in the convolution layer
of the model. A max-pooling layer is next applied to the
outputs, and the results are passed to a fully connected layer
for classifcation purpose.

Trough the use of deep learning models, Tian et al.
proposed a distributed system for web attack detection [40].
Te methodology can be used in an Edge-of-Tings (EoT)
environment. FastText [41] and M-ResNet, a particular
variation of ResNet [42], are incorporated in the proposed
method. Te URLs of the requests are converted to vectors
using Word2vec and TF-IDF. After that, the vectors are
concatenated and fed to the model. Similarly, Luo et al.
developed an ensemble-based methodology to identify web
attacks in a distributed environment [43]. Te detection of
web attacks is carried out individually using three deep
learning models: M-ResNet, LSTM, and CNN. Using the
results gathered from the models, an ensemble classifer then
makes its fnal prediction. Although these techniques

MC-MLDCNN

Firewall Web Server
Internet

Attacker

(a)

MC-MLDCNN

Internet

Firewall Web Server
Attacker

(b)

MC-MLDCNN

Firewall Web Server

WAF

Internet

Attacker

(c)

Figure 1: Examples of how the proposed model can be incorporated into real-world security architectures. (a) MC-MLDCNN is located in
between a frewall and a web server. (b) MC-MLDCNN is located in parallel to the web server to alert security operators. (c) MC-MLDCNN
is located in parallel to a WAF to enhance the efcacy.
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successfully identify attacks, they have limits since they are
focused on word-level strategies. For instance, word-level
methodologies are not able to extract any valuable in-
formation from newly discovered words that appear in the
test phase and are absent from the training set. In addition,
memory problems also arise when the number of distinct
words increases.

Rong et al. applied a character-level embedding tech-
nique in their proposed CNNmodel [44].Tey used only the
query part of HTTP requests to detect injected attacks and
conduct the experiments on the data that have been in-
dependently crawled by the authors themselves. In addition
to the query parameters, Odumuyiwa and Chibueze used the
body parameter of POST requests in their character-level
CNN model to identify HTTP injection attacks [45].
Character-level CNNwas used by Saxe and Berlin to identify
malicious URLs, fle paths, and registry keys [3]. Saxe and
Berlin used several convolutional layers with various kernel
sizes followed by a sum-pooling layer in the model. Te
evaluation is conducted by utilizing Saxe and Berlin
custom data.

Jemal et al. used both CNN and LSTM to identify web
attacks [2, 19]. An LSTM is included after the CNN layer in
the suggested models. Te CNN component ignores the
irrelevant data and achieves the input’s important proper-
ties, while the LSTM component captures the data’s se-
quential relationship. While Gong et al. applied character
embedding to URLs of the CSIC 2010 dataset, Jemal et al.
employed ASCII embedding (the code-level information) of
the full text (whole content) of HTTP requests.

Vinayakumar et al. investigated some deep learning
algorithms based on CNN, RNN, LSM, and CNN-LSTM
architectures to categorize malicious/benign URLs using the
character-level embedding technique [46]. LSTM and
CNN-LSTMmodels are themost efective ones for the attack
detection task according to the Vinayakumar et al. reported
results.

Hung et al. leveraged both character embedding and
word embedding techniques to enhance the performance of
the proposed CNN model [47]. Te performance of the
suggested approach is assessed using the URLs of Hung
et al.’s self-collected data.

Kasim uses SVM to detect DDoS attacks and makes use
of an autoencoder for feature learning along with di-
mensionality reduction [48]. Yi et al. evaluated and analyzed
the application of deep learning-based approaches for
network attack detection [49]. Teir research covers tech-
nologies for feature extraction, trafc representation, model
training, and model robustness enhancement, as well as
several difculties and issues that may arise during the
development stage, such as unbalanced data and
distribution shift.

To represent features and detect anomaly-based web
attacks, Pillai and Sharma used deep learning methodologies
[50]. A stacked autoencoder (SAE) and a denoising
autoencoder (DAE) outputs are combined and fed into the
generative adversarial network (GAN) as input to enhance
the feature representation. For the classifcation phase, the
deep Boltzmann machine with Bi-LSTM is proposed. As

a binary classifer, the deep Boltzmann machine is utilized to
detect attacks. Bi-LSTM is additionally applied as a multi-
class classifer to categorize various types of attacks.

Tajeel et al. carried out a thorough literature review of
ML and deep learning techniques used for the goal of
detecting XSS attacks [51]. CNN is found to be the deep
learning-based algorithm that is most frequently used.
Diferent preprocessing methods including feature engi-
neering and data cleansing are also examined. In addition,
the widely employed performance metrics are assessed.
According toTajeel et al.’s study, accuracy, precision, recall,
and F1 scores are the most commonly employed metrics for
the XSS attack detection task.

Dilated CNNs were recently used by Rizvi et al. for an
intrusion detection system [52]. Numerous successive di-
lated CNN layers without including any max-pooling layer
are applied along with some feature engineering in the
proposedmodel.Te performance is assessed using the CSE-
CIC-IDS2018 and CIC-IDS2017 datasets.

Table 1 provides a summary of the studies that have been
discussed in this section.

3. Methodology

Tis section gives details about the dataset in the subsection
Dataset and the structure of the proposed methodology as
MC-MLDCNN in the subsection Character-Level MC-
MLDCNN.

3.1.Dataset. TeCSIC 2010 HTTP dataset is one of the most
well-known and frequently used datasets in the area of web
security. Tis dataset is the focus of numerous comparative
experiments in the literature [2, 36, 39, 53, 54]. It is created
by the Spanish Research National Council (CSIC) in 2010 at
the Information Security Institute. It contains the most
serious attacks that target the web servers as static attacks
and dynamic attacks such as SQL injection, CRLF injection,
cross-site scripting (XSS), bufer overfows, information
gathering, fle disclosure, server-side include, parameter
tampering, and unintentional illegal requests.

It has 61065 requests which include 36,000 normal re-
quests and approximately 25,000 abnormal requests. Nearly,
59% of the dataset is normal and 41% is abnormal. Te full
text of the HTTP requests is used for the experiments in this
study. An example of a request is demonstrated in Figure 2.

3.2. Character-Level MC-MLDCNN. Te character-level
embedding technique and the MC-MLDCNN structure
are described in the following subsections.

3.2.1. Character-Level Embedding. A character-level em-
bedding is used to represent and embed the full text of HTTP
requests into the model. Character embedding not only
makes the model learn the structural patterns of the input
string but also gives the model the ability to attain em-
bedding for new unseen inputs. Many word-level embed-
ding approaches sufer from the inability to extract patterns
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for unseen words. Besides, the model size will increase as the
data size increases. Character-level embedding has the ad-
ditional beneft of maintaining the model size stable as the
number of characters is constant. Consequently, the
memory problem regarding word embedding is alleviated.
In the embedding phase, a vocabulary consisting of al-
phabets and numeric characters is formed. In addition, some
other characters that appear frequently in HTTP requests are
added to the vocabulary as illustrated in Table 2.

Te UNK token is added to the vocabulary for the
characters that are not in the alphanumeric and special
characters defned in Table 2. Token PAD is defned for
padding purpose. Every character has a special embedding
vector, and this information is kept in an embedding matrix
(EM). After getting the indices of the vocabulary according
to Table 2, each of the HTTP requests can be represented as
a sequence of indices. Tese indices are the index of each
character in the embedding matrix (EM). Te sequence
length is set to a threshold θ. Any HTTP requests less than
this threshold are padded, and the longer ones are truncated.
Each character is embedded into a k-dimension vector. Te
embedding is subsequently given a random initialization
before being trained. Each row includes a character’s vector
representation in the character-level embedding matrix.
Hence, a character-level embedding of an input results in
a matrix with θ rows and k columns Input⟶ Rθ×k (see
Figure 3).

3.2.2. MC-MLDCNN Framework. CNN is a deep network
structure made up of several layers such as the input layer,
convolutional layer, pooling layer, fully connected layer, and
output layer [55]. Te alternating convolutional and pooling
layers make up the most noticeable structure among these
layers. In a multilayer CNN structure, a convolutional layer
plus a pooling layer may extract important features at
various levels. In CNNs, three architectural principles are
integrated to ensure shift invariance at some level: local
receptive felds, spatial/temporal subsampling, and shared
weights [55]. Te relationship between the receptive feld
size and the number of layers and kernel size is linear. To
cover a longer sequence, a bigger receptive feld is needed. A
bigger receptive feld necessitates more layers, which results
in complicating the learning process. Dilated convolutions

provide receptive felds that are expanding exponentially
while maintaining resolution and coverage.

Dilated convolutions [23] are convolutions in which the
flter is applied over a region that is longer than its length by
ignoring input data at a certain phase. To put it simply,
dilated convolutions are convolutions applied to input with
specifed gaps. Te goal of dilated convolutions is to increase
the convolution kernel’s receptive feld while maintaining
the number of kernel parameters untouched. It is performed
by flling a fxed element 0 between the original convolution
kernels. Conventional CNNs are equal to dilated CNNs with
a dilation size of 1 without any gap between the parameters
of the kernel. An example of a transformed kernel in dilated
CNNs is shown in Figure 4.

Te receptive feld of dilated convolutions can be ex-
ponentially enlarged by applying multiple convolutional
layers with increasingly dilated values successively. As
a result, information in the larger context can be integrated
with less computing efort. Figure 5 demonstrates a three-
layer convolution structure for both traditional and dilated
convolution neural networks. Te number of parameters in
both CNN and dilated CNN is the same. Under identical
circumstances, the dilated CNN may gather data from
a wider area of input in comparison to the traditional CNN.

In this study, a multichannel multilayer dilated CNN is
proposed as MC-MLDCNN. Each channel is made up of the
input layer, dilated convolutional layers each followed by
a pooling layer, a fully connected layer, and an output layer.
All the convolutional operations are based on 1D convo-
lutions [56]. A multichannel multilayer dilated CNN in-
cludes multiple channels ci (where i ∈ 1, 2, 4, . . .{ }). In each

GET http : //localhost : 8080/tienda1/index.jsp HTTP/1.1
User–Agent : Mozilla/5.0 (compatible; Konqueror/3.5; Linux)
KHTML/3.5.8 (like Gecko)
Pragma : no–cache
Cache–control : no–cache
Accept : text/xml, application/xml, application/xhtml+xml, text/html;
q=0.9, text/plain; q=0.8, image/png, */*; q=0.5
Accept–Encoding : x-gzip, x-deflate, gzip, deflate
Accept–Charset : utf–8, utf–8; q=0.5, *; q=0.5
Accept–Language : en
Host : localhost : 8080
Cookie : JSESSIONID=1F767F17239C9B670A39E9B10C3825F4
Connection : close

Figure 2: Te full text of an HTTP request in the CSIC 2010 dataset.

Table 2: Vocabulary table of characters and their indices in the
one-hot encoding matrix.

Column Index
abcdefghijklmnopqrstuvwxyz 1–26
0123456789 27–36
-,;.!?:’ ”/∖ | _@#$%̂&∗∼‘+-�<>()[]{} 37–69
UNK 70
PAD 0
It contains frequently used alphanumeric and special characters in the
requests (indices 1–69). Any other character is defned as an unknown
character (UNK with index 70). Te 0 index is used for padding purpose.

8 Security and Communication Networks



channel, ci contains a fxed kernel size ki and exponentially
increasing dilation size ∈ 1, 2, 4, . . .{ }. Te kernel size varies
among the channels ki:∈ 2, 3, 4, . . .{ }. Each of the dilated
CNN layers is followed by a max-pooling layer to extract the
infuential features. Te kernel size of max-pooling layers kp

is fxed and set to 3 in all layers.
Each channel can exploit the temporal relationship of

length ki in its input and expand it exponentially. Tis
strategy makes the model able to capture temporal and local

dependencies of various scales at diferent levels. Te output
of the channels is then concatenated, fattened, and passed to
a fully connected layer. Consequently, the model is better
able to extract aggregated contextual information at diferent
levels and can learn complex and long-term dependencies.

Given an HTTP request as input, Figure 6 briefy de-
scribes the feature mapping phase of a multilayer dilated
CNN. Figure 7 illustrates the general structure of MC-
MLDCNN.

get http://localhost:8080/…
………

….connection: close

7

5

20

19

5

k

θ

g

e

t

s

e

Matrix
representation

Tokenize to
the sequence of

characters

HTTP full
request Converting to

sequence of indices
according to Tabe 2

Figure 3: Character-level embedding of an HTTP request.

P1

0

0

P2

dilation
size of 3P1

P2

Figure 4: A transformed convolution kernel with a dilation size of 3.

Input

Conv layer
with kernel

size of 2

Conv layer
with kernel

size of 2

Output

Input

Conv layer with
kernel size of 2 and

dilation size of 2

Conv layer with
kernel size of 2 and

dilation size of 2

Output

CNN Dilated CNN

Figure 5: Dilated CNNs in comparison with traditional CNNs. A wider range of the input is included in dilated CNN in contrast to the
CNN.
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3.2.3. Model Confguration. Te model contains two
channels. All of the models are implemented with Keras [57]
and Python [58]. After converting the HTTP requests to

lower cases, a tokenizer is initialized and ftted to the data in
the character embedding phase according to Table 2. Each
character is embedded into a 71-dimensional vector. Te

get http://localhost:8080/…‥
connection: close

HTTP request

g

e

t

c

l

o

s

e

7

5

20

3

12

15

19

5

Tokenizing
Sequence
of indices

Matrix
representation

k1 = 2
d = 1 
kp = 1

k1 = 2
d = 2 
kp = 1

k1 = 2
d = 3
kp = 1

Figure 6: Given an HTTP request as input, the feature mapping operation in a multilayer dilated CNN is simply demonstrated. Te flter
size k1 is fxed to 2 in all layers. Te 1 value of k1 represents the channel’s number which is 1 in this example. Te dilation sizes for the frst,
second, and last layers are 1, 2, and 3, respectively.

Flatten
layer

Fully
connected

layer

OutputInput

Character
level

embedding
matrix

Flatten
layer

Flatten
layer

Concatenation

sigmoid
layer

k1 = 2
d = 1
kp = 3

k1 = 2
d = 2
kp =3

k2 = 3
d =1

kp = 3

k3 = 4
d = 1
kp = 3

k3 =4
d = 2
kp =3

k3 =4
d = 3
kp =3

k3 =4
d = 4
kp =3

k2 = 3
d = 2
kp =3

k2 = 3
d =3
kp =3

k2 = 3
d = 4
kp =3

k1 = 2
d =3
kp =3

k1 = 2
d = 4
kp =3

Figure 7: Te general structure of MC-MLDCNN: the model has three channels. Te frst channel has a kernel size of 2 with exponentially
increasing dilation sizes as 1, 2, and 4. Te second channel has a kernel size of 3 with the same dilation sizes. Te third layer has a kernel size
of 4 with the same dilation sizes as the other layers. Since the kernel sizes vary at each channel, the afected regions are diferent at each layer.
For the sake of simplicity, the dilation sizes are increased incrementally rather than exponentially.
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embedding is then randomly initialized and learned during
the training phase. Te obtained representations are stored
in an embedding matrix (EM) where each row is a vector
representation of a character. Since more than 99 percent of
requests have lengths less than 900, θ is set as 900. Hence,
a character-level embedding of each HTTP request results in
a matrix with 900 rows and 71 columns. Te model consists
of 2 channels each with 256 kernels and fxed sizes of 5 and 6,
respectively. Each channel includes 3 convolutional layers.
Te frst convolutional layer has no dilation (equal to a di-
lation size of 1), whereas the next convolutional layers are
with successive dilation sizes of 2 and 4. Each convolutional
layer is followed by a max-pooling layer with a kernel size of
3. Te outputs of each channel are concatenated, fattened,
and passed through a fully connected layer with 512 nodes
and regularized by the dropout technique at a rate of 0.2.
Binary cross entropy as a loss function and the Adam op-
timizer with a learning rate of 0.001 as an optimization
strategy are applied. Te ReLU activation function is used in
all layers, and the sigmoid layer is applied for classifcation
purpose. A simplifed diagram of the model is shown in
Figure 8.

4. Results and Discussion

Te dataset is divided into training sets and test sets ran-
domly, making sure that the class distribution in each set is
similar to the original dataset. Te hold-out strategy [30, 59]
is applied as the size of the dataset is sufciently large. Hence,
in the experiments, 67% of the dataset is utilized as a training
set and 33% is employed as a test set. As a result, a signifcant
portion of the data is allocated to testing while still leaving an
adequate amount for the training phase.Te experiments are
conducted in two steps: the hyperparameter tuning part and
the evaluation phase with the obtained parameters.

4.1. Hyperparameter Tuning. Te key hyperparameters of
the proposed methodology are the number of channels, the
number of kernels, the sizes of the kernels, the number of
fully connected layers’ nodes, and the sizes of the dilations.
10% of the training set is used as the validation set for the
assessment’s fndings. First, a multichannel CNN (MC-
CNN) is built as a baseline model to determine the number
of channels, with each channel having one block of CNN.
Te number of kernels and the number of nodes are ini-
tialized as 256 and 512, respectively. Te fndings for various
channel sizes and their corresponding kernel sizes are dis-
played in Table 3. Two channels with kernel sizes of 5 and 6
produce the greatest results. Tis means the best results are
achieved when 256 flters are applied to 5 characters at a time
in the frst channel and 6 characters in the second channel,
respectively. As a result, the number of channels is set to two
channels with kernel sizes of 5 and 6.

Further experiments are conducted to obtain the best
number of flters (kernels). Te outcomes are displayed in
Table 4. 256 kernels produce the best accuracy result. Te
number of kernel parameter (f) is therefore set to 256.

Table 5 demonstrates the fndings for a diferent number
of nodes. Te fnest results are achieved for 512 nodes.
Terefore, the number of nodes parameter is set to 512.

Te dilated CNN layers are then added to each channel
and optimized. Table 6 represents the results for numerous
dilation sizes. Te highest accuracy results are achieved for
dilation sizes of 1, 2, and 4, respectively.

HTTP
request

Channel 1 Channel 2

Dilated CNN
k1 : 5
d: 4
kp: 3

f: 256

Dilated CNN
k1 : 5
d: 2
kp: 3

f: 256

Dilated CNN
k1 : 5
d: 1
kp: 3

f: 256

Dilated CNN
k2 : 6
d: 1
kp: 3
f: 256

Dilated CNN
k2 : 6
d: 4
kp: 3

f: 256

Dilated CNN
k2 : 6
d: 2
kp: 3

f: 256

………

Flattened
output

Flattened
output

Fully connected
layer (n: 512)

Attack/
Normal

sigmoid

Concatenation

Character- level
embedding Matrix

R900*71

Figure 8: MC-MLDNN model with the relative hyperparameters.

Table 3: Te number of channels and their relative kernel sizes.

Channels
and kernel sizes Accuracy

[3, 4] 97.97
[4, 5] 98.19
[3–5] 98.22
[5, 6] 98.24
[5, 6] show two channels, one with a kernel size of 5 and the other with
a kernel size of 6, for instance. Te accuracy score with the highest value is
bolded.
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Consequently, the proposed model (MC-MLDCNN)
includes two channels with kernel sizes of 5 and 6, re-
spectively. For each channel, there are fxed 256 flters. Te
fully connected layer’s node value is assigned to 512.

4.2. EvaluationResults. Two models are built to examine the
efectiveness of dilated CNNs: one as a multichannel CNN
(MC-CNN) and the other as a multichannel multilayer CNN
(MC-MLCNN). Te multichannel CNNmodel only has one
block of CNN in each channel without any dilation. Te
multichannel multilayer CNN model includes multiple
successive CNN blocks in each channel and does not in-
corporate any dilation as well. Te structure is similar to the
MC-MLDCNN with a dilation size of 1 for all CNN blocks.
In both multichannel CNN and multichannel multilayer
CNN, max-pooling is integrated after each CNN layer. All
models have the same kernel sizes, number of channels, and
other hyperparameters as the proposed MC-MLDCNN
model. Te performance of the models is shown in Figure 9.

It is clear that layered CNNs, either dilated or not,
outperform single-layer CNNs, concluding that utilizing
several layers of CNNs in each channel improves the per-
formance of MC-CNN. Dilated CNNs increase the accuracy
and precision metrics as a result of exponentially increasing
dilation sizes. A higher recall score of nondilated multilayer
CNNs implies that attacks are better detected, yet normal
requests are misclassifed.Tis means more interruption and
less availability for rightful users. Te F1 score provides
a more accurate picture of the performance of the models as
both recall and precision scores are taken into account. Te
proposed MC-MLDCNN achieves the best F1 value. Te

proposed model outperforms both candidates concerning
accuracy and F1 scores. Tis indicates that the proposed
model suitably distinguishes attacks and normal requests.

Te proposed model is compared with the best-
performing related work by Rizvi et al. [52]. Rizvi et al.’s
model uses a single channel with many layers of dilated
CNNs. Te size of the dilations has been increased expo-
nentially akin to the proposed model. On the other hand,
Rizvi et al. did not include any max-pooling layer. Table 7
shows the comparison of MC-MLDCNN and Rizvi et al.’s
model. Another remarkable observation is the fact that MC-
MLDCNN rapidly converges in contrast to Rizvi et al.’s
model. Te accuracy and loss curves for the training and
validation sets are shown in Figure 10.

As it can be concluded from Table 7 and Figure 10, Rizvi
et al.’s state-of-the-art method performs well. Still, MC-
MLDCNN enhances the performance by 2.51%, 2.03%,
4.16%, and 3.11% in terms of accuracy, precision, recall, and
F1 scores, respectively. Tis enhancement occurs in 4.29%
less number of epochs.

Table 8 compares and contrasts the proposed model’s
performance with the state-of-art works such as a word-level
Bi-LSTM-based model proposed by Hao et al. [36], an
ASCII-level CNN-LSTM-based method by Jemal et al. [2],
a character-level CNN-LSTM-based approach by Gong et al.
[19], and a character-level multichannel CNN-based model
suggested by Odumuyiwa and Chibueze [45].

Table 8 states that MC-MLDCNN outperforms Hao
et al., Gong et al., and Odumuyiwa and Chibueze models in
terms of all the assessment metrics. Te recall score of the
Jemal et al. model is the highest, while its precision score is
the lowest. Similar to the previous discussion, this implies
misclassifcation of valid requests. Considering the F1 scores,
MC-MLDCNN demonstrates priority over Jemal
et al.’s model.

Table 4: Te obtained results for diferent numbers of kernels.

Number of kernels Accuracy
64 98.04
128 98.00
256 98.24
Te accuracy score with the highest performance is bolded.

Table 5: Te attained fndings for diferent numbers of nodes.

Number of nodes Accuracy
64 97.85
128 98.14
256 98.22
512 98.24
Te accuracy score with the highest performance is bolded.

Table 6: Te achieved outcomes for diferent dilation sizes.

Dilation size Accuracy
[1, 2] 98.90
[1, 2, 4] 99.22
[1, 2, 4, 8] 98.68
[1, 2, 4, 8, 16] 99.10
[1, 2, 4] represent exponentially increasing dilation sizes as 1, 2, and 4,
respectively, for each channel. Te accuracy score with the highest per-
formance is bolded.

MC-MLDCNN

MC-MLCNN

MC-CNN

96

98

100

F1 scoreRecallPrecisionAccuracy

99.36
99.17

98.41

99.65

99.15
99.38

98.8398.8

96.72

98.03

98.99
99.22

Figure 9: Precision, recall, and F1 score results of MC-MLDCNN,
MC-MLCNN, and MC-CNN.
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In addition to the proposed model with the optimal
hyperparameters, 6 other MC-MLDCNN models with
various parameter values are trained and evaluated to
demonstrate the efectiveness of the proposed methodology
in Table 9.

(i) Model 1 is trained using 2 channels with kernel sizes
of k1 � 5 and k2 � 6. Each channel consists of 5
layers with dilation sizes of 1, 2, 4, 8, and 16, re-
spectively (d � [1, 2, 4, 8, 16]).Te number of nodes
of the fully connected layer is set to 512 (n � 512).

(ii) Model 2 is trained using 3 channels with kernel sizes
of k1 � 3, k2 � 4, and k3 � 5. Each channel consists
of 3 layers with dilation sizes of 1, 2, and 4, re-
spectively (d � [1, 2, 4]). Te number of nodes of
the fully connected layer is set to 256 (n � 256).

(iii) Model 3 is trained using 2 channels with kernel sizes
of k1 � 5 and k2 � 6. Each channel consists of 3
layers with dilation sizes of 1, 2, and 4, respectively
(d � [1, 2, 4]). Te number of nodes of the fully
connected layer is set to 256 (n � 256).

(iv) Model 4 is trained using 2 channels with kernel sizes
of k1 � 5 and k2 � 6. Each channel consists of 4
layers with dilation sizes of 1, 2, 4, and 8, re-
spectively (d � [1, 2, 4, 8]). Te number of nodes of
the fully connected layer is set to 256 (n � 256).

(v) Model 5 is trained using 3 channels with kernel sizes
of k1 � 4, k2 � 5, and k3 � 6. Each channel consists
of 3 layers with dilation sizes of 1, 2, and 4, re-
spectively (d � [1, 2, 4]). Te number of nodes of
the fully connected layer is set to 256 (n � 256).

Table 7: Comparative results for the proposed model and dilated CNN proposed by Rizvi et al.

Methods Accuracy Precision Recall F1 score

MC-MLDCNN 99.36 99.65 98.80 99.22
Rizvi et al. 96.85 97.62 94.64 96.11
Te highest score relative to its assessment metric is bolded.

Accuracy curve
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Loss curves
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Figure 10:Te loss and accuracy curves of training and validation sets of MC-MLDCNN and Rizvi et al. model. (a)Te accuracy curves. (b)
Te loss curves.

Table 8: Te reported experimental results for the CSIC 2010 dataset.

Methods Accuracy Precision Recall F1 score

Proposed MC-MLDCNN 99.36 99.65 98.80 99.22
Hao et al. 98.35 99.00 98.17 98.58
Jemal et al. 99.25 97.73 99.35 98.53
Gong et al. 97.79 98.54 96.04 97.27
Odumuyiwa and Chibueze 96.39 98.83 95.0 96.88
Te highest score relative to its evaluation metric is bolded.
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(vi) Model 6 is trained using 3 channels with kernel sizes
of k1 � 3, k2 � 4, and k3 � 5. Each channel consists
of 3 layers with dilation sizes of 1, 2, and 4, re-
spectively (d � [1, 2, 4]). Te number of nodes of
the fully connected layer is set to 512 (n � 512).

In Table 9, the MC-MLDCNNmodels are contrasted not
only with the competitive deep learning models in the lit-
erature but also with the character-level traditional deep
learning models like CNN, LSTM, and Bi-LSTM.

All of the MC-MLDCNN models outperform the
benchmark deep learning models when comparing precision
outcomes. Jemal et al., however, performed the best among
the recall scores. Te second-best recall values are shared by
all of the MC-MLDCNN models. All of the MC-MLDCNN
models outperform the benchmark deep learning models
when F1 scores are taken into account. It is a desired sit-
uation given that the goal of this research is to accurately
detect web attacks.

Except for Jemal et al.’s model, all the MC-MLDCNN
models outperform the benchmark deep learning models
when accuracy results are compared. Although the proposed
model, model 2, model 3, and model 5 outperform Jemal
et al.’s accuracy and produce the greatest results, the other
MC-MLDCNN models’ accuracy scores lag behind Jemal
et al.’s. It implies that Jemal et al. performed slightly better in
normal request detection tasks than model 1, model 4, and
model 6. It should be highlighted that the outcomes with the
best hyperparameters of benchmark models are compared
with the MC-MLDCNN models. As a result, it is expected
that occasionally some of the MC-MLDCNN models per-
form slightly worse. Tis implies the importance of selecting
appropriate hyperparameters. Even models 1, 4, and 6
surpass all benchmark models when it comes to the task of
attack detection, demonstrating the efectiveness of this
methodology.

For an even more comprehensive assessment, the FPR
scores (the rate of classifying normal requests as attacks) are
also added to Table 9. Te FPR values are unfortunately not
provided in the studies by Jamal et al. and Gong et al.
Excluding Jemal et al. and Gong et al., it should be noted that
MC-MLDCNN models have the lowest FPR values in-
dicating that they are efective at detecting normal requests
as well. It is noteworthy that properly identifying attacks is
prior to properly detecting normal requests because of the
destructive consequences of a situation in which an attack is
mistaken for a normal request as opposed to the one in
which a normal request is mistaken for an attack. Since the
accuracy and F1 scores of MC-MLDCNN models are the
highest, the proposed methodology has precedence over the
models by Gong et al. and Jamal et al. even if the FPR values
for Gong et al. and Jamal et al. are not supplied.

Te character-level MC-MLDCNN model outperforms
a number of cutting-edge models in the literature as well as
traditional deep learning models, according to the experi-
mental results. Te provided methodology successfully de-
tects web attacks. Although the aim of this research is to

reliably identify web attacks, it has also been demonstrated
that with the right hyperparameter, the model performs
excellently in identifying normal requests as well.

5. Conclusion

Web attacks have severe efects such as data breaches, f-
nancial losses, reputational harm, and other consequences
for both customers and organizations. Web attack detectors
are essential for guaranteeing security, in other words, the
confdentiality, integrity, and availability of the systems. Te
goal is to maintain system availability while protecting data
confdentiality and system integrity. Terefore, precise web
detectors provide the most reliable systems.

Even though various deep learning approaches are
suggested in the literature with acceptable detection per-
formance, many of them struggle to efectively capture
complicated and lengthy sequence relationships of HTTP
requests. Te MC-MLDCNN methodology, which is pro-
posed in this study, is capable of efciently learning complex
and lengthy character relationships of the requests. Te
method is based on the integration of multichannel and
multilayer dilated CNNs. Te MC-MLDCNN learns the
dependencies among the characters of HTTP requests at
various levels and across a broad range. Terefore, it suc-
cessfully captures the long-term dependency of characters in
HTTP requests. Consequently, the model is accurate in
recognizing the intricate pattern of attacks.

Several MC-MLDCNN models with diferent parameter
settings are trained and evaluated. Te experimental results
are contrasted with various prior efective deep learning-
based approaches that have been proposed in the literature.
Te outcomes show that the proposed methodology out-
performs the benchmark deep learning models and can
reliably identify attacks. In addition, the method’s accuracy
surpasses all benchmark models when the right hyper-
parameters are used. Tis indicates the proposed method-
ology outperforms the benchmarkmodels in terms of overall
performance for both detecting attacks and normal requests.
Although developing an accurate web attack detection
system is the major objective of this research, a system with
a high false positive is inefective. A false positive, in other
words, identifying a normal request as an attack, stops
business continuity. Tis means availability is lost for that
moment. Accurately recognizing web attacks and limiting
false positives are two factors that must be balanced for a web
attack detection system to be successful. Te results of the
experiments show conclusively that the character-level MC-
MLDCNN methodology fts the criteria and is efective for
usage in web application security systems.

Te proposed methodology has the potential to dra-
matically improve the capability of identifying complex web
attacks. Te future goal is to accumulate data regarding
tricky and sophisticated attacks that the practically deployed
security mechanisms miss. By evaluating the proposed
methodology on these samples, future research will
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primarily concentrate on enhancing the performance of the
current model and developing and exploring cutting-edge
ways to ofer more robust and dependable protection against
web attacks.
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available over the internet.
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