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Te security issues with mobile devices have received more attention as a result of the development of mobile Internet technology
and the adoption of mobile intelligent terminal devices. It is becoming more crucial to quickly and efectively identify and remove
harmful applications from systems in order to protect user data and personal devices. Te Dalvik bytecode, permission ap-
plications, and system calls of Android apps are the main targets of the current Androidmalware analysis approaches. However, in
recent years, an increasing amount of Androidmalware conceals harmful code in native code.Temethod for using program gene
technology to identify malware on the Android platform is presented in this research.Tis method extracts executable library fles
from the Native layer binary executable fles of Android programs and disassembles the library fles to obtain program genes.
Ten, the programs’ genes perform feature screening by the information gain method and next use Word2Vec to express the
semantic abstraction of the screened features. Finally, the screened features were used in deep neural network models for training
and detection.Te experimental results demonstrate that compared with KNN, SVM, and other machine learning algorithms, the
deep neural network model is more efective and the detection accuracy reaches up to 97.51%.Tus, it confrmed the feasibility of
the Android malicious program detection method based on program genes in this paper.

1. Introduction

According to the 46th Statistical Report on the Development
Status of the Internet in China [1] published by the Internet
Information Ofce of the Central Committee of the Com-
munist Party of China on September 29, 2020, although the
domestic Internet user population’s experience with Internet
security issues over the previous six months decreased by 5.2
percent, mobile device security issues have become more
prevalent in recent years. Domestic Internet security is still
not in a promising state. Mobile security has grown to be an
essential component of cyberspace security as 99.2% of the
domestic Internet users now access the web using a mobile
device.

It is indicated in the “Report on the State of Mobile
Security in China in the First Half of 2020” [2], jointly
published by 360 Internet Security Center and China
Academy of Information and Communication Research,
that, in the frst half of 2020, 360 Security Brain intercepted
a total of about 1.048 million new malicious program

samples onmobile, an increase of 12.2% from the frst half of
2019 (920000) and that the average daily interception of new
mobile malware increased from 0 to 1 every day. About 0.6
million brand-new malicious software samples are captured
on a daily average.Te nation was infected by the new crown
virus in 2020, especially during the Chinese New Year va-
cation. As a result, Internet use time rose dramatically,
increasing the likelihood that users would encounter un-
lawful content on the network. Te results in the research
show that the sample volume of harmful program in-
terception in the frst half of 2020 increased, and malicious
programs that nefariously drain users’ bank accounts and
steal users’ personal information are mushrooming every-
where. As a result, the research about the mobile malicious
program detection technology is essential for advancing the
development of mobile terminal network security. Unlike
Windows and Linux platforms, the instruction set used in
the Android system changes greatly when each version is
updated, and it becomes more and more difcult to dy-
namically extract the instruction fow executed by Android
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programs. Tis creates a higher barrier for mobile malicious
program detection. Terefore, it is more necessary to pro-
pose a method to detect malicious programs under the
Android system by static analysis correlation. Our main
contributions are as follows:

(1) We developed a program gene extraction method to
extract binary executable library fles of Native layer
from Android application installation package. Tis
method extracted program genes from the sample
executable library fles by static disassembly, used
opcode to represent assembly instructions to
streamline the program gene library, and obtained
the basic block sequence fles.

(2) We used a combination of information gain and
Word2Vec model. First, we used information gain to
count the number of occurrences of benign and
malicious samples in the basic block sequence fle
and performed feature fltering by threshold. Next,
we utilized the Word2Vec model to convert each
basic block into a vector and store them.

(3) We constructed a deep neural network classifer for
malicious programs, connected multiple hidden
layers using full connectivity and added a dropout
layer to prevent overftting, and fnally validated the
model using a fve-fold cross-validation method.

2. Related Work

Malicious program detection on the Android platform is the
same as traditional malicious program detection techniques,
which are classifed into dynamic analysis and static analysis.
Te dynamic analysis method detects maliciousness by
monitoring the behavior of the program during execution,
such as function calls, resource access, and system calls. Te
static analysis method extracts static features from the
disassembled code through specifc disassembly tools to
detect maliciousness, which does not require code execution,
thus avoiding the consumption of time, space, and resources
caused by application execution and achieving 100% code
coverage. Mariconti et al. [3] proposed to build a malicious
program detection system by constructing a call graph from
Android program API calls and then extracted the call se-
quences using the Markov chain modeling. Lindorfer et al.
[4] constructed a method to detect privilege elevation vul-
nerabilities in Android preinstalled software by statically
intermediate representation of disassembled code to con-
struct interprogram data fow graphs and control fow
graphs, which are used for taint propagation analysis to
detect possible vulnerabilities and information leakage
points, and achieved a good detection rate. Yu and Tao [5]
put forward a method for Android malware detection based
on model library, where data of diferent populations were
obtained by classifying permission information and applied
to the model library, which led to a certain enhancement of
the detection efect. By combining syntactic and semantic
features in the detection method, Yanping et al. [6] utilized
a computing adaptive feature weight with PSO. It used
a support vector machine (SVM) method based on feature

weights that are computed by information gain (IG) and
particle swarm optimization (PSO) algorithms, overcome
the defects of basic PSO, and improve the performance of
SVM. Weiping et al. [7] made a method that transforms the
dynamic API call sequence into a function call graph. Te
method fuses the transformed function call graph feature
and the extracted permission request feature to perform
a high-detection accuracy. Min et al. [8] proposed an An-
droid malware detection model based on DT-SVM. Te
model extracts the original opcode and Dalvik opcode by
reversing Android software. Meanwhile, the model efec-
tively combines DT with SVM. Under the premise of
maintaining a high-accuracy decision path, SVM is used to
efectively reduce the overftting problem in DT and thus
improve the generalization ability. Although the majority of
the aforementioned studies focus on structural similarity of
malicious programs or similarity of system calls and per-
mission usage of programs, they do not focus on machine
code at the disassembly level from the perspective of ho-
mology, and most of the research works focus on permission
requests, system calls, and Dalvik bytecode.Te authors used
both the genetic algorithm and machine learning method in
[9, 10], which reduced feature dimensionality, proving that
the combination of the genetic algorithm and the machine
learning method has some advantages in Android malware
detection. Xiao et al. [11] applied program technology to the
task of malicious program detection on PC and also achieved
better accuracy. Te malicious code of Android platform is
mainly binary code, including Dalvik virtual machine exe-
cutables in DEX format and native binary executables in ELF
format. Jin et al. [12] proposed enhancing classifcation
accuracy by extracting program genes in the form of use-def
chains from bytecode fles in DEX format, but they did not
take into consideration that, in recent years, the vast ma-
jority of Android malware prefers to write malicious logic
into native layer binary executables to obtain features such as
obfuscation, encryption, and other disguisedmalicious logic.

In this paper, the program gene technology is applied to
the detection of Android malicious program. First, the static
analysis method is adopted to extract program genes from
the native binary executable of Android programs, and then,
feature selecting is carried out through the method of in-
formation gain. Also, for feature semantic abstract expres-
sion, Word2Vec is employed, and fnally, the deep learning
model is used for training. Tese constitute the Android
malware detection system.

3. AndroidMalwareDetectionMethodBasedon
Program Genes

Using the static analysis methodology, this paper proposes
a maliciousness detection method for Android apps from the
viewpoint of program genes.Temethod is shown in Figure 1
and is based on program genes.Tis strategy adopts the native
layer out of the installation package for an Android appli-
cation, breaks down the library fles to get the matching
instruction sequence, and uses a program to identify all the
fundamental building blocks in the instruction sequence to
produce a basic block collection. As a consequence, the
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original binary fle is transformed into a representation of
a basic block index, and the basic block characteristics are
then fltered based on the information gain. When the
Word2Vec word embedding model receives the fltered basic
block index fles as the original corpus for training, a word
vector dictionary comprising all the basic blocks is formed.
Te original Android installation samples, in accordance with
this vocabulary, are converted into vector representations and
sent to various classifcation models, such as deep neural
networks for training.

3.1. Procedural Genes and Extraction Methods

3.1.1. Defnition of Program Genes. Te computer program
gene is the smallest unit in which the static components of
a program are dynamically expressed. It is used to extract
program behavior characteristics of a computer from the
assembly instruction stream in which the program is run-
ning for semantic description and unique characterization of
the behavior patterns of a computer program to refect the
program’s true behavioral intent. Program genes have many
characteristics with biological genes. In biology, genes are
referred to as the fundamental genetic building blocks that
regulate biological qualities, while a program’s character-
istics are mostly represented in its distinctive behavior. Te
assembly instructions included in a binary program are
executed when it is run on a computer, and the type, order,
and other properties of the executed assembly instructions
defne the specifc features the program shows. Program
genes, as defned previously, are the series of instruction
streams that the CPU actually executes when a program is
running dynamically. On Windows or Linux platforms,
dynamic instruction streams can be extracted using tools
such as the QEMU full virtualization sandbox and the Pin
dynamic binary stubbing framework. However, between

versions of Android, the instruction set has seen consid-
erable changes. Tere is not a better simulated execution
sandbox available right now for dynamically extracting the
execution order of Android programs. In addition, this
article aims to look at the viability of application genetic
approaches for Android platform activities including the
detection of harmful applications. As a result, this study
adopts the following conventions while discussing the idea
of application genes, which are obtained via static disas-
sembly from example native layer executable binary
library fles.

3.1.2. Extraction of Program Genes. Program genes are bits
of assembly instructions that represent certain actions and
serve specifc purposes. Te assembly instruction can be
divided into six levels from course to fne granularity: image
fle, program segment, function, instruction fow, basic
block, and assembly instruction. In this study, the basic
block is taken as the gene fragment of the program gene, and
the basic block is employed as the minimum processing unit
for the program gene extraction, subsequent information
gain, and word vector embedding.

In this paper, we frst extract the binary executable li-
brary fle from the installation package of Android program
samples, then, we disassemble the library fle to extract all the
codes of the code segment, and fnally, we perform the basic
block identifcation by identifying all the branch in-
structions, return instructions, exception instructions, and
other instructions to divide the basic blocks accordingly.
Even though the ARM instruction set is more streamlined
than the x86 instruction set in terms of opcode kinds and
numbers, there are still a huge number of basic blocks
needed to construct these assembly instructions due to the
thousands of possible opcode and operand combinations.
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Figure 1: System architecture.
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Due to this, we choose to employ opcodes to represent
assembly instructions to simplify the program gene library
while maintaining the behavioral information of the fun-
damental building blocks. However, it is not possible to
completely overwrite binary code in the real world. We
suggest the following potential mitigation plans in order to
stimulate further study:

(1) normalize instructions for disassembly, mask im-
mediate values, and address with specifed symbols
to greatly reduce the complexity of fundamental
blocks

(2) Te clustering algorithm is used to cluster the basic
blocks drawn from multiple malicious samples and
identify similar basic blocks as malicious code
blocks, thus further fltering out useless genes that
are of little help in identifying maliciousness

Algorithm 1 illustrates the procedure of extracting the
program gene. Te time complexity of this algorithm is
O(n), and it processes each instruction mirror fle sequen-
tially, reading and cutting instructions to basic blocks in
a linear fashion. In the single-threaded case, the algorithm
occupies at most the storage space of all basic blocks in a fle.
In other words, the algorithm has an average time and space
complexity and does not have excessive overhead. Figure 2
depicts the sequence of instructions used to disassemble the
library fle in a sample of a malicious program. Tis basic
block identifcation procedure is then used to create the
mapping dictionary, which contains all of the sample’s basic
blocks and index tags.

Te following three components are created among the
intermediate fles during the process of program gene
extraction.

(1) Instruction mirror fle: In this work, the whole in-
struction sequence acquired by disassembly is re-
ferred to as the “library fle md5 value int.txt” or
“mirror fle” for short. Tis fle stores the function
name, function address, assembly instruction ad-
dress, and assembly instruction information about
all instruction sequences.

(2) Basic block sequence fle: Te basic block sequence
fle in this work is known as the instruction image fle
using the basic block index and is entitled “library
md5 value bbl.txt.” Tis fle is used to capture all
instruction sequences as indexes and replace the
recognized basic blocks with index numbers.

(3) Mapping dictionary: Tis document contains
a mapping dictionary, which is a list of all the
fundamental blocks and the index tags that relate to
them. Te fundamental blocks listed in the in-
struction image fle are mapped to index numbers
using this dictionary fle.

After the previous extraction procedure, it is possible to
obtain the instruction image fles corresponding to the binary
executable library fles in all samples. All the fles convert into
basic block sequence fles represented by basic block indexes

using the mapping dictionary, which serves as the original
gene pool for further processing and analysis work.

3.2. Feature Selection Based on Information Gain.
Trough the previous work of program gene extraction, we
obtained a large number of instruction sequences repre-
sented by basic blocks, i.e., basic block sequence fles.
However, not all the basic blocks in these fles are useful for
identifying the maliciousness of programs, so, in this paper,
we use information gain for feature screening of basic blocks
[13], retaining the basic blocks with larger information gain
values, and removing redundant information as much as
possible to reduce the computational efort while retaining
program behavior information useful for classifcation. In
the following section, the information gain calculation
formula is derived for this prediction model, and the sample
features described in the following are the identifed basic
blocks.

Te information gain is a common evaluation criterion
in feature selection, which describes how much information
a feature contributes to the prediction model, and the more
information a feature contributes, the more important it is to
the prediction model. Te information gain of a feature in
information theory is defned as the diference between the
systematic entropy and the conditional entropy after fxing
the feature. Te systematic entropy is used to describe the
uncertainty of the feature; for a prediction model, let the
sample data set be D and let the classifcation space be
{C_i, i� 1, 2, ... ,n}; the entropy of the prediction model [14]
is as shown in the following equation:

Entropy(C) � − 
n

P Ci( logP Ci( , (1)

where P(Cj) is the probability that any sample in the sample
data set has a category of.

For the feature B of the prediction model, the feature
taking space is Bi, j � 1, 2 · · · m , and the conditional en-
tropy of the prediction model is shown in the following
equation:

Entropy(C | B) � − 

n

i�1


m

j�1
P Ci, Bj logP Ci Bj

 . (2)

For any feature Bj, the conditional entropy of the pre-
diction model is shown in the following equation:

Entropy C Bj

  � −
n

P Ci Bj

 logP Ci Bj

 . (3)

Te following equation can be obtained by combining
the conditional probability formula:

Entropy(C | B) � 
m

P Bi( Entropy C Bj

 . (4)

For this predictionmodel, since there are only two values
of occurrence and nonoccurrence in the feature space, that
is, m� 2, assuming that the probability of occurrence of
a feature in any sample from the sample set is P(Bj), and the
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probability of nonoccurrence isP(Bj), the previous equation
can be simplifed in the following equation:

Entropy(C | B) � P Bj Entropy C Bj

  + P Bj Entropy C Bj

 . (5)

According to the defnition of information gain, the
feature Bj information gain in the following equation is
obtained:

Figure 2: Example diagram of a disassembly instruction sequence.

Input: command image fle;
Output: Gene bank and basic block sequence fle;
1. GENE⟸ ϕ  ;
2. foreach  sample ∈ samples do
3. sample gene⟸ [];
4. for  each  function ∈ sample do
5. bbl⟸ [];
6. for  each  ins ∈ sample do
7. if   ins  is Branch  then
8. GENE⟸ hash(bbl): bbl{ };
9. sample gene.append(hash(bbl));
10. else
11. bbl.append(ins);
12. end  if
13. end  for
14. clear(bbl);
15. end  for
16. write 2  file(sample gene);
17. end  for

ALGORITHM  : Gene bank builds and converts instruction image fles into basic block sequence fles.

Security and Communication Networks 5



IG(X) � − 
n

i�1
P Ci( logP Ci(  − P Bj Entropy C Bj

  − P Bj Entropy C Bj

 

� − 
n

i�1
P Ci( logP Ci(  + P Bj  

n

i�1
P Ci Bj

 logP Ci Bj

  + P Bj  

n

i�1
P Ci Bj

 logP Ci Bj

 .

(6)

In order to calculate the information gain value of each
feature, we have to count the number of times about each
basic block appearing in the malicious and benign samples
and then calculate the information gain value using equation
(6), so as to flter the features according to the
threshold value.

3.3. Feature Semantic Abstraction Representation. After the
extraction of program genes and information gain, the next
step is to perform the semantic abstract representation of the
features to transform them into a vector form. However, the
number of basic blocks after the previous information gain is
still very large, and if one-hot encoding [15] is directly used
as the abstract representation of the sample programs, it will
make the data set into a large sparse matrix, which is un-
favorable for computation, on the one hand, and lose se-
mantic information such as contextual relationships of the
basic blocks on the other hand. Terefore, this paper adopts
the Word2Vec word vector generation model [16], which is
a shallow neural network model consisting of an “input
layer-hidden layer-output layer” and a simple neural net-
work. Te Word2Vec model can map each word to a vector
space of arbitrary dimension to represent the relationship
between words. Word2Vec relies on skip-grams or CBOW
to build neural word embeddings, and the trained word
vectors retain good contextual semantic relationship
information.

In this paper, we use the Word2Vec module in the
python open-source third-party toolkit Gensim [17] for
word embedding training of basic blocks, traversing all basic
blocks in all basic block sequence fles and feeding them into
the Word2Vec model as the original corpus for training to
obtain a 500-dimensional word vector dictionary, which
includes the embedding of all basic block indexes in the
corpus vectors. We can use this dictionary to convert all
samples into vectors for storage and provide data for sub-
sequent model training and testing. Te setting of the word
vector dimension is a key parameter in the whole prediction
system, and the length of the word vector determines the
amount of information it can carry, which will be further
explored later to fnd its optimal value.

3.4. Malicious Program Classifer Based on Deep Learning.
Trough the semantic abstract representation of the pre-
vious features, a word vector dictionary of all basic blocks is
obtained, which is used to transform each basic block in the
basic block sequence fle into a vector representation, so that
each sample is a two-dimensional matrix containing mul-
tiple vectors, and then, each sample is compressed into
a one-dimensional vector representation. In this paper, we

use the method of accumulating and averaging all the basic
block word vectors of each sample, which can ensure that the
original text feature information is not lost to the maximum
extent. Trough the dimensionality reduction process, the
whole sample space is a two-dimensional vector set, and we
use a deep neural network [18] based on deep learning [19]
to construct a malicious program classifer.

In the process of model construction, in order to fully
evaluate the performance of the model to reduce the
overftting problem, we lead the k-fold cross-validation
method [20] to apply the test set data on the trained
model for testing. Moreover, the relevant classifcation result
parameters are defned as shown in Table 1, and the ac-
curacy, precision, recall, and F1 score are obtained as the
performance indexes of the model.

Te accuracy rate identifes the proportion of malicious
samples that are predicted to be malicious; the precision rate
is the proportion of malicious samples that are truly mali-
cious among all predicted malicious samples; the recall rate
identifes the proportion of malicious samples that are
correctly determined among all malicious samples; the F1
score is the weighted summed average of the accuracy and
recall rates.

In this paper, we use the architecture of a deep neural
network as shown in Figure 3. Tis neural network uses
a fully connected way to connect multiple hidden layers and
adds a dropout layer in the middle of each layer to prevent
overftting, randomly discarding the updates of certain
parameters during the gradient backward update and using
ReLU as the activation function in the neurons in order to
mitigate the efect of the gradient disappearance problem.

4. Experiment and Analysis

4.1. Experimental Settings. Te original samples used in this
paper are Android application installer fles. Te dataset
contains 8000 malicious sample records and 2000 benign
sample records, where the malicious samples are obtained by
random sampling from VirusShare_Android_APK_
2018.zip provided by https://virusshare.com/ [18]. More-
over, benign sample records are downloaded from the
Android App Store. We keep the json fle of each apk sample
after processing, which contains program name, package
name, version Vector dictionaries, and so on. To reduce the
sensitivity of model test results to data division, all exper-
imental results in this paper are the results of 5-fold cross
validation. Table 2 shows the attribute distribution of the
dataset.

4.2. Experimental Process. In this paper, the previous ex-
perimental sample set is processed as follows:
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(1) extract the native binary executable library fle for
each sample.

(2) disassemble the library fles, extract the instruction
sequences for all code segments, and obtain the
corresponding instruction image fles.

(3) refer to the ARM instruction set design to achieve the
basic block recognizer, traverse all instruction image
fles, and generate the basic block index dictionary.

(4) convert all instruction image fles into basic block
sequence fles according to the basic block index
dictionary.

(5) count the number and frequency of occurrence of all
basic blocks in the basic block sequence fle and
calculate the information gain of each basic block
and then select the basic block features to generate
the basic block sequence fle.

(6) Te fltered basic block sequence fles are fed into the
Word2Vec model as a corpus for training, and the
word-embedding vector dictionaries for all basic
blocks are obtained. We take the basic block se-
quence fles as corpus into the Word2Vec model to
train and then get word embedding vector dictio-
naries for all basic blocks

(7) Based on the word embedding vector dictionaries of
the previous basic blocks, the samples are trans-
formed into vector representations. We embed the
basic block in the vector dictionaries and then
transform the samples into the vectors.

(8) input vectors into the deep neural network to train
and test.

4.3. Analysis of Experimental Results. In this paper, the
following experiments are designed to verify the feasibility of
the malicious program detection model designed in this
paper and to determine the values of the key parameters in
this system. First, we determine the information gain
threshold of selecting basic blocks in the information gain
method. Second, we determine the vector length of the word
vector dictionary trained by the Word2Vec model. Because
too short vector length may lead to the loss of semantic
information, while too long vectors may lead to information
redundancy and reduce the recognition efciency and ac-
curacy of the fnal model. Finally, we compare with other
traditional machine learning models and identify the model
that suits the system architecture designed in this paper.

We set the vector length of the word vector dictionary
output byWord2Vec at 500 and use the deep neural network

Table 1: Defnition of classifcation result parameters.

Source of samples
Testing results

Malicious sample Benign sample
Malicious sample TP FN
Benign sample FP TN

dense_input: InputLayer
input: [(None, 500)]

[(None, 500)]output:

dense: Dense

dense_1: Dense

dense_2: Dense

dense_3: Dense

dense_4: Dense

dense_5: Dense

dense_6: Dense

dropout: Dropout

dropout_1: Dropout

dropout_2: Dropout

dropout_3: Dropout

dropout_4: Dropout

input: (None, 500)

(None, 1233)

(None, 1233)

(None, 1233)

(None, 1233)

(None, 899)

(None, 899)

(None, 899)

(None, 899)

(None, 666)

(None, 666)

(None, 666)

(None, 666)

(None, 666)

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

input:

output:

(None, 666)

(None, 666)

input:

output:

(None, 666)

(None, 233)

input:

output:

(None, 233)

(None, 233)

(None, 64)

(None, 64)

(None, 2)

(None, 233)input:

output:

input:

output:

input:

output:

Figure 3: Deep neural network structure.
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to train which is obtained in Table 3. In the experiment of
this paper, setting the information gain threshold as 2.0 is the
most appropriate. In this experiment, it is important to
ensure practicality that the model parameter settings are not
afected by the dataset. To determine whether the IG
threshold is afected by the size of the dataset, we slice the

dataset and take a subset of the original dataset for the same
experiment using the nonrepeat sampling method, and the
results are shown in Figure 4. Te subsets with diferent data
size can get the optimal value around the information gain
threshold of 2.0, so it can be seen that the information gain
threshold is not afected by the dataset size.

Table 2: Distribution of attributes of datasets used in the experiment.

Classes Training Tests
Benign 1600 400
Malware 6400 1600

Table 3: Neural network model scores with diferent information gain thresholds.

IG Accuracy (%) f1 score (%) Precision (%) Recall (%)
0.00 94.49 97.10 96.65 97.58
1.00 95.29 98.25 98.45 98.07
2.00 97.08 98.94 98.70 98.69
4.00 95.91 97.89 98.13 97.69
6.00 96.20 98.11 97.86 98.37
8.00 95.67 97.73 97.83 97.68
10.00 95.68 98.03 97.69 98.40
12.00 95.59 98.01 98.51 97.53

0 1.00 2.00 4.00 6.00 8.00 10.00 12.00
IG

1
0.8

0.6
0.4

90.00

91.00

92.00

93.00

94.00

95.00

96.00

97.00

98.00

ac
cu

ra
cy

 (%
)

Figure 4: Split data set information gain optimal threshold search.

Table 4: Neural network model scores with diferent word vector lengths.

Embedding lens Accuracy (%) f1 score (%) Precision (%) Recall (%)
100 96.95 98.08 97.71 98.48
200 97.21 98.29 98.59 97.51
300 97.51 98.85 98.74 98.98
400 97.09 98.17 97.95 98.40
500 97.08 98.94 98.70 98.69
600 96.66 98.54 98.60 98.50
700 96.64 98.51 98.23 98.82
800 96.41 98.43 98.09 97.33
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After determining the IG threshold, the next step is to
fnd the optimal value for the length of the embedding vector
obtained from the Word2Vec word vector model. In this
group of experiments, the neural network model based on
the information gain threshold of 2.0 is used as the classifer
and trained to get the comparison experiments as shown in
Table 4. When the word vector length is 300, we can get
higher accuracy and achieve better performance in terms of
precision, recall, and F1 score. In the four sets of comparison
experiments as shown in Figure 5, it can be seen that the

model achieves the optimal value around 300.Terefore, it is
observed that the length of the embedding vector set by the
Word2Vec model training is less afected by the size of the
dataset.

In order to prove the efectiveness of this model, this
paper conducted comparison experiments with four clas-
sifcation models, namely, K-nearest neighbor, random
forest, support vector machine, J48 decision tree, Naive
Bayes, and deep neural network. Te results of the training
and testing are shown in Figure 6. In this paper, the deep
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Figure 5: Search for optimal value of word vector length for segmented dataset.

knn rf svm j48 NB dnn

92.15% 93.60% 93.95% 92.88% 88.17% 97.51%

96.35% 96.36% 96.37% 95.22% 91.64% 98.74%

93.92% 95.76% 96.19% 94.98% 89.31% 98.98%

f1 95.12% 96.06% 96.28% 95.88% 88.78% 98.85%

classification model

82.00

84.00

86.00

88.00

90.00

92.00

94.00

96.00

98.00

100.00

ac
cu

ra
cy

 (%
)

accuracy

precision

recall

accuracy
precision f1

recall

Figure 6: Diferent classifcation model scores.
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neural network model has the best performance among the
four models, and its overall performance is better than the
other classifcation models, with the highest accuracy rate
reaching 97.51%, precision rate, recall rate, and f1 score also
have better performance and ftting degree.

Trough the analysis of the previous experiments, the
Android malware detection method proposed in this paper
shows a good discrimination ability and proves that the
Android malware detection based on program genes is
feasible.

5. Conclusions

In response to the sharp increase on malicious programs in
Android, we suggest a method for detecting malicious
programs that uses program gene technology on the An-
droid platform. Te efectiveness of this paper’s method is
confrmed through multiple sets of experimental analysis on
a dataset of 10,000 malicious and benign sample programs,
which can provide a corresponding method for the Android
malicious program analysis and malicious program de-
tection. In the absence of binary program source code,
a complete malicious program detection method is designed
and implemented. It started with program gene extraction
from Native layer disassembly code. Ten, the programs’
genes perform feature screening by the information gain
method and next use Word2Vec to express the semantic
abstraction of the screened features. Finally, the screened
features were used in deep neural network models for
training and detection. However, in the face of malware
using various techniques to evade detection, the use of
natural language processes and machine learning techniques
alone cannot identify the latest malicious programs, which is
the current limitation of this paper. Terefore, in the follow-
up work, more features that can be used to determine the
maliciousness of programs can be added and dynamic
features such as permission requests and system API calls
can also be integrated to help implement a better approach.
We will keep researching the applications of this technology
that have gained a lot of value in recent years, such as the
identifcation of malicious software and code traceability
analyses.
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