
Research Article
LogPal: A Generic Anomaly Detection Scheme of Heterogeneous
Logs for Network Systems

Lei Sun 1 and Xiaolong Xu 1,2

1Jiangsu Key Laboratory of Big Data Security & Intelligent Processing, Nanjing University of Posts and Telecommunications,
Nanjing 210023, China
2School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Correspondence should be addressed to Xiaolong Xu; xuxl@njupt.edu.cn

Received 5 February 2022; Revised 26 September 2022; Accepted 12 October 2022; Published 11 April 2023

Academic Editor: Lalit Garg

Copyright © 2023 Lei Sun and Xiaolong Xu. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

As a key resource for diagnosing and identifying problems, network syslog contains vast quantities of information. And it is the
main source of data for anomaly detection of systems. Syslog presents the characteristics of large scale, diverse types and sources,
data noise, and quick evolvement, which makes the detection methods not generic enough. To efectively address problem of log
anomaly labelling caused by massive heterogeneous logs, we propose LogPal, a generic anomaly detection scheme of hetero-
geneous logs for network systems, which innovatively combines template sequences and raw log sequences to construct and
generate log pattern events. By improving the self-attention mechanism of transformer, LogPal proactively synthesizes self-
attention and handles log pattern events in a unique way. Te model can make full use of log template and sequence semantic
information, by automatically becoming aware of the pattern of logs. We implemented experiments to evaluate the performance
of LogPal on publicly available datasets, and the outcome of the experiments shows that LogPal automatically adapts to log type
changes and improves precision, recall, and F1 score to 99% on publicly available datasets.

1. Introduction

When the system is running, syslog is used to record the
runtime state and events of the system, including the
anomalies of the system. As the most reliable source of
information for monitoring the health of a system, syslog
contains massive amounts of information and is the main
source of data for anomaly detection in the system [1]. For
traditional standalone systems, developers write specifc
rules based on domain knowledge or manually check logs to
detect system anomalies.

However, modern information systems usually adopt a
distributed architecture. Syslog is multisourced and het-
erogeneous. Syslog usually originates from multiple sub-
systems with various types, structures, implementations,
versions, and deployment environments [2, 3].Te approach
to anomaly detection, which relies heavily on manual check
of logs, is almost unworkable for large-scale system.

Moreover, developers usually use free text to record system
time for convenience and fexibility. Examples of hetero-
geneous logs are shown in Table 1.

More importantly, just like any other software main-
tenance, syslog is constantly evolving. Developers may
frequently modify the source code, including logging
statements. So, this can create a new log pattern that has not
appeared and afected the results of anomaly detection. As
Kabinna et al. [4] observed, in their research project, about
20%∼45% of the logging statements changed during their
lifecycle. Many new log events and log sequences are gen-
erated by dynamic logging statements.

Terefore, many automated anomaly detection methods
based on logs have been proposed in recent years, and these
methods are mainly classifed into unsupervised learning
and supervised learning. Unsupervised learning methods
usually use machine learning techniques such as clustering
and PCA [5–8], but unsupervised learning tends to be less
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accurate compared to supervised learning methods. Su-
pervised learning methods generally learn the anomaly
patterns of logs based on anomaly labelling to achieve the
purpose of anomaly detection. And supervised learning
methods usually use deep learning methods such as LSTM
and CNN [9–12]. Although some of the above methods can
efectively detect anomalies, log sequence anomaly detection
problems face the following challenges:

(1) It is rather difcult to achieve a balance between
learning log templates and raw log semantic infor-
mation. Tanks to the rapid development of natural
language processing and deep learning, some
methods build log anomaly detection methods based
on raw log sequences when solving the heteroge-
neous log anomaly labelling problems, and there is
hardly any parsing of the raw log sequences, making
it difcult for models to utterly learn log word vector
semantics or patterns. Tere are also approaches that
parse the raw logs by extracting log sequence tem-
plates and use the log templates as input to build
template-based anomaly detection network models.
However, these approaches simply using log tem-
plate sequences as training data to obtain word
vectors for the templates, ignoring the key textual
information specifc to the raw logs, which can lead
to more serious results. For example, two or more
normal log sequences and anomalous log sequences
are considered the same template by removing the
critical variable part, and the model “considers” log
sequences with diferent labels as the same input,
which is quite fatal for anomaly detection.Terefore,
how to make the model understand the log patterns
more easily while retaining all the information of log
semantics becomes one of the key issues for log-
based anomaly detection.

(2) Tere is a large amount of noise in log data. A certain
level of noise is inevitably interspersed in the col-
lection and preprocessing of log data [13]. Log data
are derived from various events that occur on dis-
tributed hardware and software systems. Tese
events include both events that characterize the
system as anomalous, such as being subject to DDoS
attacks, storage failures, anomalous system behavior,
and network jitter, and events that characterize the
system as normal, such as successful ping sessions,
successful subsystem startups, and fle reads and
writes. Since logs are usually generated by multiple
processes or threads of the system, a log sequence
often contains multiple normal/anomalous. Tis
results in an anomalous log sequence often

interspersed with one or more normal logs, pre-
senting a signifcant challenge for log sequence
anomaly detection. In addition, in large-scale sys-
tems, many logs are generated individually by geo-
graphically distributed components and then
uploaded to a centralized location for further anal-
ysis. Tis collection process can lead to missing,
duplicated, or disordered log sequences (e.g., due to
network errors, limited system throughput, storage
issues, etc.) [14]. A McKinsey network survey [15]
found that 80% to 98% of logs are just noise, which
makes processing and analyzing log data tricky.
Noise in log data hinders the efectiveness of existing
log-based anomaly detection methods.

(3) Accuracy and recall are still difcult to balance. In
anomaly detection based on heterogeneous logs, the
precision rate refers to the proportion of true
anomalous logs among those predicted to be
anomalous; the recall rate refers to the proportion of
logs that are predicted to be anomalous among all
true anomalous logs. As we all know, there exists a
relation of “as one falls, another rises.” It is an uphill
battle to have both accuracy and recall. Te system
can generate hundreds of millions of system logs in
just a few months, among which the anomalous logs
can reach hundreds of thousands; even if there is a
1% error in the precision rate, there may be thou-
sands of false positives, which is a great vexation for
operations staf. Likewise, if the recall rate has 1%
error, this means that there will be thousands of
anomalous logs ignored, and some of them may be
caused by fatal failures, which will cause serious
losses. How to balance and improve the two is one of
the most important challenges for researchers to
overcome today.

To solve the above key challenges, in this study, we
propose a generic anomaly detection mechanism for het-
erogeneous logs, called LogPal, which flters the raw system
logs, then uses the FT-tree method to parse the log templates,
and next splices the templates with the raw logs to generate
log pattern events, thus realizing the automatic parsing of
heterogeneous logs. Moreover, based on the semantic
similarity of the anomalous sequences of heterogeneous logs,
we combine natural language processing methods and deep
learning methods to improve the transformer model to learn
log patterns more adaptively and efectively to achieve
anomaly detection of heterogeneous logs. Te contributions
of this study can be summarized in the following points:

(1) To address the difcult problem of balancing log
templates and all semantic information of the raw

Table 1: Examples of heterogeneous logs.

Log type Detailed message

Hadoop 2015-10-17 15 : 38 : 05,258 INFO [main] org.Apache.hadoop.metrics2.impl.MetricsSystemImpl: MapTask metrics system
started

Tunderbird 2005.11.09 #8# Nov 9 12 : 20 : 55 #8#/#8# sshd[16228]: password authentication for user #41# accepted
Blue gene (L) 2005-06-03-15.42.50.363779 R02-M1-N0-C : J12-U11 RAS KERNEL INFO instruction cache parity error corrected
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logs, a new log pattern event generation method for
heterogeneous logs is proposed, which frst flters the
log sequences for noise reduction, then uses the FT-
tree for template extraction, and then innovatively
combines the fltered log sequences to build log
pattern events, and the combined pattern events will
consist of two parts (template number and fltered
real logs).

(2) For the two parts that are diferent from each other
by log pattern events, after embedding the pattern
events into log pattern vectors, the synthetic atten-
tion approach is prospectively used to improve the
transformer model to process log pattern events
diferently, so as to build a pattern-aware learning
model for heterogeneous logs.

(3) To address the large amount of noise present in log
sequences, in the synthetic attention part, the
model’s capability and computational complexity are
balanced by the relative deviations of diferent to-
kens.Te input tokens focus on each token, thinning
out Tokens with diferent deviations away from it in a
fne-to-coarse fashion, as a way to reduce or even
ignore noise in the log sequence.

Te rest of the study is organized as follows. Section 2
analyzes the work related to log-based anomaly detection. In
Section 3, we introduce the framework of LogPal and the
workfow of log parsing and anomaly detection in detail.
Section 4 describes the experimental environment and
datasets, evaluation indicators, experimental results, and the
corresponding analysis. Section 5 concludes the study and
looks forward to future work.

2. Related Work

Te traditional machine learning approaches are playing an
increasingly infuential role in log anomaly detection. For
example, Bodik et al. [16] use regression-based analysis
techniques to automatically classify and identify perfor-
mance crises by constructing a new representation of data
center state, called a fngerprint, which is constructed by
statistical selection and summarization of hundreds of
performance metrics typically collected on such systems. It
can be used to detect specifc performance crises that have
been seen before, but has limited efects on new unseen
performance crises.

Chen et al. [17] proposed a decision tree learningmethod
to diagnose failures in large Internet sites, which is the frst
application of decision trees to anomaly detection. Te
method records the runtime attributes of each request and
applies automated machine learning and data mining
techniques to determine the cause of failure. Te algorithm
was able to successfully identify 13 of the 14 true causes of
failure, achieving a 93% identifcation rate.

Although efective, traditional machine learning
methods often require manual extraction of features from
the raw logs, and the results of the model output depend
heavily on the extraction of features. In addition, traditional
machine learning methods cannot efectively address the

heterogeneity and evolution of logs, making the accuracy of
anomaly detection based on traditional machine learning
methods not very high. With the rapid development of deep
learning and natural language processing, research has fo-
cused on the application of sequence-based [9–12, 18–21]
models. Du et al. [9] designed the DeepLog framework using
LSTM neural networks to realize online anomaly detection
on system logs. DeepLog uses not only log keys, but also
metric values in log entries to detect anomalies, and it relies
only on a small training dataset consisting of “normal log
entries.” Te LogMerge anomaly detection method pro-
posed by Zhang et al. [13] combines LSTM and CNN
methods to efectively extract the backward and forward
dependencies of log sequences, yet signifcantly reduces the
impact brought by noise in log sequences. LogMerge learns
the semantic similarity of multisyntax logs, which enables
the migration of log anomaly patterns across log types and
greatly reduces the anomaly annotation overhead. LSTM
with attention mechanism has also been used to improve the
performance of complex sequence modeling tasks, such as
those for which Zhang et al. [14] proposed the anomaly
detection method LogRobust. LogRobust extracts semantic
information of log events and represents them as semantic
vectors. Ten, it detects anomaly using an attention-based
bi-LSTM model that captures contextual information in log
sequences and automatically learns the importance of dif-
ferent log events. In this way, LogRobust can identify and
handle unstable log events and sequences, is robust to
unstable log data, and solves the problems of unstable log
data in anomaly detection, but when the log sequences span
is large and the network is deep, it can greatly increase the
calculation. Tese are some explorations of log sequence
anomaly detection with LSTM, but further improvements
are needed in detecting accuracy and reducing computa-
tional overhead.

Transformer [22] is a state-of-the-art NLP architecture
based on self-attention, it breaks the limitation that LSTM
models cannot be computed in parallel, and the self-at-
tention mechanism is a more interpretable model that has
achieved many impressive results on natural language
processing tasks, and in recent years, gradually more and
more researchers have been applying this model to the feld
of log anomaly detection. For example, Nedelkoski et al. [18]
proposed Logsy, a classifcation-based method to learn log
representations that allow to distinguish between normal
system log data and anomaly samples from auxiliary log
datasets, easily accessible via the Internet. Te idea behind
Logsy is that the auxiliary dataset is sufciently informative
to enhance the representation of the normal data, yet diverse
enough to regularize against overftting and improve gen-
eralization. Steverson et al. [19] detect attacks on an en-
terprise network by applying mining NLP techniques to
Windows Event Logs (WELs), using transformer models
and self-supervised training methods. A self-supervised
anomaly detection model was constructed by combining
deep learning methods, traditional machine learning, and
natural language processing. Te model flters log into a
series of words with a few simple steps. Te model does not
perceive template for input and has poor generalization
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ability to logs of the same template that have not appeared, in
addition to the simple fltering of logs makes it difcult to
eliminate the efect of log noise and may even make log data
noisier. Le and Zhang [23] proposed NeuralLog, a novel log-
based anomaly detection approach that does not require log
parsing. NeuralLog extracts the semantics from raw log
sequences and represents them as semantic vectors. Tese
representation vectors are then used to detect anomalies
using a transformer-based classifcation model.

Tere are other deep learning methods for log anomaly
detection. Qi et al. [24] proposed a novel log-based anomaly
detection method called Adanomaly, which uses the BiGAN
model for feature extraction and an ensemble approach for
anomaly detection. Han et al. [25] proposed a data aug-
mentation strategy that generates a set of anomalous se-
quences by negative sampling so that practitioners can use
the observed normal sequences and the generated anoma-
lous sequences to train a binary classifcation model.

3. Classification-Based Log Anomaly Detection

3.1. Framework. To address the challenges brought by the
heterogeneity, evolution, and data noise of logs, we propose
LogPal for generic anomaly detection for heterogeneous logs
under massive noise. LogPal can automatically parse het-
erogeneous logs and improve the accuracy of syslog anomaly
detection by combining the raw logs to obtain the fnal log
pattern events, and LogPal can sense the log patterns
through an improved transformer model to achieve anomaly
detection. Tis section describes the overall framework of
LogPal and the details of each part.

Figure 1 shows the overall framework of LogPal, which is
divided into two modules: the ofine training module and
the online detection module. In the ofine training module,
LogPal frst uses the FT-tree method to extract templates
from the raw logs, and the templates are combined with the
raw logs to parse them into new log pattern events, and
construct pattern vectors based on the log pattern events.
LogPal inputs the pattern vectors into the transformer deep
neural network model of synthetic attention and trains a
general anomaly detection model for heterogeneous logs. In
the online detection module, LogPal maps online log se-
quences to pattern vectors based on the above method,
judges whether an online log sequence is anomalous
according to the trained anomaly detection model, and
generates an alarm if it is an anomalous log sequence.

3.2. Pattern Vector Construction. Syslog is usually an un-
structured natural language text written by diferent de-
velopers and often needs to be parsed by log parsers before it
can be efectively applied for anomaly detection based on
machine learning, deep learning, and other methods. Cur-
rently, it is a common practice to parse syslog by extracting
templates from the syslog. A template is usually an invariant
part of the syslog that represents the general type and
meaning of the event expressed by the log sequence, and
similar log sequences can be represented by the same
templates, e.g., “∗∗ startup succeeded” is “syslog: klogd

startup succeeded” which is a template for “syslog: klogd
startup succeeded.” Compared with the raw log, the template
removes the variable part “syslog: klogd” and keeps the main
part of the event, i.e., “A process or port started successfully.”
Tis template can represent not only the log sequence
“syslog: klogd startup succeeded,” but also other log se-
quences that describe the same event as this log sequence,
such as “syslog: syslogd startup succeeded.”

We use the FT-tree template parser [26] for template
extraction. FT-tree is an extended prefx tree structure with
the basic idea that a fxed part of a log sequence is usually the
longest combination of frequently occurring words.
Terefore, extracting templates is equivalent to identifying
the longest combination of frequently occurring words from
the logs. Numerous experiments based on production en-
vironment logs show that FT-tree supports incremental
learning with high accuracy and high template matching
efciency. However, simply taking log template sequences as
training data and constructing template vectors based on
them, although efective, ignores key textual information
peculiar to the raw logs, which results in two or more normal
and exception log sequences, removing the critical variable
parts, and generating the same template. Tis makes the
model “think” of log sequences with diferent labels as the
same input, which is fatal for the log anomaly detection
model.

In the end, we adopt the frequently used textual pre-
processing library torchtext, which flters abundant numbers
and special character noise in the raw log sequences and
applies character case conversion, then uses FT-tree for
template extraction. Te extracted log template sequences
are encoded as natural number sequences from 1 to n, and
each number represents the type of each template. So far, the
raw log sequences have been transformed into template tag
sequence, and fnally new textual token sequences are
generated and combined with the raw syslog. A combined
pattern event will be composed of two parts (template
number and fltered syslog). Te new textual tokens se-
quences not only abstract the main part of each log sequence
but also fully retains all the key information of the variable
part. In addition, to preserve the semantics of the two parts
of log pattern events and reduce or even eliminate the impact
of heterogeneous log anomaly detection, LogPal uses all log
pattern event tokens (template numbers arranged before
syslog sequences) as training data to obtain word vectors of
template words and raw syslog sequences and constructs
pattern vectors based on them. GloVe [27] integrates latent
semantic analysis based on singular value decomposition
and the word2vec algorithm by introducing co-occurrence
probabilities matrix, which uses both global statistical fea-
tures of the corpus and local context features. GloVe uses the
lexical co-occurrence statistics to change their weights in the
objective function J, which is specifed as follows:

J � 􏽘
N

i,j

f Xi,j􏼐 􏼑 v
T
i vj + bi + bj − log Xi,j􏼐 􏼑􏼐 􏼑

2
, (1)

where vi and vj are the word vectors of words i and j, bi and
bj are two deviation terms, f is the weight function, and N is
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the size of the vocabulary table (co-occurrence matrix di-
mension is N × N). Te pattern vectors of log pattern events
can be obtained by using GloVe. To facilitate the reader’s
understanding, Figure 2 shows the process of transforming
the raw logs into new pattern vectors.

3.3. Synthetic Attention Transformer. LogPal is modeled by
an encoder with amultihead attention transformer and takes
the constructed log pattern vectors as input, which difers
from the input of a traditional transformer in that each
pattern vector contains two parts of tokens (the template
number and the fltered real log). Terefore, an improved
transformer for synthesizing attention is designed to learn
the constructed log pattern vectors more efciently.

Synthetic attention is represented by a synthetic atten-
tion matrix, which is divided into global attention and sparse
attention. Global attention is applied to the log template, and
sparse attention is applied to the log sequence. Te log
template pays attention to every token of log pattern, in-
cluding the log template itself, because it can even directly
determine the anomaly itself.

However, not every token needs to deal with contextual
representation. In the typical self-attention mechanism,
every token needs to attend all other tokens; however, for a
trained transformer, the learned attentionmatrixK is usually
very sparse at most data points. Terefore, the computa-
tional complexity can be reduced by combining structural
biases to limit the number of keyword key pairs per query.
For a given input token, we can group its contexts into
nonoverlapping spans of diferent sizes, and the size of the
spans increases with their relative distance. Tat is, the input
token attends each token, processing the diferent spans

away from it in a fne-to-coarse fashion. To obtain the
synthetic attention keyword matrix, the template token
attention and the sparse log token attention are constructed
successively.

3.3.1. Template Global Attention. Global attention is used
for the template token of the constructed log vector, “global”
means that the template token can both attend all other
tokens and let all other tokens pay attention to it. Te at-
tention formula is as

Attention(Q, K, V) � softmax
QK

T

��
dk

􏽰􏼠 􏼡V, (2)

where Attention(Q, K, V) is the value of attention and Q, K,
and V are the query vector matrix, key vector matrix, and
value vector matrix, respectively. Every row of these three
matrices represents a vector corresponding to a token, and
we need to calculate a Score Matrix for the template vector
before calculates the template attention:

Score � QKT
. (3)

Templates are very important for anomaly detection, so
global attention is applied to templates. Tat is, only the
attention between the template token and other tokens, and
the attention of other tokens with the template token are
calculated. Figure 3 illustrates this process.

3.3.2. Log Sparse Attention. Unlike templates, each token of
log sequences is processed from center to both ends. Every
token pays more attention to the log sequence token that is
closer to itself, and the further distant token is not as

Labels of Logs

Filtered Logs

Template 1
Template 2
Template 3

...

...

...

...

Historical 
Raw Logs

Ofine Training Module

Synthetic 
Attention

Transformer

Online Logs

Online Detection Module

Pattern
Vectors

Pattern
Vectors

Anomaly 
Detection 

Model

Pattern Event 1
Pattern Event 2
Pattern Event 3 

...

...

Alarms

Word Embedding

Map to Vectors

Template Extraction

Figure 1: Te framework of LogPal.
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concerned, which can signifcantly decrease the subsequent
parameters in quantity by sparsity. Te following Q matrix,
K matrix, and Score matrix all only describe the raw log
sequence tokens, without the template tokens.

In the K matrix, we take a heterogeneous log sequence
with m tokens as an example. For a certain tokeni, the
distance deviations of every raw log tokenj (without con-
sidering the template token) from tokeni is calculated as
follows:

Deviationj � |i − j|, (4)

and then, we input m deviations to the minimum heap

MinHeapDeviation � Deviation0,Deviation1, . . . ,Deviationm−1􏼈 􏼉.

(5)

By inputting the deviation into the minimum heap, we
can ensure that the next selected token has the minimum
deviation from tokeni. And then, LogPal selects several
groups of tokens from the minimum heap, and the
number of tokens in each group is 20, 21, 22, ..., total N
tokens. Te vector in each cluster takes the maximum
value. Next, the maximum vector is used to calculate the
Score vector. Ten, process each tokeni in sequence to get
the sparse matrix WScore. Te ith row and jth column of
the raw log vectors (excluding the template vector) are the
sparse attention values of tokeni with its own and other
token, and fnally further calculated by equation (2) to
obtain the sparse attention matrix from fne to coarse. Tis
is based on the assumption that for any token, the nearest
token requires more attention, while the distant token has
little impact on it. Tis can reduce the efect of noise away
from the distant token. At the same time, it also decreases
the parameter quantity of subsequent calculations. Fi-
nally, the sparse attention matrix obtained in part 2 is
spliced to the lower right of the template global attention
matrix.

Figure 4 illustrates the mapping process from the Q
matrix and K matrix to the Score matrix with the raw log
sequence whose length of token is 15 as an instance. token7
and token8 are shown in Figure 4.

Te pseudocode of the sparsity algorithm is shown in
Algorithm 1.

3.4.ParameterSetting. In the online detectionmodule, every
pattern tokens in the log pattern events is mapped to a 300-
dimensional vector in the same way, 4 heads are used for
multihead attention, a cross-entropy function is used as the
loss function to train the LogPal neural network, and a
Dropout layer is used to prevent overftting, a sigmoid layer
is employed to output the classifcation, and we use a weight
decay factor 0.001, the initial learning rate is set to 0.001 for
the Adam optimizer, and the fnal training epoch is set to 10.
In addition, the random seed can be initialized to a fxed
value to ensure that the experimental results can be
reproduced. Our model is implemented using PyTorch and
trained on an NVIDIA GeForce RTX 3090 GPU.

4. Experiments

To quantify the performance of LogPal, we conducted
various experiments. We compare this method with four
exposed baselines on two real-world syslog datasets. We

Raw Log Sequences:

Log2: syslog: syslogd startup succeeded.

Templates → S/N:
Template1 →1 : * * startup succeeded 
Template2 →2 : maptask metrics system * * 
Pattern Tokens:
Pattern1: 1 syslog klogd startup succeeded

[35, 1140, 805, 832, 3577, 1]
Pattern2: 1 syslog: syslogd startup succeeded

[35, 1140, 706, 832, 3577, 1]
Pattern3: 2 maptask metrics system stopped

[543, 1856, 653, 4551, 56, 1]
Pattern4: 2 maptask metrics system shutdown complete

[543, 1856, 653, 4551, 56, 1860]
Pattern Vectors:

Log1: syslog: klogd startup succeeded.

Log3: MapTask metrics system stopped.
Log4: MapTask metrics system shutdown complete.

Pattern Vector1: [[-0.0411, -0.0023,…], [-0.0310, 0.0423,…], […]…[…]]
Pattern Vector2: [[-0.0411, -0.0023,…], [-0.0310, 0.0423,…], […]…[…]]
Pattern Vector3: [[0.1334, -0.6031,…], [-0.0654, -0.0630,…], […]…[…]]
Pattern Vector4: [[0.1334, -0.6031,…], [-0.0654, -0.0630,…], […]…[…]]

Figure 2: Examples of mapping raw log to pattern vector.

: TokenTemplate

: TokenSequenceOther

Figure 3: Global attention process of template token vector.
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describe the main information in the datasets, discuss the
experimental settings and evaluation indicators, and give the
results.

4.1. Datasets. We evaluate the proposed method on the
following three open log datasets: BGL dataset [28], HDFS
dataset [7], andTunderbird [28]. A brief summary is shown
in Table 2, and the details are as follows:

Te BGL dataset is an open dataset of logs collected
from a BlueGene/L supercomputer system at Lawrence
Livermore National Labs (LLNL) in Livermore, Cal-
ifornia, with 131,072 processors and 32,768GB mem-
ory. Te log contains alert and nonalert sequences
identifed by alert category tags. In the frst column of
the log, “−” indicates nonalert sequences while others
are alert sequences. Te label information is amenable
to alert detection and prediction research. It has been
used in several studies on log parsing, anomaly de-
tection, and failure prediction.

Te HDFS dataset is generated in a private cloud en-
vironment using benchmark workloads and manually
labeled through handcrafted rules to identify the
anomaly. Te logs are sliced into traces according to
block IDs. Te HDFS dataset marks each block se-
quence as normal or anomalous. Te HDFS dataset
consists of 11,175,629 logs collected in 38.7 hours on
more than 200 Amazon EC2 nodes. Tere are 575,061

log blocks in the dataset, of which 16,838 are marked as
“exception” by Hadoop experts.
Tunderbird dataset is an open dataset of logs collected
from a Tunderbird supercomputer system at Sandia
National Labs (SNL) in Albuquerque, with 9,024
processors and 27,072GB memory. Te log contains
alert and nonalert sequences identifed by alert category
tags. In the frst column of the log, “−” indicates
nonalert sequences, while others are alert sequences.

4.2. Experimental Setup. Te experimental setup for this
study is explained as follows.

4.2.1. Comparisons

We compared LogPal with fve published baseline
methods, namely, PCA [7], DeepLog [9], Swisslog [29],
HitAnomaly [30], and InterpretableSAD [26]. Te
parameters of these methods have been optimized to

Token7

Token8

WQ WK
Wscore

Token7

Token8

Figure 4: Mapping process from Q matrix and K matrix to sparse score matrix.

Input: WQ, WK

Output: Wscore

(1) Array � N1, N2, N3, . . . and sum equals Token’s numbers;
(2) Min − Heap for offering and pollingDeviation;

(3) for rowi inWQ do
(4) for rowj inWK do
(5) Min − Heap add |i − j|;
(6) end for;
(7) forNk inArray do
(8) while not end of Nk do
(9) ListKeyk add (Min − Heap poll);
(10) Keyk⟵Max(ListKeyk);

(11) Wscore
i,k ⟵Qk · Kk;

(12) end for;
(13) end for;
(14) returnWscore;

ALGORITHM 1: Sparsity of score matrix.

Table 2: A brief summary of datasets.

Dataset Time span Size No. of messages Anomalies
BGL 214.7 days 708MB 4,747,963 348,460

HDFS 38.7
hours 1.47GB 11,175,629 288,250

Tunderbird 244 days 29.60GB 211,212,192 43,087,287

Security and Communication Networks 7



produce their best evaluation scores. A brief description
of these methods is as follows:

PCA: in this model, Logs are converted to count vectors
and divided into normal and anomaly spaces using a
principal component analysis (PCA) algorithm.
DeepLog: a deep neural network using LSTM models
the system logs as natural language sequences.
SwissLog: SwissLog combines semantic embedding and
time embedding methods to train a bi-LSTM model
based on unifed attention for anomaly detection
HitAnomaly: a log sequence encoder and a parameter
value encoder are designed to obtain their corre-
sponding representations.Te hierarchical transformer
structure is used to model the log template sequence
and parameter values.
Interpretable SAD: the authors propose a data aug-
mentation strategy that generates a set of anomalous
sequences with negative sampling so that a binary
classifcation model can be trained based on the ob-
served normal sequences and the generated anomalous
sequences.

4.2.2. Evaluation Indicators. To measure the efectiveness of
LogPal in anomaly detection, we use precision, recall, and F1
score as indicators.

Precision: it is the percentage of true anomalies among
all anomalies detected by the approach:

PR �
TP

TP + FP
. (6)

Recall: it is the percentage of anomalies among the
dataset being detected:

RC �
TP

TP + FN
. (7)

F1 score: it is the harmonic mean of precision and
recall:

F1 �
2 × PR × RC

PR + RC
. (8)

TP is the number of anomalous log sequences correctly
detected by the model, FP is the number of normal log
sequences incorrectly identifed as anomalies by the ap-
proach, FN is the number of anomalous log sequences that
are not detected by the approach, and F1 score is used as a
metric that considers both precision and recall, which does
not favor onemetric over another and does not lose scientifc
validity due to the imbalance problem of the dataset.

4.3. Experimental Results. Firstly, we compare LogPal with
transformer on BGL dataset and HDFS dataset. We convert
the log sequences of the datasets into log pattern vectors in
the same way, and then, these pattern vectors are input into
the transformer model, and relevant parameter settings are
consistent with LogPal. We conducted the comparison

experiment by controlling the ratios of the training set and
test set. Figures 5 and 6 show the comparative results of the
experiment.

Te horizontal axis of Figures 5 and 6 represents the
ratios of the training set and test set, and the vertical axis
represents the F1 score of diferent anomaly detection
models. It can be seen that when the training set ratio of
LogPal is large, the optimal F1 score of the LogPal method
for anomaly detection is 99% and that of transformer model
is 98%, which has a weak advantage over transformer; when
the ratio of training sets is small, it can better refect the
performance advantages of LogPal. It shows that even if a
small amount of training data is obtained from the target
syslog, LogPal can extract the key information leading to the
normal or anomalous log sequences and can produce ac-
curate prediction even in invisible samples. When the ratio
of training sets is 2 :1, LogPal’s anomaly detection rate is
90%, while transformer is 86%, LogPal increased F1 score by
4.7%. Even with a large training set, the F1 score improves by
more than 1%. LogPal uses synthetic attention to perceive
the relationship between the template vector and the raw
vector diferently and obtains a better F1 score than the
transformer model. Te transformer model does not con-
sider this special feature of the raw log template but only
considers the self-attention relationship matrix of the raw
log sequence itself making a lot of important information
ignored, which may lead to false alarm. LogPal can quickly
perceive and learn the semantic information of the pattern
vectors to improve the accuracy of anomaly detection. In
addition, LogPal adopts a sparse attention method for the
raw log sequence token, which can reduce the noise impact
even in the long text log sequence and adopting a general
and unifed pattern event extraction method to embed the
pattern vectors, as we expect, enable robust representation
and accurate anomaly detection even for heterogeneous logs
or invisible new logs.

To further evaluate the performance of LogPal, we also
evaluated LogPal and baselines on BGL dataset, HDFS
dataset, and Tunderbird dataset. We show the overall
performance of LogPal compared with baselines in Table 3
and Figures 7–9. Based on the three datasets, generally
speaking, LogPal has the best performance, and all evalu-
ation indicators are close to 99%. LogPal can generally flter
massive heterogeneous logs to generate pattern vectors and
perceive log templates and log sequences, respectively, by
synthetic attention. PCA and DeepLog use the index of log
template to learn anomalous and normal patterns. It ignores
the meaning of log sequences and words, and the actual
performance is not high. Although InterpretableSAD per-
forms well on the Tunderbird dataset, where all indicators
are balanced and the indicator value is not low, the method
does not perform so well on the BGL dataset and the HDFS
dataset, which may be related to the fact that the method is
not universal and may be more suitable for a certain dataset.

It is worth noting that comparing SwissLog and HitA-
nomaly, SwissLog has a precision of 97% and a recall of 100%
in the experiments on the BGL dataset and the HDFS
dataset, while the two indicator values of HitAnomaly are
exactly the opposite, it has a precision of 100% and a recall of
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97% in the experiments. Tis means that SwissLog is more
inclined to detect log sequences as anomalous, in other
words, it is more capable of uncovering anomalous logs in
the logs. Although the recall rate is satisfactory, it is clear
from the precision rate that SwissLog mistakes some log

sequences that are really normal as anomalous. Tus, gen-
erating a large number of false positive predictions, and if a
log anomaly detection method generates too many false
alarms, which will consume energies of O&M staf to verify
the system condition and add a lot of unnecessary work; in
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Figure 5: Comparisons of diferent ratios on the BGL dataset.
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Figure 6: Comparisons of diferent ratios on the HDFS dataset.

Table 3: Comparison of methods on three datasets.

Methods
Datasets

BGL HDFS Tunderbird
PR (%) RC (%) F1 score (%) PR (%) RC (%) F1 score (%) PR (%) RC (%) F1 score (%)

PCA 98 67 80 50 61 55 87 90 89
DeepLog 95 96 93 92 92 91 95 92 93
HitAnomaly  00 97 98  00 97 98 97 96 97
SwissLog 97  00 99 97  00 98 95 97 96
InterpretableSAD 94 88 91 92 87 89 97 96 96
LogPal 99 99 99 98 99 99 98 97 98
Te bold values show the best performances of method based on the experimental results with the specifc indicator and dataset.
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contrast, HitAnomaly can be very precise in logs identifed
as anomalous, without so much false positive predictions.
But it misses some anomalous logs, thus generating a large
number of false negative predictions, which may be a more
serious problem if it fails to detect system anomaly. System
failures may not be resolved in a timely manner for a long
time, which will cause serious losses. Generally speaking,

LogPal is able to balance precision and recall and has an
improved overall performance. Overall, compares favorably
to baselines, LogPal not only learns the semantic informa-
tion of log word vectors but also focuses diferently on the
attention relation between template tokens and log sequence
tokens. Finally, LogPal achieves an excellent performance on
the BGL dataset, the HDFS dataset, and the Tunderbird
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Figure 7: Comparison of diferent methods on the BGL dataset.
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Figure 8: Comparison of diferent methods on the HDFS dataset.
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Figure 9: Comparison of diferent methods on the thunderbird dataset.
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dataset. Compared with existing methods, LogPal improves
the F1 score by 1% on the HDFS dataset. Besides, LogPal
improves the precision and F1 score by 1% on the Tun-
derbird dataset.

5. Conclusion

As a kind of data refecting system status and events, syslog
provides an important support for detecting various soft-
ware and hardware system anomalies. Many log-based
methods have been proposed to detect anomaly in large-
scale software and hardware systems. However, the existing
methods make it difcult to efectively deal with the labelling
problems in heterogeneous logs. To overcome these prob-
lems, this study proposes a generic anomaly detection
mechanism for heterogeneous logs, called LogPal. Te
model innovatively utilizes the synthetic attention trans-
former encoder network, which prospectively thins out the
semantics of log sequences and weakens the infuence of
noise. Compared with other methods, it achieves better
generalization ability on multisource and heterogeneous
samples. Experiments based on public datasets show that the
overall performance of LogPal is better than the current
machine learning and deep learning methods. In future
work, we will further improve the accuracy of anomaly
detection by introducing the weight coefcient to learn the
contribution degree of the template and the raw log token. In
addition, we will explore the synthesis strategy of synthetic
attention to reduce the computational complexity and im-
prove the early warning speed of anomaly detection.
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