
Research Article
CP-ABE Optimization via the Flexible Integration of Access
Policies Containing Multiple Shared Subpolicies

Yinlong Wang, Ting Guo, and Nurmamat Helil

College of Mathematics and System Science, Xinjiang University, Urumqi 830046, China

Correspondence should be addressed to Nurmamat Helil; nur924@sina.com

Received 27 August 2022; Revised 29 January 2023; Accepted 21 February 2023; Published 18 April 2023

Academic Editor: Jie Cui

Copyright © 2023 YinlongWang et al.Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Ciphertext-policy attribute-based encryption (CP-ABE) is a cryptographic scheme that is suitable for cloud storage and can realize
secure data sharing. However, in most existing CP-ABE schemes, the encryption computational overhead is proportional to the
number of attributes in the access policy. Terefore, reducing the computational overhead of the scheme’s encryption is an
important consideration to improve its efciency. Furthermore, in the scenario where the access control policies corresponding to
diferent data shared by the same data owner have multiple shared subpolicies, there is still further optimizing space for en-
cryption. Tis study proposes an optimization approach for CP-ABE via the fexible integration of access policies with multiple
shared subpolicies. Regarding the root nodes of policies being both the same and diferent, we provide optimal policy integration
methods to reduce the overall encryption computation cost of the data associated with these access policies. Under the premise of
preserving the original security of the CP-ABE scheme, this scheme avoids repeated calculation related to the shared subpolicies
during encryption, thus improving the scheme’s efciency. Finally, the correctness and feasibility of the scheme are examined and
verifed by theoretical analysis and experiments.

1. Introduction

With the rapid development of cloud computing technology
[1], more institutions and individuals have been inclined to
outsource their data to the cloud, exploiting the advantages
of cloud storage. Te cloud can provide users with rapid and
convenient data access services on demand. However, the
confdentiality of outsourcing data is a key problem that
needs to be solved. As cloud service providers are often
honest but curious, they may become vulnerable to data
confdentiality breaches. Encryption is the best way to
achieve secure access control of data in these nonfully
trusted cloud environments. As a new type of cryptography
primitive, attribute-based encryption (ABE) [2] provides an
ideal solution for secure data access control in cloud storage.
As an extension of identity-based encryption (IBE) [3], in
2005, Sahai andWaters frst proposed an identity encryption
scheme based on biometric information called Fuzzy
identity-based encryption (Fuzzy-IBE) [2]. Subsequently,
Goyal et al. and Bethencourt et al. proposed key-policy

attribute-based encryption (KP-ABE) [4] and ciphertext-
policy attribute-based encryption (CP-ABE) [5], re-
spectively. Comparing the two types of ABE, we fnd that
CP-ABE is more suitable for the access control scenario on
cloud storage.

On the premise of ensuring the security of outsourced
data in cloud storage, we also need to reduce the compu-
tational and storage overhead and improve the efciency of
encryption and decryption. In most existing ABE schemes,
the computational and storage overhead of encryption and
decryption are related to the number of attributes in the
policy. Terefore, reducing the computational and storage
overhead is an important consideration to improve the
scheme’s efciency.

Scholars have researched the reduction of the compu-
tation consumption of encryption and decryption, including
[6–16]. Tese works of literature mainly reduce computa-
tional overhead by outsourcing encryption or decryption. By
using the substantial computing power of the third party to
complete most of the computing tasks, the user can complete

Hindawi
Security and Communication Networks
Volume 2023, Article ID 2822846, 21 pages
https://doi.org/10.1155/2023/2822846

https://orcid.org/0000-0001-9215-8638
mailto:nur924@sina.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/2822846

encryption or decryption only through simple calculation,
reducing the user’s computational overhead and improving
the scheme’s operational efciency. In addition, there has
also been research on how to improve the efciency of
CP-ABE schemes [17–21]. Tese eforts have mainly focused
on how to improve the scheme’s efciency by reducing the
storage overhead.

Scholars have also paid attention to improving the en-
cryption/decryption efciency of CP-ABE. Under the condi-
tion that the access policies of diferent data of a data owner are
partly the same, in that when there are shared subpolicies, the
data owner can reuse the intermediate calculation results re-
lated to the shared subpolicies during the encryption process.
In these schemes in the literature [22, 23], multiple access trees
of diferent data of the same user are integrated into one access
tree and encrypted these data together. However, these
schemes do not consider the scenario of multiple data with the
same subpolicies.Te literature [24–26] considers the situation
where there are shared subpolicies among access control
policies of diferent data. Among them, the access structure of
the literature [24, 25] is the access tree, and that of the literature
[26] is linear secret sharing scheme (LSSS) matrix. On the basis
of the literature [24], the literature [25] adds decryption
outsourcing to further reduce the user’s decryption overhead.
However, the literature [24, 25] only deals with the situation
where there is only one shared subpolicy among diferent
access policies. A more fexible policy integration method is
needed to cope withmore complicated cases of multiple shared
subpolicies. Fewer restrictions should be imposed on the
number of shared subpolicies and the threshold of the root
node of access trees.

Let us consider an example. Suppose that an engineering
department of a company has two projects and three fles
related to those projects that need to be shared with the
company employees. M1 (Project 1 quality report), M2
(Project 2 quality report), and M3 (Integration plan of two
projects), and their access policies are shown in Figure 1:T1:
P1  AND EDANDQE{ }AND PLORDIR{ }􏼈 􏼉; T2: P2 AND􏼈

EDANDQE{ }AND PLORDIR{ }}; T3: PE1  ORPE2􏼈 􏼉OR􏼈

EDANDQE{ }OR PLORDIR{ }}. Notations about the at-
tributes are enumerated in Table 1. It can be seen that there
are two shared subpolicies T

.

: EDANDQE{ }

andT
..

: PLORDIR{ } among the three access policies, and
their root node thresholds are diferent.

In the previous schemes, each data object is encrypted
separately, and computations involving these shared sub-
policies are repeatedly performed. Te method in the lit-
erature [24] cannot also be directly applied to this situation.
Terefore, to avoid these repeated computations and deal
with multiple shared subpolicies, the scheme of this paper
includes improvements based on Li’s work [24]. Te con-
tributions of this paper are as follows:

(1) For the case where there are multiple shared sub-
policies among access policies and the root nodes of
all access trees are the same, the optimal policy in-
tegration method is provided to reduce the com-
putational overhead of encryption related to share
subpolicies.

(2) For the case where there are multiple shared sub-
policies among access policies and the root nodes of
the access trees are various, the optimal policy in-
tegration method is provided to reduce the com-
putational overhead of encryption related to share
subpolicies.

2. Related Work

As an extension of IBE [3], in 2005, Sahai and Waters frst
proposed an identity encryption scheme based on biometric
information called Fuzzy-IBE [2]. In 2006, Goyal et al.
extended Fuzzy-IBE to KP-ABE [4]. In 2007, Bethencourt
et al. proposed CP-ABE [5]. Comparing the two types of
ABE, we fnd that CP-ABE is more suitable for the access
control scenario on cloud storage. In order to improve the
efciency of the scheme, scholars have made the following
eforts:

Te literature [6–16] contains studies on reducing the
computation consumption of encryption and decryption.
Owing to the limited computing power of users, the server
must undertake some heavy encryption and decryption
computing tasks to improve the operation efciency of the

AND AND

AND ORP1 AND OR

OR

OR AND OR

ED QE PL DIR ED QE PL DIR

ED QE PL DIRPE1 PE2

P2

1 2

3

Figure 1: Example of access control policies with multiple shared
subpolicies.

Table 1: Notations.

Symbol Attribute
P1 Project 1 team member
P2 Project 2 team member
PE1 Production engineer for Project 1
PE2 Production engineer for Project 2
ED Engineering department
QE Quality engineer
PL Project lead
DIR Director

2 Security and Communication Networks

scheme. Green et al. [6] designed an ABE scheme for
outsourcing decryption. In this scheme, the improved key
generation algorithm generates two keys, in which the short
El Gamal key is kept as a private key by the user, and the
transformation key is sent to the cloud. Te cloud uses the
transformation key to convert the ciphertext of the data that
the user can access into a short El Gamal ciphertext, the same
as the ciphertext obtained by encrypting the same data with
the El Gamal key. Users only need to recover the plaintext
with their private keys after a simple computational process,
reducing users’ decryption cost. Zhou and Huang [7] pro-
posed an outsourcing encryption and decryption CP-ABE
scheme, which divides the access tree of the associated ci-
phertext into two parts connected by the AND gate. One part
of the access structure is outsourced to the cloud server for
encryption, and the user only needs to encrypt the other
part, which reduces the user’s computational overhead.
However, this scheme can only support the access tree with
the root node of the AND gate. Asim et al. [8] constructed
a CP-ABE scheme for outsourcing encryption and de-
cryption, using two independent semitrusted agents for
encryption and decryption, respectively. Hohenberger and
Waters [9] designed an online/ofine ABE scheme. In the
encryption process, the computation task is divided into two
parts: the ofine precomputation, unrelated to the cipher-
text, and the online computation, related to the ciphertext.
Te aim is to reduce the computational overhead of online
encryption. Li and Zhang [10] proposed a CP-ABE scheme
with ofine/online encryption and outsourced decryption.
In the encryption phase, the complex calculations are per-
formed ofine on the data owner’s device, and the output is
an intermediate ciphertext. Te entire encryption process
can be completed with only one online exponential oper-
ation on the intermediate ciphertext. In the decryption
phase, the cloud server determines if the attributes of the
data user meet the access structure. If so, it performs partial
decryption. Partial decryption cannot reveal any in-
formation about the plaintext.Ten, the user can achieve the
plaintext after only a few exponential operations based on
the partial decryption results. Cao et al. [11] proposed an
ABE scheme, which uses the substantial computing power of
a trusted third party to complete most decryption opera-
tions. Te data owner specifes access policies for fles, and
the trusted third party embeds the attributes in the access
policy into the ciphertext. Te ciphertext is predecrypted by
the proxy server and then decrypted by the user. Li et al. [12]
proposed a multi-authority CP-ABE access control scheme.
It supports transferring part of the encryption and de-
cryption computing from Internet ofTings (IoT) devices to
neighboring fog nodes, reducing the computational over-
head of IoT devices and making them more suitable for IoT
applications. Leng and Luo [13] proposed an ABE scheme
supporting encryption outsourcing. Tey used the method
in the literature [14] to transform the access tree into
a shared access matrix. Te matrix construction and en-
cryption are outsourced to the cloud server, so the user only
needs three exponential operations to complete the en-
cryption. Tis scheme can be applied to mobile devices. Liu
and Guo [15] combined the proxy re-encryption of multiple

authorization centers with outsourcing encryption and
decryption. During encryption, part of the pairing opera-
tions is completed by the cloud. During decryption, the
blinded private key is used for outsourcing decryption, and
then the user obtains the plaintext through only one ex-
ponential operation. Hwang and Lee [16] proposed
a CP-ABE scheme that can provide signature-based verif-
able outsourcing in the cloud environment. Te data owners
embed their signature into the ciphertext. When users de-
crypt the ciphertext, they can verify if the obtained data
object is signed by the data owner and can then verify its
integrity. During decryption, the outsourcing server per-
forms partial decryption frst, and the end users only need to
complete two pairing operations to obtain the plaintext. In
their scheme, the ciphertext has a constant size.

Tere has also been research on how to improve the
efciency of CP-ABE schemes [17–21, 27]. Emura et al. [17]
proposed a CP-ABE scheme with a constant ciphertext
length to reduce the encryption and decryption time. Still,
the scheme only supports the “AND” gate access structure,
and the expression ability of the access policy is not rich
enough. Subsequently, Herranz et al. [18] proposed
a CP-ABE scheme with a constant ciphertext length and
threshold access structure. Odelu et al. [19] designed
a provably secure CP-ABE scheme with constant-size keys
and ciphertext based on the RSA “AND” gate access
structure, which is suitable for the mobile cloud computing
environment. Tamizharasi et al. [20] proposed a CP-ABE
scheme for privacy protection, which eliminates redundant
attributes in the policy by constructing an assignable matrix,
and reduces the ciphertext size to a constant that is in-
dependent of the number of attributes of the data user. Yang
et al. [21] proposed a completely secure CP-ABE scheme
with constant-size ciphertext, whose decryption computa-
tion only requires three pairing operations and some
multiplication operations, independent of the number of
attributes involved. Tis scheme is suitable for lightweight
devices in IoT applications. In addition, Fugkeaw and Sato
[27] combined role-based access control (RBAC) [28] with
CP-ABE, improved attribute revocation and the key update
in CP-ABE, and reduced the overhead of users’ key dis-
tributions and updates.

Tere are also some works to optimize the scheme and
improve the efciency of the scheme by modifying multiple
access policies of diferent data. Wang et al. [22] proposed an
integrated access structure CP-ABE scheme, which in-
tegrates multiple access trees of diferent data of the same
user into one access tree and encrypts these data together.
Tis integration structure can save storage overhead and
encryption and decryption costs. Based on the literature
[22], Li et al. [23] further extended the tree access structure
and set level nodes under nonleaf nodes. Once the access
structure of one level node is satisfed among level nodes of
the same level under the same node, all others can also be
treated as satisfed.Tis scheme achieves more fexible access
control while keeping the encryption and decryption time
unchanged. Still, these schemes do not consider the scenario
of multiple data with the same subpolicies. Te authors of
[24] proposed a CP-ABE scheme based on shared subpolicy.

Security and Communication Networks 3

It combines tree access policies of diferent data, avoids
repeated computations in the encryption process as much as
possible, and realizes unifed encryption for the shared
subpolicy, reducing the computational overhead. Based on
the literature [24], Zhao [25] proposed a CP-ABE scheme in
which the data owner outsources most of the decryption
operations to the cloud server. First, the cloud server per-
forms predecryption to obtain the intermediate ciphertext.
Ten the user uses the intermediate ciphertext to recover the
plaintext through simple exponentiation, reducing the de-
cryption cost for the user. Xue et al. [26] proposed an
improved LSSS matrix expression. When users decrypt the
ciphertext for the frst time, they store parameters about the
given subpolicies, which can be reused in subsequent data
decryption of access policies containing the same subpolicies
to avoid unnecessarily repeated computations.

3. Preliminaries

3.1. Bilinear Pairings. Let G1 and G2 be two multiplicative
cyclic groups of prime order p. Let g be a generator of G1
and e be a bilinear map, e: G1 × G1⟶ G2.Te bilinear map
e has the following properties:

(1) Bilinearity. For all u, v ∈ G1 and a, b ∈ Zp, we have
e(ua, vb) � e(u, v)ab.

(2) Non-degeneracy. e(g, g)≠ 1.
(3) Computability. Tere is an efcient algorithm to

compute e(x, y) for all x, y ∈ G1.

3.2. Access Tree. Let T be an access tree, which is composed
of leaf nodes and nonleaf nodes. Each nonleaf node represents
a threshold gate, described by its children and a threshold
value. Let numx represent the number of children of a nonleaf
node Nx, and kx be the threshold value of Nx. Ten,
0< kx ≤ numx. When kx � 1, the threshold gate is an “OR”
gate. When kx � numx, the threshold gate is an “AND” gate.
Each leaf node is associated with an attribute, and the
threshold value of the leaf node is set to 1; that is, kx � 1.

For each node Nx in the access tree, defning parent(Nx)

to represent the parent node of node Nx, each parent node
assigns an index value to all its children, and index(Nx) is
defned to represent the index value of node Nx; that is,
1≤ index(Nx)≤ numx. For the leaf node, defning att(Nx)

represents the attribute associated with node Nx.

3.3. Secret Sharing Scheme. Randomly select s ∈ Z∗p as the
secret value to be shared, and then set the value corre-
sponding to the root node N0 of the access tree as the secret
value s. Te number of children is num0, and the assignment
rules of the children of N0 are as follows:

(i) If the root node N0 is an “OR” gate, set the value of
each child of N0 to s

(ii) If N0 is an “AND” gate, a num0 − 1 degree poly-
nomial f is randomly selected so that f(0) � s; for
the child node of N0 whose index value is j, set its
value to f(j)

(iii) If the root node is other threshold, set the threshold
value of N0 as k0, and randomly select a k0 − 1
degree polynomial f so that f(0) � s; for the child
node of N0 whose index value is j, set its value
to f(j).

According to the above rules, assign a value to each node
in the access tree from the root node.

3.4. Lagrange Interpolation Formula. Select a prime number
p and let f(x) be a polynomial of degree n on Zp. If n + 1
diferent points (xi, f(xi)), i � 0, . . . , n of f(x) are given,
the polynomial f(x) can be uniquely determined by the
following Lagrange interpolation formula:

f(x) � 􏽘
n

i�0
f xi(􏼁 􏽑

n

j�0,j≠i

x − xj

xi − xj

⎛⎝ ⎞⎠(mod q), (1)

where ∆i,S(x) � 􏽑j∈S,j≠ix − j/i − j is defned as the Lagrange
coefcient polynomial of f(i). Here, i ∈ Zp, S is a set of n + 1
elements in Zp.

3.5. Shared Subpolicy

Defnition 1 (Shared subpolicy). If there are identical sub-
tree(s) among multiple access trees, the subtree(s) is called
the shared subpolicy (policies) of these access trees.

Access trees may have multiple shared subpolicies;
among these shared subpolicies, one cannot be a subtree of
another.

3.6. Integrated Access Tree

Defnition 2 (Integrated access tree). Tis is a directed tree
formed via merging multiple access trees containing shared
subpolicies.

Defnition 3 (Root node of integrated access tree). When
access trees containing shared subpolicies are integrated, the
cross-node, after integrating all access trees, is called the root
node (cross-node) of the integrated access tree, and the
cross-node is unique.

3.7.CP-ABESecurityModel. Te security model in this study
is expressed through a security game between a challenger
and an adversary. Te process is as follows:

(i) Setup: Te adversary selects a challenge access
structure T and sends it to the challenger. Te
challenger runs the Setup(1λ) algorithm, obtains the
public key PK and the master key MSK, sends PK to
the adversary and keeps MSK for itself.

(ii) Query phase 1: Te adversary queries the challenger
for a series of secret keys related to the attribute set
Aqi

, i � 1, 2, 3, . . .; that is, the adversary sends the
attribute Aqi

to the challenger, and then the chal-
lenger returns the corresponding private key to the

4 Security and Communication Networks

adversary. Te challenger answers the adversary’s
query until the adversary stops querying.

(iii) Challenge: Te adversary sends two messages of
equal length M0 and M1 to the challenger, and the
challenger randomly tosses a coin b ∈ 0, 1{ }, en-
crypts Mb with T as the access control policy,
obtains the challenge ciphertext CT, and sends the
ciphertext CT to the adversary.

(iv) Query phase 2: Te adversary can continue to send
more secret key requests for other attribute sets to
the challenger. Similarly, it is required that all
private key queries do not meet the challenge access
structure T.

(v) Guess: Te adversary outputs a guess b′ ∈ 0, 1{ }

about b. If b′ � b, the adversary wins the game. Te
adversary’s advantage in the game is defned as
|Pr [b′ � b] − 1/2|.

Defnition 4. A CP-ABE scheme is said to be safe if no
polynomial-time adversary breaches the above security
game by a non-negligible advantage.

4. Integration of Access Trees: Access Trees with
Multiple Shared Subpolicies

Li [24] considered the integration of diferent access trees
with a single shared subpolicy. However, this paper’s work
considers the scenario of multiple shared subpolicies among
diferent access trees. We start with the case of the in-
tegration of two access trees containing two shared sub-
policies. Accordingly, this integration method is extended to
integrate multiple access trees with multiple shared sub-
policies, consequently forming a general access tree in-
tegration method. During the integration, the nodes we need
to consider are limited to the parent nodes of the shared
subpolicies. As for higher-level nodes, their relative positions
remain unchanged during integration. Terefore, the root
node of the original access tree (the access tree before
modifcation and the integration) refers to the parent node
of the shared subpolicies hereafter.

Below, the symbols Ti(Other), i � 1, . . . , n are used to
represent the nonshared subpolicy part in access trees
Ti, i � 1, . . . , n; T

.

(AND) and T
..

(OR) represent two kinds
of shared subpolicies with the AND root node and OR root
node, respectively. In addition, there are no restrictions on
the form of the shared subpolicies and other parts of
access trees.

4.1. Modifcation of Access Tree. Before integration, access
trees need to be modifed as preparation. Accordingly, frst,
we give the specifcation of the modifcation of access trees.

Defnition 5 (Modifcation of access tree). If the root node of
an access tree is the AND (OR) gate, then, we add an AND
(OR) child node just under the root node, denoted by N(1)

(N(2)). Ten, all shared subpolicies in the access tree are
merged under the N(1) (N(2)) node. Terefore, N(1) (N(2))

becomes the parent node of all shared subpolicies in this
access tree. Tis process is called the modifcation of the
access tree.

Consider two access trees (Figure 2), T
.

(AND) and
T
..

(OR), which are shared subpolicies of the two access trees.
For the access tree whose root node is AND, the two shared
subpolicies are merged with an AND node, which is denoted
as N(1). For the access tree whose root node is OR, the two
shared subpolicies are merged with an OR node, which is
denoted as N(2). After modifcation, we achieve two mod-
ifed access trees, as shown in Figure 3.

4.2. Integration of Access Trees

4.2.1. Integration of Two Access Trees with the Same Root
Nodes. We assume that the access trees that need to be
integrated are shown in Figure 4(a), and they both have the
AND root nodes. First, we modify them according to
Defnition 5. We take the node that are added when merging
the shared subpolicies of each access tree, make these two
nodes one, and choose it to be the root node of the integrated
access tree. Te fnal integrated access tree is shown in
Figure 4(b). If there are two access trees with the OR root
nodes, as shown in Figure 5(a), the integration process is
similar. After integrating the access trees, the result is as
shown in Figure 5(b).

4.2.2. Integration of Two Access Trees with the Diferent Root
Nodes. We may have two or more access trees that need to
be integrated, and they have multiple shared subpolicies.
Unfortunately, these trees have various root nodes. In this
case, only one of the subpolicies can be chosen, so its root
node becomes the cross-node of the whole integrated access
tree. Te following question then arises: how to select this
cross-node (subpolicy)? To reduce the overall encryption
time cost of data whose access trees are being integrated, we
need to compare the encryption time costs related to every
shared subpolicy and choose the cross-node of the integrated
access tree on this basis. Terefore, the cross-node (sub-
policy) selection rule is provided frst.

Rule 1 (Cross-node selection rule). Knowing all shared
subpolicies among access trees, we select the cross-node by
following the rules mentioned:

(i) Compare the number of leaf nodes contained in each
shared subpolicy:

(1) If the numbers of leaf nodes are diferent, then the
root node of the shared subpolicy with the largest
number of leaf nodes is selected as the root node
of the integrated access tree.

(2) If the numbers of leaf nodes are the same, then the
root node of the shared subpolicy with the largest
number of the AND gate children is selected as the
root node of the integrated access tree.

Te number of leaf nodes is given the highest priority in
Rule 1, and the reason is explained later.

Security and Communication Networks 5

AND OR

1 (Other) (AND) (OR) 2 (Other)(AND) (OR)

1 2

Figure 2: Example of access trees with the AND and OR root nodes.

1 (Other) 2 (Other)

AND OR

AND OR

1 2

(AND) (OR) (AND) (OR)

(N(1)) (N(2))

Figure 3: Example of modifed of access trees with the AND and OR root nodes.

AND AND1 2

1 (Other) 2 (Other)(AND) (OR) (AND) (OR)

(a)

AND

AND

AND

2 (Other)1 (Other)

(AND) (OR)

(N0)

(b)

Figure 4: Integration of two access trees with the AND root nodes.

6 Security and Communication Networks

Defnition 6 (Core shared subpolicy). When we integrate
access trees with diferent root nodes, if the root node of
a shared subpolicy becomes the cross-node of the integrated
access tree, this shared subpolicy is called the core shared
subpolicy.

Taking the access trees in Figure 2 as an example, we
consider the integration of the two access trees, whose root
nodes are AND and OR, respectively. First, modify the
access trees according to Defnition 5. Because they have two
shared subpolicies, we select the cross-node (subpolicy)
according to Rule 1. All nodes from the two access trees
except nodes in the chosen subpolicy are connected to the
cross-node in their original order, keeping their relative
positions unchanged. Finally, we establish an integrated
access tree, as shown in Figure 6; the selected cross-node
becomes the root node of the entire integrated access tree.
During encryption of the corresponding data of these two
access trees, the encryption-related computation for the core
shared subpolicy can be done only once.

In Figure 2, the root nodes of the two shared subpolicies
are the AND gate and OR gate. In fact, if the root nodes of
the shared subpolicies are both OR or AND, the cross-node
can also be selected for integration according to Rule 1.

4.2.3. Integration of More than Tree Access Trees. As
a typical example, the integration of four access trees is
discussed below to give a general integration method for
multiple access trees. Consider the four access trees in
Figure 7, which contain shared subpolicies with root nodes
of diferent gates. Te root nodes of T1 and T3 are AND,
and the root nodes of T2 and T4 are OR. First, the four
access trees are modifed according to Defnition 5; second,
the access trees whose root nodes are the same gate are
integrated frst according to 4.2.1.Tat is, the access treesT1
and T3, T2 and T4 are integrated frst, respectively; sub-
sequently, the two integrated access trees are further in-
tegrated. At this time, we select the cross-node of the
integrated access tree, according to Rule 1. Ten, we connect
each access tree to the cross-node according to the

connection mode of 4.2.2; the fnal integrated access tree of
the four access trees is shown in Figure 8, and the cross-node
is the root node of the integrated access tree.

In Figure 7, the root nodes of the two shared subpolicies
are the AND gate and OR gate. In fact, if the root nodes of
the shared subpolicies are both OR or AND, the cross-node
can also be selected for integration, according to rule 1.

4.3. General IntegrationMethod of Access Trees. Based on the
above cases, an integration method of multiple access trees
containing multiple shared subpolicies is provided.

(i) (Integration Method 1): Integration of access trees
with the same root nodes containing multiple shared
subpolicies:

Step 1: Modify access trees according to Defnition
5 to merge multiple shared subpolicies into one
shared subpolicy for each access tree.
Step 2: Take the root nodes of the new shared
subpolicy built from multiple shared subpolicies

OR OR1 2

1 (Other) 2 (Other)(AND) (OR) (AND) (OR)

(a)

OR

OR

OR

(N0) 2 (Other)1 (Other)

(AND) (OR)

(b)

Figure 5: Integration of two access trees with the OR root nodes.

OR

AND

AND

OR

(N0)

(N(1)) (N(2))
2 (Other)

1 (Other)

(AND) (OR)(OR)

Figure 6: An integrated access tree of two access trees with the
AND and OR root nodes.

Security and Communication Networks 7

from all access trees, make these nodes all-in-one,
and choose this node to be the cross-node of the
integrated access tree.
Step 3: Connect all nodes from access trees except
nodes in the newly built shared subpolicy to the
cross-node in their original order, keeping their
relative positions unchanged. Make this cross-node
the root node of the integrated access tree.

Te whole process and the integrated access tree can
be seen in Figures 4 and 5.

(ii) (Integration Method 2): Integration of access trees
with various root nodes containing multiple shared
subpolicies:

Step 1: Integrate access trees whose root nodes are
the same according to the Integration Method 1,
and achieve two integrated access trees.
Step 2: Select the cross-node (subpolicy) for the two
new integrated access trees according to the Rule 1.
Step 3: Connect all nodes from access trees except
nodes in the chosen subpolicy to the cross-node in

AND OR

AND OR

1 (Other) (AND) (OR) 2 (Other) (AND) (OR)

3 (Other) (AND) (OR) 4 (Other) (AND) (OR)

1 2

3 4

Figure 7: Four access trees.

OR

AND

AND

ORAND OR

3 (Other) 1 (Other)
2 (Other) 4 (Other)

(AND)(OR) (OR)(N0)

(Nm) (Np) (Nq) (Ns)

(N(1)) (N(2))

Figure 8: Integrated access tree of four access trees.

8 Security and Communication Networks

their original order, keeping their relative positions
unchanged. Make this cross-node the root node of
the whole integrated access tree.

Using Integration Method 1, we frst build two in-
tegrated access trees with the AND cross-node and OR
cross-node, respectively. Ten, we integrate them into one
fnal integrated access tree. Te whole process and the in-
tegrated access tree can be seen in Figure 8.

According to Integration Method 2, we integrate the
example in the introduction (Figure 1), and the fnal in-
tegrated access tree is shown in Figure 9:

4.4. Secret ValueAssignment for Nodes in an IntegratedAccess
Tree. Inspired by the method in [24], we develop a secret
sharing method suitable for our integrated access tree.

We take the access trees illustrated in Figure 8 as an
example. N0 is the root node of the integrated access tree. It
starts from the root node, and a polynomial ft(x) is gen-
erated for each node Nt in the integrated access tree. Let the
degree of the polynomial be the threshold value of the node
minus 1; that is, dt � kt − 1. Start from the root node N0. For
each node, generate the polynomial as follows: First, choose
a random number s ∈ Zp, and set f0(0) � s. Ten, randomly
select sdo

, sdo− 1, . . . , s1 ∈ Zp to determine f0(x), and then
f0(x) � sdo

xdo + sdo− 1x
do− 1 + · · · + s1x + s can be obtained.

N(1) is an AND node. Let f1(x) � ad1
xd1 +

ad1− 1x
d1− 1 + · · · + a1x + a0. Let the index value of the N0 is 1;

that is, index(N0) � 1. Ten s � f1(1) � ad1
+

ad1− 1 + · · · + a1 + a0. Select the remaining d1 points to de-
termine a0 � s − (ad1

+ ad1− 1 + · · · + a1).
As N(2) is an OR node, set f2(0) � f0(0) � s.
For the parent nodes Np and Nm of N(1), and parent

nodes Nq and Ns of N(2), there are

fp index N
(1)

􏼐 􏼑􏼐 􏼑 � fm index N
(1)

􏼐 􏼑􏼐 􏼑 � f1(0) � a0;

fq index N
(2)

􏼐 􏼑􏼐 􏼑 � fs index N
(2)

􏼐 􏼑􏼐 􏼑

� f2(0) � f0(0) � s.

(2)

Let

fp(x) � pdp
x

dp + pdp− 1x
dp− 1

+ · · · + p1x + p0;

fm(x) � mdm
x

dm + mdm− 1x
dm− 1

+ · · · + m1x + m0;

fq(x) � qdq
x

dq + qdq − 1x
dq − 1

+ · · · + q1x + q0;

fs(x) � sds
x

ds + sds− 1x
ds− 1

+ · · · + s1x + s0.

(3)

Set the index value of N(1) in fp(x) and fm(x) as 1 and
the index value of N(2) in fq(x) and fs(x) as 1; that is,
index(N(1)) � index(N(2)) � 1. Consequently,
a0 � fp(1) � fm(1), s � fq(1) � fs(1), so

a0 � pdp
+ pdp− 1 + · · · + p1 + p0

� mdm
+ mdm− 1 + · · · + m1 + m0;

s � qdq
+ qdq− 1 + · · · + q1 + q0 � sds

+ sds− 1 + · · · + s1 + s0.

(4)

Select the remaining dm + dp + dq + ds points and
calculate:

p0 � a0 − pdp
+ pdp− 1 + · · · + p1􏼒 􏼓;

m0 � a0 − mdm
+ mdm− 1 + · · · + m1􏼐 􏼑;

q0 � s − qdq
+ qdq− 1 + · · · + q1􏼒 􏼓 � s;

s0 � s − sds
+ sds− 1 + · · · + s1􏼐 􏼑 � s.

(5)

Tus, fp(x), fm(x), fq(x) and fs(x) are determined.
For other nodes Nt, let ft(0) � fparent(Nt)

(index(Nt)),
and select the remaining dt values to determine ft(x).
Terefore, the polynomial of each node in the integrated
access tree can be determined.

Note that according to the above construction, the
polynomial construction and assignment of secret values for
the nodes in the box illustrated in Figure 8 only depend on
the secret value of the root node of the integrated access tree
and the corresponding polynomial. Fortunately, the secret
value of the root node of the integrated access tree and the
corresponding polynomial are set at the beginning. It is fxed
and does not depend on other parameters. Tus, the secret
value of each node in the box can be determined right after
determining the secret value and the polynomial of the root
node of the integrated access tree. In sum, the polynomials
and secret values for the nodes in the box can be shared
among access trees that form the integrated access tree to the
greatest extent. Te encryption-related computation for
these nodes can be done once or twice, depending on the
subpolicy type (described later), avoiding repeated
computation.

4.5. Optimality Analysis of the Integration Method. Te in-
tegration method provided in Section 4.3 has two key points:
One is the selection of the cross-node of the integrated access
tree if access trees have diferent root gates, and the other is
the merging of shared subpolicies and integration. We posit
that the integration method provided in Section 4.3 is op-
timal. Te analysis is presented in the following:

4.5.1. Selection of the Cross-Node of the Integrated Access
Tree. Te reasons for selecting the cross-node (subpolicy) of
the integrated access tree, as given in Rule 1, are as follows:

First, among multiple shared subpolicies, one subpolicy
is selected so that its root node becomes the cross-node of
the integrated access tree. Terefore, during the encryption
of corresponding data of access trees that form the integrated
access tree, the polynomials and secret values for the nodes
in this subpolicy can be shared among all access trees. Te
encryption-related computation for this subpolicy can be
done only once, avoiding repeated computation. In a word,
for this subpolicy, the data owner can achieve the purpose of
precomputation, one-time computation, and reuse.

Second, Rule 1 mainly has two considerations. First,
during encryption, each leaf node involves exponential
operations. Tus, the more leaf nodes a tree have, the higher

Security and Communication Networks 9

the computational cost. Second, according to the secret value
assignment for nodes in the integrated access tree, there is
a polynomial construction and exponential operations at the
AND gate, but there is no exponential operation at the OR
gate, and the secret value is directly propagated to it. By
comparison, the computational overhead at the AND gate is
higher than that of the OR gate. Terefore, the subpolicy
with the largest amount of encryption-related computation
is selected if the cross-node is selected according to Rule 1.
Te encryption-related computation for this subpolicy can
be done only once.

4.5.2. Optimality Analysis of the Integration Method. All
shared subpolicies produce one of two diferent results: Te
frst is the core shared subpolicy, for which the encryption-
related computation can be done only once. For the noncore
shared subpolicies, each of them is embedded under N(1)

and N(2) twice. So for the noncore shared subpolices,
encryption-related computation needs to be done twice.
Terefore, selecting the cross-node and embedding the
noncore shared subpolicies into the integrated access tree
ensures that the integrated access tree is optimal terms of
encryption-related computation.

If we do not follow the integration method in this paper,
that is, if we do not fnd a cross-node to integrate access
trees, then for each access tree, the encryption operations
related to these shared subpolicies should be performed
separately during encryption. So the integration method is
optimal for reducing the amount of encryption
computation.

Tis integration method of access trees ensures that the
core shared subpolicy with the largest amount of encryption-

related computation can be selected. For this subpolicy, the
encryption-related computation can be done once, and the
computation results can be shared among these access trees.
For the noncore shared subpolices, encryption-related
computation needs to be done twice; the computation re-
sults under node N(1) are shared among the access trees
whose root nodes are AND, and the computation results
under node N(2) are shared among the access trees whose
root nodes are OR.

5. CP-ABE Scheme for Multiple
Shared Subpolicies

5.1. System Model. Tis scheme involves four entities: at-
tribute authority, cloud storage platform, data owner, and
data user. Te system model is shown in Figure 10:

5.2. Scheme Construction. Tis scheme is composed of four
algorithms: Setup, KeyGen, Encrypt, and Decrypt. Te al-
gorithms are defned as follows.

(1) Setup(1λ)⟶ (PK,MSK): Te algorithm is run by
the attribute authority. Te input of the algorithm is
the system security parameter λ, and the output is the
system public key PK and the master key MSK.

(2) KeyGen(PK,MSK, A)⟶ SK: Te algorithm is run
by the attribute authority and generates the corre-
sponding private key for the data user according to
their attribute sets. Te inputs of the algorithm
are PK, MSK and the attribute set A of the data
user, and the output is the private key SK of the
data user.

AND

ANDOR

ED QEPL DIR

ANDAND

OR

OR

PL DIR

OR

OR

(N0)

P2 P1
(N(1)) (N(2))

PE1 PE2

1 32

Figure 9: Te integration result of the three access trees in Figure 1.

10 Security and Communication Networks

(3) Encrypt(PK, Mj􏽮 􏽯1≤j≤n, Tj􏽮 􏽯1≤j≤n)⟶ CTj􏽮 􏽯1≤j≤n:
Te algorithm is run by the data owner, and the
access treeTj is used to encrypt the data Mj. Shared
subpolicies exist among the corresponding access
trees Tj, j � 1, 2, . . . , n. Te inputs of the algorithm
are PK, the plaintexts Mj􏽮 􏽯1≤j≤n and the access trees
Tj􏽮 􏽯1≤j≤n, and the outputs are the ciphertexts
CTj􏽮 􏽯1≤j≤n.

(4) Decrypt(PK, SK,CTj)⟶Mj: Te algorithm is run
by the data user, who decrypts the ciphertext CTj

with his private key SK. Te inputs of the algorithm
are PK, SK of the data user, and the ciphertext CTj,
and the output is the corresponding plaintext Mj.

5.3. Scheme Details. Te four algorithms of the CP-ABE
scheme for multiple shared subpolicies proposed in this
paper are described as follows.

5.3.1. Setup. Select two multiplicative cyclic groups G1, G2
with the prime order p, and with g as the generator of G1.
Defne the bilinear map e: G1 × G1⟶ G2 and select the
hash function H: 0, 1{ }∗ ⟶ G1. Te attribute authority
selects two random numbers α, β ∈ Z∗p and generates the
system public key PK and the master key MSK as follows:

PK � G1, g, g
β
, e(g, g)

α
􏼐 􏼑;

MSK � β, g
α

(􏼁.
(6)

Te attribute authority publishes PK to all data owners
and data users.

5.3.2. KeyGen. According to the attribute set A of the data
user, the attribute authority generates the corresponding
private key SK. Te attribute authority frst randomly selects
r ∈ Zp, then randomly selects ri ∈ Zp for each attribute i in
the attribute set A, and fnally calculates and generates SK:

SK � D � g
α+r/β

,∀i ∈ A: Di � g
r

· H(i)
ri , D
′
i � g

ri􏼒 􏼓.

(7)

Te attribute authority sends SK to the data user.

5.3.3. Encrypt. Te integration of four access trees, including
two shared subpolicies, is taken as an example to describe the
algorithm. Tis is a typical example, and more complicated
cases can be simplifed accordingly.

As shown in Figure 7, T1, T2, T3, and T4 have shared
subpolicies; T1 and T3 are access trees with the AND root
nodes; and T2 and T4 are access trees with the OR root
nodes. We can integrate them into an access tree, as shown
in Figure 8, where N0 is the root node of the integrated
access tree. In addition, the specifc forms of the tree under
the shared subpolicies and the nonshared subpolicies in the
scheme are not specifed. Tey can be any access subtrees.

Te encryption algorithm constructs polynomials and
chooses values for each node in the integrated access tree
according to the secret value assignment method described
in Section 4.4. Ten, the ciphertexts are built according to
the traditional CP-ABE encryption scheme.

Let Y(Tj), j � 1, 2, 3, 4 be the set of leaf nodes of each
access tree, Y(T) be a set of leaf nodes of the shared
subpolicies, and Y(􏽢T) be a set of leaf nodes of the core
shared subpolicy. Ten, the ciphertexts of data M1, M2, M3,
and M4 are as follows:

Attribute Authority

Key DistributionPK

Decrypt

Cloud Storage Platform

CT1

CT2

CTn

Encrypt

M1

M2

Mn

Data owner 2

Data owner 1

Data owner n

Data User 1

Data User 2

Data User n

Figure 10: System model.

Security and Communication Networks 11

CT1 � T1,
􏽥C � M1 · e(g, g)

αfp(0)
, C � g

βfp(0)
,􏼐

∀Nη ∈ Y T1(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

,

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, C
′
Nθ

� H att Nθ(􏼁(􏼁
fθ(0)

,

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓,

CT2 � T2,
􏽥C � M2 · e(g, g)

αfq(0)
, C � g

βfq(0)
,􏼐

∀Nη ∈ Y T2(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

,

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, C
′
Nθ

� H att Nθ(􏼁(􏼁
fθ(0)

,

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓,

CT3 � T3,
􏽥C � M3 · e(g, g)

αfm(0)
, C � g

βfm(0)
,􏼐

∀Nη ∈ Y T3(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

,

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, C
′
Nθ

� H att Nθ(􏼁(􏼁
fθ(0)

,

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓,

CT4 � T4,
􏽥C � M4 · e(g, g)

αfs(0)
, C � g

βfs(0)
,􏼐

∀Nη ∈ Y T4(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

,

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, C
′
Nθ

� H att Nθ(􏼁(􏼁
fθ(0)

,

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓.

(8)

Te ciphertext components CNρ
� gfρ(0), C

′
Nρ

� H

(att(Nρ))
fρ(0),∀Nρ ∈ Y(􏽢T) are calculated only once and

shared among CT1, CT2, CT3, and CT4. Te ciphertext
components CNθ

� gfθ(0), C
′
Nθ

� H (att(Nθ))
fθ(0),∀Nθ ∈

Y(T) − Y(􏽢T) are calculated once for CT1 andCT3 and shared
between them; the same ciphertext components are calculated
again for CT2 and CT4 and shared between them. Te
remaining parts of each ciphertext are calculated separately,
and they cannot be shared among CT1, CT2, CT3, and CT4.

Finally, the data owner uploads CT1, CT2, CT3, and CT4
to the cloud storage platform.

5.3.4. Decrypt. Suppose that the attribute set of a data user is
A, their private key is SK, and the data object they want to
access is M1. Te data user frst downloads the ciphertext
CT1 from the cloud storage platform and then decrypts it
with SK. Te decryption process is the recursive algorithm
described in the following:

Let Nj represent the node inT1. If Nj is a leaf node and
att(Nj) � i ∈ A, then calculate:

Fj � DecryptNode CT, SK, Nj􏼐 􏼑

�
e Di, CNj
􏼒 􏼓

e Di
′, C
′
Nj

􏼒 􏼓

� e(g, g)
rfj(0)

.

(9)

If Nj is a leaf node and att(Nj) � i ∉ A, make Fj � ⊥.
If Nj is a nonleaf node, for all children Nz of Nj, let Sj

represents a set of any kj nodes Nz, and for each Nz in the
set, there is Fz ≠⊥. If Sj does not exist, make Fz � ⊥. If Sj

exists, then calculate:

Fj � 􏽙
z∈Sj

F
∆z,Sj

(0)

z � 􏽙
z∈Sj

e(g, g)
rfz(0)∆z,Sj

(0)

� 􏽙
z∈Sj

e(g, g)
rfparent Nz() index Nz()()∆z,Sj

(0)

� 􏽙
z∈Sj

e(g, g)
rfj(z)∆z,Sj

(0)

� e(g, g)

r 􏽘
z∈Sj

fj(z)∆z,Sj
(0)

� e(g, g)
rfj(0)

,

(10)

where ∆z,Sj
(x) � 􏽑u∈Sj,u≠zx − u/z − u is the Lagrange co-

efcient polynomial.
When the attribute set A of the data user satisfes the

access control policyT1, the function DecryptNode is called
at the root node Np of T1:

Fp � DecryptNode CT, SK, N1(􏼁 � e(g, g)
rfp(0)

. (11)

Finally, the data M1 is decrypted through the following
calculation:

12 Security and Communication Networks

􏽥C · Fp

e(C, D)
�

M1 · e(g, g)
αfp(0)

· e(g, g)
rfp(0)

e g
βfp(0)

, g
α+r/β

􏼐 􏼑
� M1. (12)

6. Security Analysis

In this section, we prove the security of the proposed scheme
based on the security of the CP-ABE scheme, which has been
proven to be indistinguishability under chosen-plaintext
attack (IND-CPA) secure in the general group model and
the random oracle model.

Theorem 1. If the CP-ABE scheme is secure, then there is no
probability that the polynomial-time adversary breaches the
proposed scheme with a non-negligible advantage.

Proof. Assuming that there is a probability polynomial-time
adversary A that can win the security game of this section
with a non-negligible advantage AdvA, we can use A to
construct simulator B so that in a similar security game, B
can also win the CP-ABE scheme with a non-negligible
advantage AdvB.

(i) Setup: AdversaryA selects a pair of challenge access
structures T∗∗,T∗{ } sends them to simulator B,
and simulatorB submits the access structure to CP-
ABE, where there are shared subpolicies between

T∗∗ and T∗. CP-ABE runs the Setup(1λ) algo-
rithm, obtains the public key PK � (G1, g,

gβ, e(g, g)α) and the master key MSK � (β, gα),
sends PK to simulator B, and keeps MSK to itself;
simulator B sends PK′ � PK to the adversary A.

(ii) Query phase 1: Adversary A queries simulator B
for the private key of attribute set Aq1

, and simulator
B submits Aq1

to CP-ABE and obtains the corre-
sponding private key SKq1

� (D � gα+r/β, Di􏼈 � gr ·

H(i)ri , D
′
i � gri }∀i∈Aq1

) from CP-ABE, where r and
ri are randomly selected from Zp. Ten, simulator
B returns SK ′q1 � SKq1

to adversaryA as a response
to the query. Adversary A then continues to query
simulator B for the private key of attribute set Aq2
and repeats the above process. Simulator B always
answers the query of adversaryA until adversaryA
stops querying, but all private key queries cannot
meet the challenge of access structure T∗∗,T∗{ }.

(iii) Challenge: AdversaryA sends two message pairs of
equal length M0, M0

∗􏼈 􏼉 and M1, M1
∗􏼈 􏼉 to simu-

lator B, which then sends these two message pairs
to CP-ABE. Ten, CP-ABE randomly tosses a coin
b ∈ 0, 1{ }, encrypts the message Mb with T∗∗, en-
crypts the message Mb

∗ with T∗, and obtains the
following ciphertexts.

CT � T
∗∗

, 􏽥C � Mb · e(g, g)
αfp(0)

, C � g
βfp(0)

,􏼐

∀Nη ∈ Y T
∗∗

(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

;

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, CNθ
′ � H att Nθ(􏼁(􏼁

fθ(0)
;

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓,

CT∗ � T
∗
, 􏽥C � Mb

∗
· e(g, g)

αfq(0)
, C � g

βfq(0)
,􏼐

∀Nη ∈ Y T
∗

(􏼁 − Y(T): CNη
� g

fη(0)
, C
′
Nη

� H att Nη􏼐 􏼑􏼐 􏼑
fη(0)

;

∀Nθ ∈ Y(T) − Y(􏽢T): CNθ
� g

fθ(0)
, C
′
Nθ

� H att Nθ(􏼁(􏼁
fθ(0)

;

∀Nρ ∈ Y(􏽢T): CNρ
� g

fρ(0)
, C
′
Nρ

� H att Nρ􏼐 􏼑􏼑
fρ(0)

􏼒 􏼓.

(13)

CP-ABE sends the challenge ciphertext pair
CT,CT∗{ } to simulatorB, returning it to adversaryA.

(iv) Query phase 2: Adversary A can continue to send
more private key requests for other attribute sets to
simulatorB. Similarly, it is required that all private
key queries do not meet the challenge access
structures T∗∗ and T∗. Simulator B responds to
adversary A in the same way as in query phase 1.

(v) Guess: AdversaryA outputs a guess b′ ∈ 0, 1{ } about
b. Simulator B outputs b′ in its own security game,
so the advantage of simulator B in winning the
security game with CP-ABE is
AdvB � |Pr [b′ � b] − 1/2| � AdvA.

Terefore, if probability polynomial-time adversary A

can win the security game of this section with a non-
negligible advantage AdvA, simulator B can breach

Security and Communication Networks 13

CP-ABE with the same advantage. In sum, the encryption
scheme proposed in this paper is IND-CPA secure.

7. Performance Analysis

Te test environment was a PCwith an AMDRyzen 7 4800H
with Radeon Graphics 2.90GHz, with 16GB RAM, oper-
ating on 64 bit Windows 10 Home. Te prototype system
was developed in Java and run on Java Development Kit
(JDK) 15.We relied on the Java Pairing-Based Cryptography
(JPBC) library 1.2.0 to implement the bilinear operation. All
results are the average of 20 runs.

7.1. Experiment for Rule 1. Rule 1 frst compares the number
of leaf nodes in the shared subpolicy. Ten, we choose the
root node of the shared subpolicy with a maximum number
of leaf nodes as the cross-node of the integrated access tree. If
the numbers of leaf nodes are the same, then the root node of
the shared subpolicy with a maximum number of the AND
gate children is selected as the cross-node of the integrated
access tree.

Let T(m1) denote the computational cost of exponential
operations on group G1, and T(z) denote the computational
cost of exponential and multiplication operations on a big
integer set. We ran a test measuring the time cost of ex-
ponential operations on group G1, and exponential and
multiplication operations on a big integer set, for 50 runs.
Te average time of the 50 runs was taken as our fnal test
result, as shown in Table 2.

Te test results show that the computational overhead of
an exponential operation on a group G1 is more than
15 times that of exponential and multiplication operations
on the big integer set. During encryption, the computation
on leaf nodes is exponential operations on group G1, and
there are two exponential operations for each leaf node. Te
assignment of a secret value to a child node of the AND gate
node consists of exponential and multiplication operations
on a big integer set. Tere is no exponential operation at the
OR gate, and the secret value is directly propagated to it.
Terefore, in Rule 1, the number of leaf nodes is given the
highest priority. When the number of leaf nodes is the same,
it is reasonable to further consider the number of the AND
gate nodes.

7.2. Performance Analysis

7.2.1. Performance Analysis of Diferent Schemes. As shown
in Table 3, the CP-ABE scheme does not consider the
presence of the shared subpolicies.Te literature [24, 25] can
only deal with a single shared subpolicy. Our proposal can
further deal with multiple shared subpolicies, and there is no
restriction on the threshold of the root node of the access
tree. Terefore, our scheme can handle access trees more
fexibly than schemes proposed in the literature [24] does.

Let T(mi) denote the computational cost of exponential
operations on group Gi(i � 1, 2) and T(pm2) denote the
computational cost of multiplication operations on group
G2. A denotes the attribute set of the data user. Y(T)

denotes the set of leaf nodes in all shared subpolicies. Y(􏽢T)

denotes the set of leaf nodes of the core shared subpolicy.

(1) First Case, the Root Nodes of All Access Trees are the
“AND” (“OR”) Gates. Assume a data owner has n data
objects, and the access trees have shared subpolicies and
need to be encrypted. Let Y(Tj), j � 1, . . . , n be the set of
leaf nodes of each access tree.

In the original CP-ABE scheme [5], each data object is
encrypted separately, so the computation cost of 􏽥C is
T(m2) + T(pm2), the computation cost of C is T(m1), and
the total computation cost of CNy

and C
′
Ny

is 2|Y

(Tj)|T(m1). Terefore, the total computation cost for
encrypting n data objects is 􏽐

n
j�1[(2|Y(Tj)| + 1)

T(m1) + T(m2) + T(pm2)]. In [24, 25], encryption-related
computations can be done only once for the leaf nodes on
the core shared subpolicy. Compared with CP-ABE, the
computation cost is reduced by 2(n − 1)|Y(􏽢T)|T(m1). In
this scheme, the computational costs of 􏽥C and C remain the
same. However, for the leaf nodes of the shared subpolicies,
all shared subpolicies are integrated under one node, and all
computations can be done only once, so the computation
cost is reduced by 2(n − 1)|Y(T)|T(m1) compared with CP-
ABE. We can see the comparison in Table 4.

During encryption, the proposed scheme reduces
2(n − 1)|Y(T)|T(m1) of the time cost compared with the
CP-ABE encryption. When the number of data objects n is
given, the more leaf nodes contained in shared subpolicies
(the larger the |Y(T)| is), the more computational overhead
that can be reduced during encryption. When the leaf nodes
contained in shared subpolicies are given (|Y(T)| is de-
termined), the greater the number of data objects n, the more
computational overhead that can be reduced during en-
cryption. During encryption, the proposed scheme reduces
2(n − 1)(|Y(T)| − |Y(􏽢T)|)T(m1) of the time cost com-
pared with the scheme in [24]. Because Y(T)⊇Y(􏽢T), the
computational overhead of the encryption in this paper is
less than that of the scheme in [24]. Te encryption com-
putational overhead of the scheme in [25] is the same as that
of the scheme in [24].

(2) Second Case, Access Trees Have Diferent Root Nodes.
Assume a data owner has n + m data objects, and the access
trees have shared subpolicies and need to be encrypted.
Assume that in all access trees, n have the “AND” root nodes,
and m have the “OR” root nodes. Let Y(Tj), j � 1, . . . , n +

m be the set of leaf nodes of each access tree.
In the original CP-ABE scheme [5], each data object is

encrypted separately, so the computational cost of 􏽥C is
T(m2) + T(pm2), the computational cost of C is T(m1), and
the total computational cost of CNy

and C
′
Ny

is
2|Y(Tj)|T(m1). Terefore, the total computational cost for
encrypting n + m data objects is 􏽐

n+m
j�1 [(2|Y(Tj)| + 1)

T(m1) + T(m2) + T(pm2)]. In [24, 25], encryption-related
computations can be done only once for the leaf nodes on
the core shared subpolicy. Compared with CP-ABE, the
computation cost is reduced by 2(n + m − 1)|Y(􏽢T)|T(m1).

14 Security and Communication Networks

In this scheme, the computation costs of 􏽥C and C remain the
same, but encryption-related computations can be done only
once for the leaf nodes on the core shared subpolicy. Te
encryption-related computations for leaf nodes on the
noncore shared subpolicies can be done twice, so the
computation cost is reduced by 2[(n − 1) + (m−

1)]|Y(T)|T(m1) + 2|Y(􏽢T)|T(m1) compared with CP-ABE.
We can see the comparison from Table 5.

During encryption, the proposed scheme reduces
2T(m1)[(n + m − 2)|Y(T)| + |Y(􏽢T)|] of the time cost
compared with CP-ABE. When the number of data objects
n + m is given, the more leaf nodes contained in shared
subpolicies (the larger the |Y(T)| is), the more computa-
tional overhead that can be reduced during encryption.
When |Y(T)| and |Y(􏽢T)| are given, the greater the number
of data objects n + m, the more computational overhead that
can be reduced during encryption. During encryption, the
proposed scheme reduces 2(n + m − 2)(|Y(T)|−

|Y(􏽢T)|)T(m1) of the time cost compared with the scheme in
[24]. Because Y(T)⊇Y(􏽢T), the computational overhead of
the encryption in this paper is less than that of the scheme in
[24]. Te encryption computational overhead of the scheme
in [25] is the same as that of the scheme in [24].

7.2.2. Experimental Simulation.

(1) First Case, the Root Nodes of All Access Trees are the
“AND” (“OR”) Gates. When keeping the number of data
objects n, the number of attributes |Y(Tj)|, j � 1, . . . , n in
the access tree, and the number of attributes |Y(􏽢T)| in the
core shared subpolicy unchanged, with the increase of the
number of attributes |Y(T)| in the shared subpolicies, the
computational overheads of the encryption in the four
schemes are shown in Table 6. Figure 11 shows the trends of
the computational overhead of the encryption in the four
schemes with the increase of |Y(T)|. In this experiment, n �

4; |Y(Tj)| � 40, j � 1, . . . , n; |Y(􏽢T)| � 3; |Y(T)| �

5, 10, 15, 20, 25, 30, 35{ }.
It can be seen from Figure 11 that with the increase of the

number of attributes in the shared subpolicies, the com-
putation cost of CP-ABE, the literature [24] and the liter-
ature [25] is almost unchanged, while the computation cost
of the encryption in this paper decreases. Te computational
overhead in this paper is the lowest of the four.

When keeping the number of attributes
|Y(Tj)|, j � 1, . . . , n in the access tree, the number of at-
tributes |Y(T)| in the shared subpolicies, and the number of
attributes |Y(􏽢T)| in the core shared subpolicy unchanged,
the computational overhead of the encryption in the four
schemes changes with the increase of the number of data
objects n, as shown in Table 7. Figure 12 shows the variation
between the encryption computation cost of the four
schemes and n. In this experiment, |Y(Tj)| � 40,

j � 1, . . . , n; |Y(T)| � 35; |Y(􏽢T)| � 10; n � 4, . . . , 10.
It can be seen from Figure 12 that the computational

overhead of the encryption in the four schemes increases
with the increase of the number of encrypted data objects.
However, our scheme’s encryption cost is always the lowest,
and the growth rate of encryption cost is the lowest. Tat is,
the more encrypted data objects, the higher the encryption
efciency of the scheme in this paper.

(2) Second Case, Access Trees Have Diferent Root Nodes.
When keeping the number of data objects n + m, the number
of attributes |Y(Tj)|, j � 1, . . . , n + m in the access tree, and
the number of attributes |Y(􏽢T)| in the core shared subpolicy
unchanged, with the increase of the number of attributes
|Y(T)| in the shared subpolicies, the computational over-
heads of the encryption in the four schemes are shown in
Table 8. Figure 13 shows the trends of the computational
overhead of the encryption in the four schemes with the
increase of |Y(T)|. In this experiment, n � 2, m � 2;

|Y(Tj)| � 40, j � 1, . . . , n + m; |Y(􏽢T)| � 3; |Y(T)| �

5, 10, 15, 20, 25, 30, 35{ }.
It can be seen from Figure 13 that with the increase of the

number of attributes in the shared subpolicies, the en-
cryption cost of CP-ABE, literature [24] and the literature
[25] is almost unchanged, while the computation cost of the
encryption in this paper decreases. Te computational
overhead in this paper is the lowest among the four.

When keeping the number of attributes |Y(Tj)|, j �

1, . . . , n + m in the access tree, the number of attributes
|Y(T)| in the shared subpolicies, and the number of at-
tributes |Y(􏽢T)| in the core shared subpolicy unchanged, the
computational overhead of the encryption in the four
schemes changes with the increase of the number of data
objects n + m, as shown in Table 9. Figure 14 shows the
variation between the encryption computation cost of the
four schemes and n + m. In this experiment, |Y(Tj)| � 40, j

Table 2: Time costs for basic computations involved in CP-ABE encryption.

Symbol Description Running time (ms)
T(m1) Exponential operations on group G1 15.502
T(z) Total time of exponential and multiplication operations on the integer set 0.969

Table 3: Comparison of diferent schemes.

Scheme Single shared subpolicy Multiple shared subpolicies Te threshold of the root node of the access tree
CP-ABE [5] No No Arbitrary threshold
Te literature [24] Yes No Arbitrary threshold
Te literature [25] Yes No Arbitrary threshold
Tis paper Yes Yes Arbitrary threshold

Security and Communication Networks 15

Ta
bl

e
4:

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

di
fe
re
nt

sc
he
m
es

w
ith

th
e
sa
m
e
sh
ar
ed

su
bp

ol
ic
ie
s.

N
am

e
C
P-
A
BE

[5
]

T
e
lit
er
at
ur
e
[2
4]

T
e
lit
er
at
ur
e
[2
5]

T
is
pa
pe
r

PK
siz

e
4
lo
gp

4
lo
gp

4
lo
gp

4
lo
gp

M
SK

siz
e

2
lo
gp

2
lo
gp

2
lo
gp

2
lo
gp

SK
siz

e
(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

C
T
siz

e
2 􏽐

n j�
1(

|Y
(
T

j
)|

+
1)
lo
gp

2 􏽐
n j�

1(
|Y

(
T

j
)|

+
1)
lo
gp

2 􏽐
n j�

1(
|Y

(
T

j
)|

+
1)
lo
gp

2 􏽐
n j�

1(
|Y

(
T

j
)|

+
1)
lo
gp

En
cr
yp
tio

n
ov
er
he
ad

􏽐
n j�

1[
(
2|

Y
(
T

j
)|

+
1)

·T
(

m
1)

+
T

(
m

2)
+

T
(

p
m

2)
]

􏽐
n j�

1[
(
2|

Y
(
T

j
)|

+
1)

·
T

(
m

1)
+

T
(

m
2)

+
T

(
p

m
2)

]
−
2(

n
−
1)

·
|Y

(
􏽢 T

)|
T

(
m

1)

􏽐
n j�

1[
(
2|

Y
(
T

j
)|

+
1)

·T
(

m
1)

+
T

(
m

2)
+

T
(

p
m

2)
]

−
2(

n
−
1)

·|
Y

(
􏽢 T

)|
T

(
m

1)

􏽐
n j�

1[
(
2|

Y
(
T

j
)|

+
1)

·T
(

m
1)

+

T
(

m
2)

+
T

(
p

m
2)

]
−
2(

n
−
1)

·|
Y

(
T

)|
T

(
m

1)

16 Security and Communication Networks

Ta
bl

e
5:

Pe
rf
or
m
an
ce

co
m
pa
ri
so
n
of

di
fe
re
nt

sc
he
m
es

w
ith

th
e
sa
m
e
sh
ar
ed

su
bp

ol
ic
ie
s.

N
am

e
C
P-
A
BE

[5
]

T
e
lit
er
at
ur
e
[2
4]

T
e
lit
er
at
ur
e
[2
5]

T
is
pa
pe
r

PK
siz

e
4
lo
gp

4
lo
g

p
4
lo
g

p
4
lo
g

p

M
SK

siz
e

2
lo
gp

2
lo
g

p
2
lo
g

p
2
lo
g

p

SK
siz

e
(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

(
2|

A
|
+
1)
lo
gp

C
T
siz

e
2􏽐

n
+

m
j�

1
(
|Y

(
T

j
)|

+
1)
lo
gp

2􏽐
n

+
m

j�
1

(
|Y

(
T

j
)|

+
1)
lo
gp

2􏽐
n

+
m

j�
1

(
|Y

(
T

j
)|

+
1)
lo
gp

2􏽐
n

+
m

j�
1

(
|Y

(
T

j
)|

+
1)
lo
gp

En
cr
yp
tio

n
ov
er
he
ad

􏽐
n

+
m

j�
1

[(
2|

Y
(
T

j
)|

+
1)

·

T
(
m

1)
+

T
(
m

2)
+

T
(
p

m
2)

]

􏽐
n

+
m

j�
1

[(
2|

Y
(
T

j
)|

+
1)

·T
(
m

1)
+

T
(
m

2)
+

T
(
p

m
2)

]
−
2(

n
+

m
−
1)

·
|Y

(
􏽢 T

)|
T

(
m

1)

􏽐
n

+
m

j�
1

[(
2|

Y
(
T

j
)|

+
1)

·T
(
m

1)
+

T
(
m

2)
+

T
(
p

m
2)

]
−
2(

n
+

m
−
1)

·|
Y

(
􏽢 T

)|
T

(
m

1)

􏽐
n

+
m

j�
1

[(
2|

Y
(
T

j
)|

+
1)

·
T

(
m

1)
+

T
(
m

2)
+

T
(
p

m
2)

]
−
2(

n
+

m
−
2)

·
|Y

(
T

)|
T

(
m

1)
−
2|

Y
(

􏽢 T
)|

T
(
m

1)

Security and Communication Networks 17

� 1, . . . , n + m; |Y(T)| � 35; |Y(􏽢T)| � 10; n + m � 4, . . . ,

10.
It can be seen from Figure 14 that the computational

overhead of the encryption in the four schemes increases
with the increase of the number of encrypted data objects.

However, our scheme’s encryption cost is always the lowest,
and the growth rate of encryption cost is the lowest. Tat is,
the more encrypted data objects, the higher the encryption
efciency of this scheme in this paper.

When keeping the number of data objects n + m, the
number of attributes |Y(Tj)|, j � 1, . . . , n + m in the access
tree, and the number of attributes |Y(T)| in the shared
subpolicies unchanged, with the increase of the number of
attributes |Y(􏽢T)| in the core shared subpolicy, the com-
putational overheads of the encryption in the four schemes
are shown in Table 10. Figure 15 shows the trends of the
computational overhead of encryption in the four schemes
with the increase of |Y(􏽢T)|. In this experiment, n � 2, m �

2; |Y(Tj)| � 40, j � 1, . . . , n + m; |Y(T)| � 35; |Y(􏽢T)| �

5, 10, 15, 20, 25, 30{ }.
It can be seen from Figure 15 that with the increase of

the number of attributes in the core shared subpolicy, the
encryption cost of CP-ABE is almost unchanged. In
contrast, the computation cost of the encryption in the
literature [24], the literature [25] and this paper decreases.
Te number of attributes in the core shared subpolicy is

Table 6: Te encryption computational overhead of the four schemes (unit: s).

Te number of
attributes in the
shared subpolicies

5 10 15 20 25 30 35

CP-ABE [5] 11.275 11.327 11.309 11.274 11.310 11.301 11.250
Te literature [24] 10.985 11.032 11.061 10.979 11.014 11.001 10.961
Te literature [25] 11.005 11.099 10.984 11.025 10.982 10.922 11.029
Tis paper 10.821 10.420 9.978 9.520 9.004 8.564 7.961

The number of attributes of the shared sub-policies

Encryption overhead comparison of four schemes

5 353025201510

En
cr

yp
tio

n
ov

er
he

ad
 (s

)

7.5
8

8.5
9

9.5
10

10.5
11

11.5

CP-ABE
The literature [24]

This paper
The literature [25]

Figure 11: Te trends of the computational cost of encryption of the four schemes with the number of attributes in the shared subpolicies.

Table 7: Te encryption computational overhead of the four schemes (unit: s).

Te number of data
objects 4 5 6 7 8 9 10

CP-ABE [5] 11.190 13.452 16.462 19.378 21.781 24.717 27.096
Te literature [24] 10.202 12.193 14.872 17.436 19.552 22.132 24.236
Te literature [25] 10.270 12.151 14.965 17.453 19.605 22.110 24.251
Tis paper 7.797 9.118 10.969 12.730 14.126 15.827 17.447

The number of data objects

Encryption overhead comparison of four schemes

CP-ABE
The literature [24]

This paper
The literature [25]

4 1098765

En
cr

yp
tio

n
ov

er
he

ad
 (s

)

5
8

11
14
17
20
23
26
29

Figure 12:Te relationship between the encryption computational
cost and the number of data objects.

18 Security and Communication Networks

Table 8: Te encryption computational overhead of the four schemes (unit: s).

Te number of
attributes in the
shared subpolicies

5 10 15 20 25 30 35

CP-ABE [5] 11.552 11.433 11.381 11.444 11.340 11.424 11.531
Te literature [24] 11.261 11.133 11.075 11.134 11.043 11.122 11.219
Te literature [25] 11.278 11.074 11.052 11.129 11.041 11.133 11.202
Tis paper 11.146 10.710 10.341 10.093 9.764 9.518 9.184

The number of attributes of the shared sub-policies

Encryption overhead comparison of four schemes

5 353025201510

En
cr

yp
tio

n
ov

er
he

ad
 (s

)

7.5
8

8.5
9

9.5
10

10.5
11

11.5
12

This paper
The literature [25]

CP-ABE
The literature [24]

Figure 13: Te relationship between the encryption computational cost and the number of attributes in the shared subpolicies.

Table 9: Te encryption computational overhead of the four schemes (unit: s).

Te number of data
objects 4 5 6 7 8 9 10

CP-ABE [5] 11.242 13.322 16.490 19.424 21.655 24.719 27.046
Te literature [24] 10.256 12.072 14.866 17.477 19.377 22.149 24.196
Te literature [25] 10.277 12.036 14.909 17.413 19.340 22.055 24.173
Tis paper 8.652 9.754 11.684 13.545 14.660 16.667 17.968

The number of data objects

Encryption overhead comparison of four schemes

4 1098765

En
cr

yp
tio

n
ov

er
he

ad
 (s

)

5
8

11
14
17
20
23
26
29

This paper
The literature [25]

CP-ABE
The literature [24]

Figure 14: Te relationship between the encryption computational cost and the number of data objects.

Security and Communication Networks 19

less than or equal to the number of attributes in the shared
subpolicies. Tat is, when the number of attributes in the
core shared subpolicy reaches the maximum, the com-
putational overhead in the literature [24] and the litera-
ture [25] is at most equal to that in this paper. In other
words, the computational overhead in this paper is the
lowest among the four.

8. Conclusion

In the scenario where data owners share diferent data and
the corresponding access control policies have multiple
shared subpolicies, this study proposed an optimized
CP-ABE scheme via the fexible integration of access trees
with multiple shared subpolicies. Our integration method
includes the modifcation of access trees, frst round in-
tegration of access trees with the same root nodes, selection
of the cross-node, and a last round of integration of access
trees. Tus, we achieve an optimally integrated access tree
from the viewpoint of encryption-related computation.
Furthermore, security analysis showed that the proposed
scheme is IND-CPA secure.

In our work, we did not consider optimally categorizing all
access trees of a data owner for integration. Another challenge
is integrating access trees, where the number of shared
subpolicies between every two policies difers. Terefore, our
future work will focus on how to globally categorize access
trees of a data owner for optimal integration. Moreover, we
will consider integrating access trees with a diferent number
of shared subpolicies between every two policies.

Data Availability

Te experimental data used to support the fndings of this study
are available from the frst author upon reasonable request.

Conflicts of Interest

Te authors declare that there are no conficts of interest.

Acknowledgments

Tis research work was supported by National Natural
Science Foundation of China (grant numbers: 61862059 and
61562085).

References

[1] D. Feng, M. Zhang, Y. Zhang, and Z. Xu, “Study on cloud
computing security,” Journal of Software, vol. 22, no. 1,
pp. 71–83, 2011.

[2] A. Sahai and B. Waters, “Fuzzy identity-based encryption,” in
Advances in Cryptology - EUROCRYPT 2005, EUROCRYPT
2005, R. Cramer, Ed., vol. 3494, Springer, Berlin, Germany,
2005.

[3] A. Shamir, “Identity-based cryptosystems and signature
schemes,” in Advances in Cryptology. CRYPTO 1984,
G. R. Blakley and D. Chaum, Eds., vol. 196, Springer Berlin,
Germany, 1984.

[4] V. Goyal, O. Pandey, A. Sahai, and B. Waters, “Attribute-
based encryption for fne-grained access control of encrypted
data,” in Proceedings of the ACMConference on Computer and
Communications Security, pp. 89–98, ACM, Alexandria VA
USA, October, 2006.

[5] J. Bethencourt, A. Sahai, and B. Waters, “Ciphertext-policy
attribute-based encryption,” in Proceedings of the IEEE
Symposium on Security and Privacy, pp. 321–334, IEEE
Computer Society, Berkeley, CA, USA, May, 2007.

[6] M. Green, S. Hohenberger, and B. Waters, “Outsourcing the
decryption of ABE ciphertexts,” in Proceedings of the 20th
USENIX Conference on Security, San Francisco CA, USA,
August, 2011.

[7] Z. Zhou and D. Huang, “Efcient and secure data storage
operations for mobile cloud computing,” in Proceedings of the
2012 8th International Conference on Network and Service
Management(CNSM), pp. 37–45, IEEE, Las Vegas, NV, USA,
October, 2012.

[8] M. Asim, M. Petkovic, and T. Ignatenko, “Attribute-based
encryption with encryption and decryption outsourcing
conference on innovations in clouds,” in 12th Australian
Information Security Management Conference, Research
Online, Perth, Australia, pp. 21–28, December 2014.

[9] S. Hohenberger and B.Waters, “Online/ofine attribute based
encryption,” International Conference on Practice and Teory
in Public-Key Cryptography, pp. 293–310, Springer, Berlin,
Germany, 2014.

[10] S. Li and H. Zhang, “Online/ofine attribute-based encryption
with multi-authority access control,” in Proceedings of the
2021 18th International Computer Conference on Wavelet Active
Media Technology and Information Processing (ICCWAMTIP),
pp. 426–433, IEEE, Chengdu, China, December, 2021.

Table 10: Te encryption computational overhead of the four schemes (unit: s).

Te number of attributes in the core shared subpolicy 5 10 15 20 25 30
CP-ABE [5] 11.072 11.242 11.157 11.210 11.116 11.357
Te literature [24] 10.568 10.256 9.689 9.306 8.694 8.454
Te literature [25] 10.574 10.211 9.690 9.311 8.692 8.419
Tis paper 8.697 8.592 8.490 8.361 8.224 8.128

The number of attributes of the core shared sub-policy

Encryption overhead comparison of four schemes

5 3025201510

En
cr

yp
tio

n
ov

er
he

ad
 (s

)

7.5
8

8.5
9

9.5
10

10.5
11

11.5

This paper
The literature [25]

CP-ABE
The literature [24]

Figure 15:Te relationship between the encryption computational
cost and the number of attributes in the core shared subpolicy.

20 Security and Communication Networks

[11] L. Cao, Y. Liu, X. Dong, and X. Guo, “User privacy-preserving
cloud storage scheme on CP-ABE,” Journal of Tsinghua
University, vol. 58, no. 2, pp. 150–156, 2018.

[12] L. Li, Z. Wang, and N. Li, “Access control scheme supporting
computing outsourcing in fog computing,” Computer Engi-
neering and Applications, vol. 57, no. 6, pp. 81–87, 2021.

[13] Q. Leng and W. Luo, “Attribute-based encryption with
outsourced encryption,” Communications Technology, vol. 54,
no. 9, pp. 2242–2246, 2021.

[14] W. Luo, C. Feng, L. Zou et al., “Attribute-based encryption
scheme with fast encryption,” Journal of Software, vol. 31,
no. 12, pp. 3923–3936, 2020.

[15] S. Liu and Y. Guo, “Multi-authority based CP-ABE proxy re-
encryption scheme for cloud computing,” Chinese Journal of
Network and Information Security, vol. 8, no. 3, pp. 176–188,
2022.

[16] Y. W. Hwang and I. Y. Lee, “A study on CP-ABE based data
sharing system that provides signature-based verifable out-
sourcing,” in Proceedings of the 2021 International Conference
on Advanced Enterprise Information System (AEIS), pp. 1–5,
IEEE, St. Petersburg, Russia, June, 2021.

[17] K. Emura, A. Miyaji, K. Omote, A. Nomura, and M. Soshi, “A
ciphertext-policy attribute-based encryption scheme with
constant ciphertext length,” International Journal of Applied
Cryptography, vol. 2, no. 1, pp. 46–59, 2010.

[18] J. Herranz, F. Laguillaumie, and C. Ràfols, “Constant size
ciphertexts in threshold attribute-based encryption,” In-
ternational Conference on Practice and Teory in Public Key
Cryptography, pp. 19–34, Springer, Berlin, Germarny, 2010.

[19] V. Odelu, A. K. Das, M. Khurram Khan, K. R. Choo, and
M. Jo, “Expressive CP-ABE scheme for mobile devices in IoT
satisfying constant-size keys and ciphertexts,” IEEE Access,
vol. 5, pp. 3273–3283, 2017.

[20] G. S. Tamizharasi, B. Balamurugan, and H. A. Gafar, “Privacy
preserving ciphertext policy attribute based encryption
scheme with efcient and constant ciphertextsize,” in Pro-
ceedings of the International Conference on Inventive Com-
putation Technologies, pp. 1–5, IEEE, Coimbatore, India,
August, 2016.

[21] W. Yang, R. Wang, Z. Guan, L. Wu, X. Du, and M. Guizani,
“A lightweight attribute based encryption scheme with con-
stant size ciphertext for Internet of Tings,” in Proceedings of
the ICC 2020 - 2020 IEEE International Conference on
Communications (ICC), pp. 1–6, IEEE, Dublin, Ireland, June,
2020.

[22] S. Wang, J. Zhou, J. Liu, J. Yu, J. Chen, and W. Xie, “An
efcient fle hierarchy attribute-based encryption scheme in
cloud computing,” IEEE Transactions on Information Fo-
rensics and Security, vol. 11, no. 6, pp. 1265–1277, 2016.

[23] J. Li, N. Chen, and Y. Zhang, “Extended fle hierarchy access
control scheme with attribute-based encryption in cloud
computing,” IEEE Transactions on Emerging Topics in Com-
puting, vol. 9, no. 2, pp. 983–993, 2021.

[24] W. Li, Research of Attribute-Based Encryption Schemes Based
on Shared Subpolicy in Cloud Computing, Beijing University
of Posts and Telecommunications, Beijing, China, 2019.

[25] J. Zhao, “Research on key technology of attribute-based en-
cryption for cloud storage,” Information Engineering Uni-
versity, 2022.

[26] K. Xue, N. Gai, J. Hong, D.Wei, P. Hong, and N. Yu, “Efcient
and secure attribute-based access control with identical
subpolicies frequently used in cloud storage,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 19, no. 1,
pp. 635–646, 2022.

[27] S. Fugkeaw and H. Sato, “Enabling dynamic and efcient data
access control in cloud computing based on attribute cer-
tifcate management and CP-ABE,” in Proceedings of the
Euromicro International Conference on Parallel, Distributed
and Network-based Processing (PDP), pp. 454–461, IEEE,
Cambridge, UK, March, 2018.

[28] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman, “Role-
based access control models,” Computer, vol. 29, no. 2,
pp. 38–47, 1996.

Security and Communication Networks 21

