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Homomorphic encryption technology is the holy grail of cryptography and has a wide range of applications in practice.Tis paper
proposes a homomorphic encryption scheme over the fraction based on the Chinese remainder theorem (CRT) Dayan qiuyi rule.
Tis homomorphic scheme performs encryption and decryption operations by forming congruence groups and has homo-
morphism. Te solution in this paper frst combines the traditional CRTalgorithm with the Dayan qiuyi rule to obtain the CRTF
algorithm that can be operated on the fraction feld. Finally, in the decryption process, modulo arithmetic is used twice to obtain
the correct plaintext components, restored to plaintext by CRTF. Te scheme’s security is related to a decisional version of an
approximate GCD problem. Te proof of theoretical derivation shows that this paper’s homomorphic encryption scheme can
realize the homomorphic addition operation in the fraction feld. Compared with the CKKS scheme, efciency is improved.

1. Introduction

With the birth and development of the Internet and cloud
computing concepts, people’s demands for data pro-
cessing and search are constantly increasing, making
homomorphic encryption (HE) more critical. HE is also
the focus and hot issue of international cryptography
research in recent years. Te concept of HE appeared in
the paper [1] jointly published by Rivest, Adleman, and
Detourzos in 1978. It frst proposed the concept of cal-
culating encrypted data without decrypting the encrypted
data. Te advantage of HE is that users can still analyze
and retrieve encrypted data when the data are encrypted
[2], which ensures the security of data transmission and
prevents the plaintext from being exposed or leaked when
the data are processed in the cloud.

Furthermore, the correct encrypted data can also get the
correct decryption result [3]. HE has a signifcant application
value, and it has many applications in cloud computing and
electronic voting. After the idea of homomorphism was
proposed, many scholars tried to construct a fully homo-
morphic encryption (FHE) scheme, but none of the pro-
posed schemes possessed the characteristic of full

homomorphism [3–9]. On this basis, a homomorphic cipher
that can satisfy fnite times of multiplication and addition at
the same time is also proposed [8–22]. It is called somewhat
homomorphic encryption (SWHE). In 2009, Gentry was the
frst to construct an FHE scheme [10] based on the ideal
lattice concept [11]. Since then, Gentry has successively
constructed some other FHE schemes [12]. In addition, in
order to promote the idea of “bootstrapping,” Gentry used
a simple algebraic structure to construct a DGHV10 scheme
[23] over the integer in 2010. In the follow-up, many scholars
not only carried out a lot of improvement and advancement
work but also expanded the plaintext domain, increased
efciency, and solved the problem of ciphertext expansion.

After Gentry’s breakthrough, homomorphic cryptog-
raphy is known as a hot topic again. In 2011, Brakerski
proposed a lattice-based encryption hypothesis learning
with errors (LWEs) [24]. In the same year, Brakerski, Gentry,
and Vaikuntanathan completed the system together and
ofcially published it. It is called BGV [12]. Te BGV system
is a homomorphic encryption system with a fnite number of
stages, but it can be turned into a fully homomorphic system
through Bootstrapping. Te BGV system is the second-
generation FHE system.
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In 2013, Gentry, Sanai, and Waters launched the new
GSW scheme [25]. Te GSW system is similar to BGV and
has a fnite series of fully homomorphic properties. GSW is
called the third-generation FHE system.

After 2013, based on original third-generation FHE,
various new designs have emerged, dedicated to optimizing
and accelerating the operating efciency of the BGV and
GSW systems. IBM developed an open-source fully ho-
momorphic computing library (HElib) based on the BGV
system and successfully transplanted it to major mobile
platforms.

However, the above homomorphic encryption schemes
(whether SWHE or FHE schemes) are mostly applied to the
integer feld [23], and there is still a gap in the use of ho-
momorphic encryption over fractions.

In 1978, Rivest mentioned an example in his paper [1],
which was based on CRT. It is homomorphic, but it is in-
secure and challenging to resist known plaintext attacks [26].

DGHV15 [27] solves the security problem by adding
random information to ciphertext, and at the same time,
links security to a decisional version of approximate GCD
problems. Nevertheless, it did not solve the homomorphic
operation of fractions.

Tis paper frst reviews DGHV15 [27], combines CRT
with the Dayan qiuyi rule based on it to obtain CRTF, and
applies CRTF to the encryption and decryption processes,
expanding the scheme’s calculation range from integers to
fractions. Furthermore, the scheme also has a homomorphic
nature.Te safety proof of the scheme proposed in this paper
is equivalent to the safety analysis of DGHV15 [27].

In Section 2, some basic concepts are introduced. In
Section 3, the scheme of this article is explained in detail,
including parameters and structure. Section 3.3 proves
correctness and homomorphism. Finally, safety and ef-
ciency are compared and analyzed in Sections 3.4 and 3.5.

2. Preliminaries

2.1. Chinese Remainder Teorem. CRT (Chinese remainder
theorem) frst appeared in a book onmathematics during the
Southern and Northern dynasties of China. Sunzi Suanjing
(Problem26, Volume 3) reads “there are certain things
whose number is unknown. A number is repeatedly divided
by 3, the remainder is 2; divided by 5, the remainder is 3; and
by 7, the remainder is 2. What will the number be?” Tis
problem can be expressed as

x ≡ 2(mod 3) ≡ 3(mod 5) ≡ 5(mod 7). (1)

Generally, the target object of the CRT is one-variable
congruence equations. p1, p2, .., pn is a positive integer that
is prime to each other [15]. c and ri(i � 1, 2, .., n) are both
positive integers:

c ≡ r1 modp1( 􏼁,

c ≡ r2 modp2( 􏼁,

⋮

c ≡ rn modpn( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(2)

We can fnd the positive integer solution of the unitary
congruence group. Te above process is called the Chinese
reminder theorem (CRT) or Sunzi theorem [16]. It has many
applications in various felds [17]. Its specifc form can be
expressed as follows.

Te solution c is as follows:

c � 􏽘
n

i�1
PiFiri(modP), (3)

where Fi is multiplicative inverse and must meet the con-
ditions of PiFi ≡ 1(modpi).

P � 􏽙
n

i�1
pi,

Pi �
P

pi

.

(4)

2.2. Dayan Qiuyi Rule. Te Dayan qiuyi rule originated
from the mathematics book Shushu Jiuzhang written by
Qin Jiushao in 1247 AD in the Song dynasty. Some of
the problems are expressed by the congruence system [27].
Te modulus and remainder of the congruence
equations formed by these practical problems have dif-
ferent situations, including decimals, integers, and frac-
tions. Te rest of the numbers in the fraction feld provides
theoretical feasibility and ideas for the scheme of this
article.

To solve the remainder’s situation in the fraction feld,
the remainder and the modulus must be multiplied by the
least common multiple of two denominators. Te modulus
set no longer satisfes any two elements in the modulus set
mutually prime in the unary congruence equation.Te set of
modulus needs to be transformed into an equivalent form on
the unary congruence equation.

Te modulus set can be divided into the following four
categories according to the relative prime of the elements in
its own set.

Yuanshu: there is no greatest common factor in the set
of modules
Tongshu: there are elements in the set of modules that
exist in the fraction feld
Fushu: there is the greatest common factor in the
modulus set
Dingshu: any two elements in the set of modulus are
relatively prime

Step 1. We convert the remainder existing in the fraction
feld into an equivalent integer form. xi􏼈 􏼉, yi􏼈 􏼉, z are all
integers:

c ≡
xi

z
mod

yi

z
􏼒 􏼓(i � 1, 2, · · · , n),

zc ≡ xi modyi( 􏼁(i � 1, 2, · · · , n).

(5)
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If there is the greatest common factor in
yi􏼈 􏼉(i � 1, 2, · · · , n), we go to Step 2. Otherwise, we enter
Step 3.

Step 2. We convert Fushu to Yuanshu.
Essentially, it solves the situation where there are

common factors in the set of modules. We suppose that
there is a set of modulus a, b, .., c, where
a � a1d, b � b1d, · · · , c � c1d. a, b, .., c can be transformed
into equivalent a, b1, · · · , c1 if d � gcd(a, b, · · · , c) and a1 is
the exponent of a common factor, which is the highest.

Step 3. Teprocess of transforming Yuanshu intoDingshu is
as follows.

For the modulus set y1, y2, · · · , yn, we can convert it to
Dingshu by the following calculation method. We get frst
d1 � gcd(yn−1, yn). yn−1 and yn are the Dingshu of yn−1 and
yn if d2 � gcd(yn−1/d1, yn). yn−1 and yn/d1 are the Dingshu
of yn−1 and yn if d2 > 1 and d2′ � gcd(yn−1/d1, yn).

We continue to iterate and calculate along with the
above rules.

pn−1′ � yn−1/d2
′ d3 · · · dk and pn

′ � yn−1d2′d3 · · · dk/d1 as
the Dingshu of yn−1 and yn if dk+1′ � gcd(pn−1′ , pn) � 1.
Considering the length of this paper, the detailed derivation
and calculation process can be obtained in Kangsheng [28].
Performing circular operations on the subsequent modulus

can get the converted modulus set. Afterwards, CRT can be
used to perform substitution operations on the fraction feld.

Te Dayan qiuyi rule transforms the remainder in the
congruence equation from the fractional form to the
equivalent integer form on the congruence equation. Fur-
thermore, through certain arithmetic rules, the modulus is
transformed into a modulus set of any two elements that are
relatively prime so that it conforms to the construction form
of unary congruence. Te fnal integer solution answer can
be obtained by using the CRT method.

2.3. Operation over the Fraction. In the fraction feld, we
must frst defne the operating rules of modular arithmetic. k
is an integer:

r

R
  mod  p �

r0
R

, (6)

where 0< r0 <Rp and r0 � r − kRp.
Te modular addition operation of the fractional feld is

as follows:

r1
R1
  mod  p +

r2
R2
  mod  p �

r1
R1

+
r2
R2

􏼠 􏼡  mod  p. (7)

Te proof process, where k1 and k2 are an integer, is as
follows:

r1
R1
  mod  p �

r1 − k1R1p

R1
,

r2

R2
  mod  p �

r2 − k2R2p

R2
,

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

r1

R1
  mod  p +

r2

R2
  mod  p �

r1R2 + r2R1 − k1 + k2( 􏼁R1R2p

R1R2
,

(8)

k1 + k2 � k. Because both k1 and k2 are integers, k is also an
integer:

r1R2 + r2R1 − kR1R2p

R1R2
�

r1

R1
+

r2

R2
􏼠 􏼡mod  p. (9)

Example 1. Suppose there is a set of modulus
τ � 54, 57, 75, 72{ }, we transform it into a set of modulus cc
with any two elements that are relatively prime by theDayan
qiuyi rule:

Step 1: We convert Fushu to Yuanshu that is to remove
the greatest common divisor in the modulus set τ. Due
to 3 � gcd(54, 57, 75, 72), each element in the set τ can
be written as 54 � 33 × 2, 57 � 31 × 19, 75 � 31 × 25,
and 72 � 32 × 8. Te power of factor 3 in number 54 is
3, and it is the highest value. So
τ′ � 54, 57/3, 75/3, 72/3{ } � 54, 19, 25, 24{ }.

Step 2: We convert Yuanshu to Dingshu to convert the
modulus set τ′ that does not contain common factors
but may have two elements that are not mutually prime
to any twomodulus set τ″ that is relatively prime to any
two elements. We name the elements in the τ′ col-
lection.Te name from front to back is τ1, τ2, τ3, and τ4.
So τ1 � 54, τ2 � 19, τ3 � 25, and τ4 � 24.Te converted
modulus set is τ″ � 27, 19, 25, 8{ }.

gcd τ3, τ4( 􏼁 � d1 � 1,

gcd
τ3
d1

, τ4􏼠 􏼡 � d2 � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⇒τ3⟶ τ″,

gcd τ2, τ4( 􏼁 � d1 � 1,

gcd
τ2
d1

, τ4􏼠 􏼡 � d2 � 1,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⇒τ2⟶ τ″,
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gcd τ1, τ4( 􏼁 � d1 � 6,

gcd
τ1
d1

, τ4􏼠 􏼡 � d2 � 3> 1,

gcd τ1,
τ4
d1

􏼠 􏼡 � d2
′

� 2> 1,

gcd
τ1
d2′

, τ4
d2

d1
􏼠 􏼡 � d3 � 1.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⇒
τ1
d2
′ ,
τ4d2
′

d1
⟶ τ″, (10)

Tis process can be clearly and intuitively demonstrated
(see Figure 1).

3. Our Homomorphic Encryption Scheme

Tis paper proposes a homomorphic encryption scheme that
can process data in the fraction feld based on the above
theoretical discussion. Te method obtained by improving
the CRT based on the Dayan qiuyi rule is called CRTF. By
using CRTF in the encryption and decryption process can
encrypt and decrypt data in the fraction feld.

In Section 2.1 of this paper, ri and pi are positive integers
(see equation (2) or equation (3)). Based on the basic re-
quirements of CRT and congruence groups, any two ele-
ments in pi(i � 1, 2, · · · , n) should be relatively prime.
However, in the CRTF constructed, the restrictions on the
modulus and remainder are relaxed so that the remainder
can exist on the fraction feld and have stronger ability to
solve practical problems:

m � CRTF p1 ,p2,···,pn( )
r1

R1
,
r2

R2
, · · · ,

rn

Rn

􏼠 􏼡,

�

m ≡
r1

R1
mod  p1( 􏼁,

m ≡
r2

R2
mod  p2( 􏼁,

⋮

m ≡
rn

Rn

mod  pn( 􏼁,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(11)

where ri, Ri, and pi are all positive integers.
Suppose there is a group of unary congruences in the

form m ≡ ri/Rimod  pi, where ri, Ri, and pi are all integers,
we use the following steps:

Step 1: Te unary congruence group is expressed in the
following form:

Qm ≡ r1R1′mod Qp1( 􏼁,

Qm ≡ r2R2′mod Qp2( 􏼁,

⋮

Qm ≡ rnRn
′mod Qpn( 􏼁,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(12)

where Rk′ � Q/Rk and Q � lcm(R1, R2, · · · , Rn).

Step 2: Te modulus set Qp1, Qp2, · · · , Qpn􏼈 􏼉 is
transformed into a modulus set
(Qp1)

′, (Qp2)
′, · · · , (Qpn)′􏽮 􏽯 that meets the re-

quirement of pairwise coprime through the method in
Section 2.2 of this article. To form a new congruence
group, we get the following:

Qm ≡ r1R1′mod Qp1( 􏼁
′
,

Qm ≡ r2R2′mod Qp2( 􏼁
′
,

⋮

Qm ≡ rnRn
′mod Qpn( 􏼁

′
,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P � 􏽙
n

i�1
Qpi( 􏼁
′
, Pi �

P

Qpi( 􏼁
′ ,

(13)

where Qm ≡ 􏽐
k
i�1PiFiriRi

′ (modP) and FiPi ≡ 1 
mod  (Qpi)

′.

Example 2. We solve the answer to a system of unary
congruence equations m � CRTF(37,41)(1/4, 27/12) based on
the fractional domain:

m ≡
1
4
mod  37,

m ≡
27
12

mod  41.

(14)

Te specifc process of the solution is as follows:

Step 1: By multiplying both ends of each congruence in
the unary congruence group by lcm(4, 12) � 12 at the
same time, we can get

12m ≡ 3  mod  444,

12m ≡ 27  mod  492.
(15)

Step 2: Te modulus set 444, 492{ } is transformed into
a modulus set that is equivalent and conforms to the
37, 492{ } pairwise prime through the Dayan qiuyi rule:

12m ≡ 3  mod  37,

12m ≡ 27  mod  492.
(16)

54 54 9 54 27

57 19 19 19

75 25 25 25

24 24 24 24 24 4 8

Fushu Yuanshu Dingshu

Figure 1: Fushu into Yuanshu and then into Dingshu.
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Step 3: We bring various parameters into the solution
formula abovementioned. We can get 12m � 8883⇔
m � 8883/12.

3.1. Parameters. Many schemes require a constant (the
number is 2 in DGHV10 [23]) or parameters to determine
their plaintext domain; constructing an array Qi􏼈 􏼉

k

i�1 is
necessary to clarify the plaintext domain. Qi must be a prime
number, and lQ is the bit length of Qi. k is vital because it
determines the number of prime elements in sk and the size
of the plaintext space to a certain extent. We set a parameter
U � 􏽑

k
i�1Qi, and the plaintext space isQ+

U whereQ stands for
a rational number.

3.2. Construction. In this part, we mainly discuss the four
structures of key generation, encryption processes, de-
cryption processes, and addition homomorphic operation.
For the convenience of expression, we defne CRT(q0 ,p1 ,..,pk)

as CRT. Similarly, CRTF can also be used to express
CRTF(q0,p1 ,..,pk).

KeyGen (k, Qi􏼈 􏼉): A set of $\eta$-bit prime numbers
pi􏼈 􏼉

k

i�1 is selected. q0←[0, 2c/􏽑 pi). c is bit length of the
ciphertext. Setting parameter x0 � q0􏽑

k
i�1pi is used to re-

duce ciphertext expansion, and it should meet condition
gcd(Qi, x0) � 1 for each value of i:

X ≔ xi � CRT ei0, ei1Q1, . . . , eikQk( 􏼁􏼈 􏼉
τ
i�1 (17)

where ei0←Z∩ [0, q0) and ei1, . . . , eik←Z∩ (−2ρ, 2ρ). Ob-
viously, ρ is the bit length of the random error. We output
the public key PK � (X, x0) and secret key SK � ( pi􏼈 􏼉

k

i�1).
Enc (PK, m): Te output is c � c0  mod  x0:

c0 � 􏽘
k

i�1
miCRTF e, e1Q1, . . . , 1 + eiQi, . . . , ekQk( 􏼁

+ Sumr(PK),

(18)

where mi � m  mod  Qi(i � 1, 2, . . . , k). Similarly, e←
Z∩ [0, q0) and ei←Z∩ (−2ρ, 2ρ) for i � 1, .., k. Sumr(PK) �

􏽐i∈rxi where r is a random subset of 1, . . . , τ{ }.

Dec (SK, c): the output is m � CRTF(Q1 ,Q2 ,...,Qk)

(d1, d2, . . . , dk) where di � (c  mod  pi)  mod  Qi

Add (PK, c1,..., cn): the output is 􏽐
n
i�1ci  mod  x0

Mul (PK, c1,..., cn): the output is 􏽑
n
i�1ci  mod  x0

First, the plaintext space of the structure can be limited
toZk

2 ifQ1 � Q2 � QK � 2 is met. Furthermore, the structure
mentioned above is no diferent from DGHV10 [23] if k � 1.
Second, x0 also limits the expansion of the ciphertext and
plays a role in reducing the bit length of the ciphertext.
Finally, the public key PK can be understood as a set of
0 ciphertexts, with τ elements in total. We pick a random
number of xi to sum and append it to the ciphertext.
Sumr(PK) after two modulo operations in the decryption
process is 0, and the next part of the proof may ignore
this part.

3.3. Additive Homomorphism. In this section, we demon-
strate the homomorphism and correctness of our con-
struction in this paper. We denote CRTF(e, e1Q1, · · · ,

1 + eiQi, · · · , ekQk) by CRTF(i). Assuming that M is
plaintext, there are some random numbers c whose bit
length is ρ. According to Teorem 1, αi|

k
i�1 also exists and

meets the requirements:

m1 � M mod  p1( 􏼁,

m2 � M mod  p2( 􏼁,

⋮

mk � M mod  pk( 􏼁.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(19)

Part of the encryption process can be expressed by the
following equation:

miCRTF(i) � mi ei1Q1 + αi1p1( 􏼁

� mi eiiQi + miαiipi( 􏼁 + mi

� mi eikQk + αikpk( 􏼁.

(20)

Putting equation (20) into the encryption process can get

c � mi + 􏽘
k

j�1
mjeij

⎛⎝ ⎞⎠Qi + 􏽘
k

j�1
mjαij

⎛⎝ ⎞⎠pi. (21)

We decrypt the ciphertext c to get

d1 � c  mod  p1( 􏼁mod  Q1 � m1,

d2 � c  mod  p2( 􏼁mod  Q2 � m2,

⋮

dk � c  mod  pn( 􏼁mod  Qn � mk.

(22)

We can get M � CRTF(Q1 ,Q2 ,···,Qk)(d1, d2, · · · , dk), which
prove that construction can correctly encrypt and
decrypt data.

Theorem 1. We can get αi|
k
i�1 from x � CRTF(p1 ,p2,..,pk)

(r1, r2, .., rk), and we can also represent x in x � αipi + ri for
i ∈ 1, 2, .., k{ }.

Proof. When c, x ≡ r  mod  p can be written as x − r � αp.
We can get x � αp + r, and we can get our conclusions by
promotion.

Verifying homomorphism requires us to assume ci-
phertexts c and c′, derived from the encryption of m and m′

sequentially. Te two ciphertexts have k components on
Qi􏼈 􏼉

k

i�1 each:

c � mi + 􏽘

k

j�1
mjeij

⎛⎝ ⎞⎠Qi + 􏽘

k

j�1
mjαij

⎛⎝ ⎞⎠pi,

c
′

� mi
′
+ 􏽘

k

j�1
mj
′
eij
′⎛⎝ ⎞⎠Qi + 􏽘

k

j�1
mj
′αij
′⎛⎝ ⎞⎠pi.

(23)

We set h to be the sum of ciphertexts of m and m′:
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h � c + c
′

� m1 + m1
′
+ A1p1 + B1Q1

⋮

� mk + mk
′
+ Akpk + BkQk,

(24)

where Ai � (􏽐
k
j�1mjeij) + (􏽐

k
j�1mj
′eij
′) and Bi �

(􏽐
k
j�1mjαij) + (􏽐

k
j�1mj
′αij
′).

We bring h into the decryption process:

d1 � h  mod  p1( 􏼁mod  Q1 � m1 + m1′,

d2 � h  mod  p2( 􏼁mod  Q2 � m2 + m2′,

⋮

dk � h  mod  pk( 􏼁mod  Qk � mk + mk
′.

(25)

We continue to decrypt h:

Dec(h) � CRTF Q1 ,Q2,···,Qk( ) m1 + m1
′
, m2 + m2

′
, · · · , mk + mk

′
􏼒 􏼓.

(26)

We expand the CRTF to get

Dec(h) ≡ m1 + m1
′

􏼒 􏼓mod  Q1,

Dec(h) ≡ m2 + m2
′

􏼒 􏼓mod  Q2,

⋮

Dec(h) ≡ mk + mk
′

􏼒 􏼓mod  Qk.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(27)

According to Teorem 2, Dec(h) � (m + m′) or
Dec(h) + 􏽑

k
i�1Qi � (m + m′) can be obtained. In the

plaintext domain Q+
q , there is a relationship of

(m + m′)<􏽑
k
i�1Qi. In the end, we can get Dec(Enc(m)+

Enc(m′)) � (m + m′).

Theorem 2. We can get c � m or m � c + 􏽑
n
i�1pi if c, m, and

pi(i � 1, 2, · · · , n) are a positive real number, and the set has
the following conditions:

c ≡ m  mod  p1,

c ≡ m  mod  p2,

⋮

c ≡ m  mod  pn.

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(28)

Proof.

k1p1 + c � m,

k2p2 + c � m,

⋮

knpn + c � m,

⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(29)

where ki ∈ Z(i � 1, 2, · · · , n).

Te fnal answer of equation (28) is ki ∈
Z(i � 1, 2, · · · , n) or m � c + 􏽑

n
i�1pi:

Dec Enc M1( 􏼁 + Enc M2( 􏼁( 􏼁 � M1 + M2. (30)

So we can get equation (30), and the scheme in this paper
is satisfed with homomorphism.

3.4. Security. In this section, discussing the security of the
construction is the main content. Te defnition of the
approximate GCD problem will also appear. Te security of
the construction in this paper is equivalent to the security
proof of DGHV15 [27].

Tey all depend on a decisional version of the ap-
proximate GCD problem. In DGHV10 [23], the approxi-
mate GCD problem is also taken as a security guarantee.

Defnition 1 (approximate GCD problem, AGCD). For η-bit
prime p, we give some samples from Ψc,ρ(p) and fnd p.

Defnition 2 (partial approximate GCD problem, ACD). For
η-bit prime p, we give a c-bit integer x0 � pq0 and some
samples from Ψc,ρ(p) and fnd p.

Ψc,ρ(p) ≔ choose q←Z∩ 0, 2c
􏼂 􏼁, e←Z∩ −2ρ, 2ρ( 􏼁:􏼈

output x � pq + e􏼉.

(31)

Te security of our scheme is based on a modifed de-
cisional ACD assumption. It [29] is shown that this as-
sumption is equivalent to the ACD assumption. In order to
resist the existing attacks, the parameters also need to have
a certain range and equation. According to DGHV15 [27],
we have the following:

c � η2ω(log  λ): to resist Cohn and Heninger’s attack
[30] and the attack using the Lagarias algorithm [31] on
the approximate GCD problem
η � 􏽥Ω(λ2 + λ · ρ): to resist the factoring attack using the
elliptic curve method [32] and to permit enough
multiplicative depth
ρ � 􏽥O(λ): to be secure against Chen–Nguyen’s attack
[26] and Howgrave–Graham’s

In addition, we choose c � 􏽥O(λ5), η � 􏽥O(λ2), ρ � 2λ,
and τ � λ + c, which is similar to DGHV10 [23] and
DGHV15 [27].

Ten, we introduce another decisional version of the
ACD problem.

Defnition 3 (decisional partial approximate GCD problem,
DACD). For η-bit prime p, we give a c-bit integer x0 � pq0
and some samples from Ψρ(p; q0) and determine b ∈ 0, 1{ }

from z � x + b∗ r mod x0, where x←Ψρ(p; q0) and
r←Z∩ [0, x0).
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Ψρ p; q0( 􏼁 ≔ choose  e←Z∩ 0, q0􏼂 􏼁, e
′←Z∩ −2ρ, 2ρ( 􏼁:􏼚

output CRT q0 ,p( ) e, e
′

􏼒 􏼓􏼛.

(32)

DACD says that, for given distribution Ψρ(p: q0) and
some integer z, it is hard to determine whether z is chosen
from Ψρ(p: q0) or not. Our scheme is semantically secure
based on the DACD assumption. Te DACD problem is
hard for any polynomial time distinguisher. We defne
several defnitions below in order to build a bridge between
our scheme and DACD assumption.

Defnition 4 (decisional partial approximate GCDQ prob-
lem, DACDQ). For η-bit prime p and an lQ-bit integer Q, we
give a c-bit integer x0 � pq0 with gcd(x0, Q) � 1 and some
samples from Ψρ(p; Q; q0) and determine b ∈ 0, 1{ } from
z � x + b∗ r  mod  x0, where x←Ψρ(p; Q; q0) and
r←Z∩ [0, x0).

Defnition 5 (k-decisional partial approximate GCDQ

problem, k − DACDQ). For η-bit distinct prime pi􏼈 􏼉
k

i�1 and
lQ-bit integers Qi􏼈 􏼉

k

i�1, we give a c-bit integer x0 � q0􏽑
k
i�1pi

with gcd(x0, Qi) � 1 for i ∈ 1, 2, .., k{ } and some samples
from Ψρ( pi􏼈 􏼉

k

i�1; Qi􏼈 􏼉
k

i�1; q0) and determine b ∈ 0, 1{ } from
z � x + b∗ r  mod  x0, where x←Ψρ( pi􏼈 􏼉

k

i�1; Qi􏼈 􏼉
k

i�1; q0) and
r←Z∩ [0, x0).

Ψρ pi􏼈 􏼉
k

i�1; Qi􏼈 􏼉
k

i�1; q0􏼐 􏼑 ≔ choose  e←Z∩ 0, q0􏼂 􏼁, ei←Z∩ −2ρ, 2ρ( 􏼁for∀i ∈ 1, 2, . . . , k{ }: outputCRT q0 ,p1 ,..,Pk( ) e, e1Q1, .., ekQk( 􏼁􏼚 􏼛

(33)

We say that the DACD assumption holds if no poly-
nomial time distinguisher can solve the DACD problemwith
non-negligible advantage. Te k- DACDQ assumption is
defned similarly.

Due to three steps, our homomorphic encryption
scheme is semantically secure under the DACD assumption:

Step 1: DACD⟶ DACDQ (c)
Step 2: DACDQ⟶ k- DACDQ (Lemma 2)
Step 3: k- DACDQ⟶ our construction

Lemma 1 (see [27]). Te DACD problem is reducible to the
DACDQ problem.

Lemma 2 (see [27]). TeDACDQ problem is reducible to the
k-DACDQ problem with the advantage of the latter k times
that of the former on average.

In order to complete the semantic security proof of the
scheme, we also need to quote the two lemmas of
DGHV15 [27].

Lemma 3 (see [27]). We suppose that there is an attack
algorithm A. Te distribution of the pseudopublic key gen-
erated by it is indistinguishable from the standard public key
generated by the scheme in Section 3.2.

Lemma 4 (see [27]). We suppose that there is an attack
algorithm A, and the ciphertext generated by it is correct for
the encryption process of the scheme in Section 3.2.

Now, we prove the semantic security of our scheme.

Theorem 3. Te cryptosystem given in Section 3 is seman-
tically secure if the k-DACDQ assumption holds.

Proof. We suppose that a polynomial time algorithm B
breaks the semantic security of the scheme with non-
negligible advantage. Tere must be a polynomial time al-
gorithm A that solves the k-DACDQ problem with
nonnegligible advantage. For η-bit distinct prime pi􏼈 􏼉

k
i�1 and

lQ-bit integers Qi􏼈 􏼉
k

i�1, the input of A is
(x0, Qi􏼈 􏼉

k
i�1,Ψρ( pi􏼈 􏼉

k
i�1; Qi􏼈 􏼉

k
i�1; q0), CRTF(i)||ki�1, z), where

x0 � q0􏽑
k
i�1pi is a c-bit integer. Te algorithm A do as

follows:

(1) A gives (x0, Qi􏼈 􏼉
k

i�1,Ψρ( pi􏼈 􏼉
k

i�1; X ≔ xj←􏽮

Qi􏼈 􏼉
k

i�1
τ
j�1; q0), CRTF(i) | k

i�1) to B as the public key.
(2) B chooses m

→
0 � (m01, .., m0k), m

→
1 � (m11, .., m1k)􏼈 􏼉

and sends it to A.
(3) A computes c′ � 􏽐

k
i�1mbiCRTF(i) + Sumr(X)  mod

 x0 for randomly chosen b ∈ 0, 1{ }, where r is
a random subset of 1, .., τ{ }, and gives c′ to B.

(4) B outputs b ∈ 0, 1{ }.
(5) If b � b′, then A outputs 0. Otherwise, it outputs 1.

Te public key given to B is correctly formed and dis-
tributed.We see that c′ is uniform in Zx0

when z is randomly
chosen in Zx0

. Hence, in this case, the advantage of A is zero
since c′ does not reveal any information of m

→
b and B’s

probability of correct guessing is exactly 1/2. Tus, in this
case, the probability of correct answer for B is at most
negligibly diferent from that of B. Tis shows that the
advantage of A is nonnegligible, violating the k-DACDQ

assumption. Terefore, there is not a polynomial time al-
gorithm B that could break the semantic security of our
scheme with nonnegligible advantage. Te cryptosystem
given in Section 3 is semantically secure. □

3.5. Efciency Comparative Analysis. Tere are elements in
sk � (p1, p2, · · · , pk), and the value of k afects the operating
efciency of the encryption/decryption algorithm. Te data
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in the table show the time of encrypting and decrypting 1-bit
plaintext 10,000 times when k takes a typical value. Te
processor of the test equipment is Intel(R) Core(TM) i5-
8250U @1.60GHz.

From the data in Table 1, it can be seen that when the
number of elements in the key is small, it has high efciency.
We can also use efciency as the numerical value, which can
more intuitively observe the infuence of the k value on the
encryption and decryption processes (see Figure 2). We
compare the schemes in this paper with others for some
theoretical complexity because it has many similarities with
DGHV10 [23] and its derivative works [33, 34] (see Table 2).

We will show that the CKKS [35] in the SEAL library
written by Microsoft to encrypt and decrypt one-bit
plaintext 1,000 times. Te result of running the CKKS
[35] is as follows: the encryption operation takes 0.809 s, and
the decryption operation takes 0.131 s. It is not comparable
with the data in Table 1. Te primary reason is that CKKS
[35] is an FHE scheme, which uses more extensive pa-
rameters for subsequent homomorphic operations and noise

control. However, by observing data, there are apparent
advantages in our scheme within a specifc parameter range
under similar or consistent application scenarios, especially
when the fractional domain homomorphic encryption
scheme is not mature.

4. Conclusion

Most of the existing homomorphism encryption schemes
are over integers. Tis paper proposes and implements
a homomorphic encryption scheme over fractions. Com-
pared with the homomorphic scheme over the integer feld,
this homomorphic encryption scheme on the fraction feld
has a broader range of applications and more practical
application scenarios, such as banking and interest rate
calculation. Similarly, the homomorphic scheme over the
fraction also provides a theoretical basis and feasibility for
the emergence of new operating modes for cloud computing
or federated machine learning application scenarios. Fur-
thermore, it will be of progressive signifcance if an FHE

Table 1: Te time of the homomorphic scheme in this paper. Te time unit in the table is second (s).

k 5 15 25 35 40
Encryption time 0.0087 0.019 0.0293 0.0412 0.0485
Decryption time 0.0022 0.0064 0.0106 0.0149 0.0186

Efficiency:kb/s

4438.92

1122.48

655.41 525.03513.98
333.29 237.02 201.35

5 15 25
The value of k

35 40

1,000

2,000

3,000

5,000

4,000

0

921.28

1525.87

Enc
Dec

Figure 2: Te impact of diferent $k$ values on the efciency of encryption and decryption.

Table 2: A comparison of the scheme based on CRTF and several other schemes in several aspects.

SIMD Key size Ciphertext expansion Complexity Hard problems
DGHV10 [23] N O(λ10) O(λ5) O(λ12) AGCD
CMNT [33] N O(λ7) O(λ5) O(λ15) AGCD
CLT13 [34] Y O(λ7) O(λ3) O(λ8) AGCD
Scheme based on CRTF Y O(λ10) O(λ2) O(λ10) PAGCD
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scheme can be constructed based on CRT that can perform
any form of operation on the ciphertext in the fractional
domain like CKKS [36]. However, this paper does not make
a detailed analysis of the noise problem or the possibility of
transforming into an FHE scheme. Te main content of the
next step is to conduct a detailed analysis of the noise control
problem, and at the same time, try to combine “bootstrapping”
to transform it into an FHE scheme in the fractional domain
and improve the operational efciency of the program.

Data Availability

One part of data is from the SEAL (it was developed by
Microsoft). Te remaining parts of the experimental data
about efciency data used to support the fndings of this
study have not beenmade available because they will be used
for the experiment and discussion of the next article.
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