
Research Article
Deception Attacks against Android-Based Smart Bracelets

Weimin Gao ,1,2 Jun Xie ,2 and Xinlong Li 2

1School of Computer Science and Engineering, Central South University, Changsha 410083, China
2School of Computer Science and Engineering, Hunan Institution of Technology, Hengyang 421002, China

Correspondence should be addressed to Jun Xie; 625836126@qq.com

Received 18 August 2022; Revised 30 January 2023; Accepted 9 March 2023; Published 15 April 2023

Academic Editor: Saed Alrabaee

Copyright © 2023Weimin Gao et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te rapid development of the intelligent equipment industry has promoted the emergence of a series of emerging industries,
efectively improving the technical level of society and people’s quality of life. Due to the inherent characteristics of smart devices,
smart devices face serious privacy disclosure risks.Terefore, we have studied the security problem of the widely used smart device
smart bracelet in this paper. We have adopted the attack method from easy to difcult to obtain the reading and writing in-
structions and timing characteristics of the intelligent devices to attack and steal private information. Specifcally, we frst attack
through the strategy of log analysis; if this method is unable to obtain efective information, then we further acquire sensitive
information on the basis of hook technology; and if the method on the basis of hook technology is still unable to obtain relevant
information, then we will further use reverse engineering to conduct reverse analysis on the app to obtain sensitive information.
Second, we develop a fake app on the basis of sensitive information and use it as a bridge to attack intelligent devices. In order to
verify the efectiveness of the method, we successfully attacked and stole information from three popular business intelligence
bracelets of diferent brands on the basis of the proposed method. Te frst step is to develop a fake app on the basis of the
identifed vulnerabilities. Tis app can bypass the protection measures of confusion and forced pairing and resetting to cheat the
smart bracelet and can successfully enable or disable the jitters function remotely to modify the time and to obtain the sensitive
data of the smart bracelet owner. In our attack process, we do not need the cooperation of the owner of the smart bracelet, nor do
we need the target smart bracelet to match with our app.

1. Introduction

Nowadays, smart devices have become an inseparable part of
the society and provide convenient services for the people.
Since the advent of wearable devices, the halo on the body
has not faded. Some people even think that wearable devices
will become a next-generation product that subverts tra-
dition and creates the future. Yet a few years later, wearable
devices still remain in the media with high exposure. Under
the spotlight, it rarely appears in people’s lives. Why cannot
smart wearable devices fy?

First of all, there is currently no industry standard in China,
resulting in uneven product levels including charging speed,
industrial design, data acquisition and transmission, and sensor
accuracy, and since there is no exact standard scale, so products
ranging from a few thousand yuan to tens of yuan can call
themselves wearable devices. Another reason the public is not

interested in wearables is that most features are neither in-
novative nor practical. Taking a brand of the smart bracelet as
an example, the step counting and sleep monitoring functions
provided by it are useless to many people when there are only
data but no service. According to data, 76.9% of churn users
use wearable devices for less than 3months [1].

In addition, the industry believes that the most important
issue is safety. At this stage, smart bracelets and smart watches
are still the mainstream of wearable devices, providing people
with convenient services. Te security of these devices has
aroused the researchers’ attention. Due to their own inherent
characteristics, wearable devices, such as smart glasses and
smart bracelets, face signifcant risks of privacy leakage. In
particular, frst, wearable devices usually have limited com-
putational capacity and memory. In order to guarantee the
battery life or power supply time, most functions operate
intermittently but not continuously, which brings up the

Hindawi
Security and Communication Networks
Volume 2023, Article ID 3353548, 11 pages
https://doi.org/10.1155/2023/3353548

https://orcid.org/0000-0003-0912-9014
https://orcid.org/0000-0002-4359-1045
https://orcid.org/0000-0003-1484-1575
mailto:625836126@qq.com
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3353548


chance of malicious attacks. Second, most wearable devices
use TinyOS or LiteOS, in which the system’s security policies
and algorithms cannot be sufciently complicated. Tird,
smart wearables interact with Android or IOS applications
(apps) or other devices through wireless communication,
providing convenience for grabbing data and consequently
leading to security concerns. Fourth, the majority of wearable
devices connect with the Internet via the smartphone apps so
as to synchronize and update data in the cloud, and any
vulnerability inside may result in potential privacy unveiling.

Zoologists use smart wearable networks for animal
physiological activity monitoring and control, medical in-
stitutions use smart wearables for patient monitoring and
notifcation, and they are used in the military for envi-
ronmental tracking and habitat monitoring, etc. [1]. Zool-
ogists use smart wearable networks for animal physiological
activity monitoring and control, medical institutions use
smart wearable for patient monitoring and notifcation, and
they are used in the military for environmental tracking and
habitat monitoring, etc [2]. Embedded sensors on wearable
devices can be utilized to capture the motion information of
users and have the possibility of leaking their sensitive in-
formation [3]. Sensor data of smartwatches were also re-
ported for leaking information about what the user is typing
on a regular keyboard under the condition that the
smartwatch is only on the left hand [4]. Later, a similar work
was conducted which exploited the sensors in smartwatches
to infer user’s highly sensitive information by devising a data
training-based system [5]. Wang et al. showed that the
sensors embedded in wrist-worn wearable devices, such as
smartwatches and ftness trackers, can be utilized to dis-
criminate mm-level distances of the user’s fne-grained hand
movements during the key-entry activities [6]. Pan et al.
showed that it is possible to recover password input with
a Bluetooth mouse and an on-screen keyboard by capturing
Bluetooth communication packets [7]. It was further re-
ported in [8, 9] that adversaries can obtain the readings of
sensors in wearable devices via snifng Bluetooth com-
munications and analyzing the data packets.

For the distributed security state estimation under un-
known spoofng attacks [10], a neural network-based mech-
anism is put forward to approximate the unknown falsifed
innovations with the aim to mitigate the efects on the esti-
mation performance [11]. Te Internet of Tings (IoT) is
a paradigm that connects objects to the Internet as a whole and
enables them to work together to achieve common objectives,
such as innovative home automation. Potential attackers see
the scattered and open IoT service structure as an appealing
target for cyber-attacks. So, security cannot be dealt with in-
dependently [12]. It provides an inclusive analysis of intrusion
detection on the basis of deep learning techniques followed by
diferent intrusion detection systems [13, 14]. DeepGuard is
proposed, which is a framework of privacy-preserving back-
door detection and identifcation in an outsourced cloud
environment for multiparticipant computation.

Given the abovementioned pioneering works and lots of
eforts from the industry to further strengthen the security of
smart wearable devices, it still faces signifcant threats of

privacy leakage due to their own inherent characteristics.
Towards this end, we reinvestigate in this paper the security
concerns of the smart bracelet and present Android-based
deception attacks against popular commercial smart
bracelets of three diferent brands. As far as we know,
a similar work to ours is that in [15] which proposes a fake
app-based attack on a commercial smart bracelet. Our major
contributions are summarized as follows:

(i) First, it is noticed that one prerequisite of the attack
in [16] is the successful pairing process between the
attacking smartphone and the targeted smart band,
while in our deception attacks, no cooperation from
the smart bracelet owner is required, neither the
pairing process between the targeted smart bracelets
and our fake app is required. All the three diferent
smart bracelets selected in our work adopt the latest
protection technology of forcible pairing and re-
setting, where any forcible pairing between the
device and the nonofcial app will directly result in
resetting of the whole smart bracelet system.

(ii) Another major diference is that the attack scheme
in [16] can only obtain user privacy information of
the targeted smart bracelet, while by installing our
fake app, as long as the targeted smart bracelet is
located within the communication range, we are
able to remotely activate/deactivate the shaking
function, to adjust or modify time, and in addition
to obtain the smart bracelet owner’s sensitive data.

(iii) Finally, our Android-based deception attacks are
developed after successfully identifying the com-
mon vulnerabilities of the current mainstream
smart bracelets and can be efciently conducted
towards three diferent commercial smart bracelets,
rather than one single type.

Te rest of the paper is organized as follows: in Section 2,
we demonstrate the design motivation. Section 3 introduces
vulnerabilities, common attacks, and countermeasures of
Android apps. Section 4 describes our detailed methodology
for security analysis, including log analysis, hook technol-
ogy, and Android reverse engineering. Extensive experi-
mental results are provided in Section 5. Finally, we
conclude the whole paper in Section 6.

2. Background and Motivation

While smart bracelets bring convenience to users’ daily life,
they also bring personal data security risks [17]. Smart
bracelets and smartphones may become the entrance of
malicious attacks by hackers in the communication process,
encryption system, sensors, permission control, and Bluetooth
signals. Once the smart bracelet is attacked, it will not only
cause damage to the device itself but also cause other devices
associated with the attacked device to be controlled by hackers,
resulting in loss of control of user equipment and data leakage.
In general, smart bracelets and smart devices are most vul-
nerable to hacker attacks in the following four aspects:

2 Security and Communication Networks



(1) Te application program of the device
(2) Te sensor of the device
(3) Te Bluetooth module of the device
(4) Communication process: including communication

from the smart bracelet or smart devices to the of-
fcial app of the smartphone, communication from
the ofcial smartphone app to smart bracelets or
smart devices, and communication from the ofcial
smartphone app to the cloud

According to the latest Cisco Visual Networking Index
[18], the total number of smartphones is predicted to be
beyond 50 percent of the global devices by 2021. Te
malware, i.e., any software used to disrupt a system, to gather
sensitive information, to display unwanted advertisements,
or to do other abnormal actions, will inevitably become
a major threat to the privacy of wearable devices among
various applications in all aspects of life. As shown in
Figure 1, hackers usually apply reverse-engineering towards
the ofcial apps, fnd out the loopholes, and develop fake
apps accordingly with functions similar to that of the ofcial
apps, thus establishing malicious attacks. In this paper, we
focus on the security concerns caused by the interaction
between smart bracelets and smartphone apps. Since An-
droid is the most popular and pervasive mobile device
operating system, so we focus on the Android platform.

From the perspective of privacy risk protection of smart
devices, the security of smart devices themselves is relatively
low. Te wireless transmission medium of smart devices is
exposed to the outside, the network topology changes fre-
quently, and the quality of Bluetooth transmission is good
and bad. It can be seen that the stability of smart device
communication is extremely susceptible to the limitations of
its own software and hardware structure, the infuence of the
surrounding physical environment, and human information
interference [19]. When the transmission line of the smart
device fails, the data stored in the smart device lose its
protection and it is prone to data theft, tampering, or loss.
Some attackers will choose to mix other false and messy data
in the data transmission process of smart devices to artif-
cially interfere with the data transmission process of smart
devices, thereby stealing or tampering with user data, af-
fecting user experience and threatening data security [20].

Terefore, the research studies on the security of smart
devices have an important practical signifcance and com-
mercial value. In this paper, from the perspective of at-
tackers, we study the security issues of communication
between smart bracelets and mobile devices on the basis of
Android operating systems.

3. Vulnerabilities, Attacks, and
Countermeasures for Android Apps

TeAndroid mobile phone system is an open-source mobile
operating system, and its system composition mainly in-
cludes four parts: application system, kernel system,
framework system, and system runtime library. Figure 2
shows common vulnerabilities, attacks, and

countermeasures for Android applications. In the sub-
sequent sections, we focus on the Android applications and
discuss each of them separately.

3.1. App Vulnerabilities. According to a recent announce-
ment by Altas VPN, it is understood that more than 60% of
Android applications have numerous vulnerabilities, with an
average of 39 dangerous vulnerabilities per Android ap-
plication. Tese data are the results of Altas VPN’s survey of
3,335 free and paid apps in the Google Play Store.

Te vulnerabilities of Android apps generally can be
classifed into two categories: component exposure and
sensitive application program interface (API) call. Te
component exposure of Android apps means that functions
realized by the component can be maliciously called by the
attackers or injected within the malicious data, thus afecting
the normal operations of the application. Te relaxed per-
mission management of the sensitive API call also makes it
possible for hackers to access the API and call it to facilitate
malicious behaviors.

3.2. App Attacks

3.2.1. Repackaging App. Repackaging is a process of
decompiling a popular app, inserting malicious code,
recompiling the app, and distributing it to the app markets,
which account for the majority of Android app’s hacking
cases. By using hacking tools and techniques, repackaging
attacks can be successfully implemented against mission
critical Android mobile applications [4].Te repackaged app
with a malicious payload may send premium SMS messages
stealthily, steal personal data, or purchase apps without the
user’s awareness [1, 21, 22]. Tis kind of hacking is mainly
due to the fact that Android apps are usually written in Java
language (although some have “native” C calls), and it is easy
to reversely analyze the app with the existing reverse-
engineering tools. Tere are many reverse-engineering
tools, such as apktool and dex2jar.

3.2.2. Drive-By Download. A drive-by download is a kind of
an attack that forces users to automatically download and
install malware by redirecting them to malicious URLs. A
drive-by download usually exploits an app that is out of date
or has a security faw. Since the job of the downloaded code
is only to contact another computer where it can pull down
the rest of the code on the smartphone, it is often very small
so that the user probably would not notice it. For example,
a fle-sharing program might include a spyware program
that tracks and reports the user information for targeted
marketing purposes. An associated adware program can
then generate pop-up advertisements using that
information.

3.2.3. Dynamic Payload. Te malicious payload can be
embedded into an app as an executable apk/jar. Te app will
decrypt the payload once it is installed. Usually, the em-
bedded APK disguises itself as an important update so as to
coax the user to install it.

Security and Communication Networks 3



3.3. Countermeasures

3.3.1. Code Obfuscation. Code obfuscation techniques
transform a program so that it is difcult to understand
while its functionality is identical to that of the original.
However, code obfuscation only increases the difculty in
reading the source code, but it cannot play an efcient part in
defense. Code obfuscation usually can be divided into three
kinds: layout obfuscation, data obfuscation, and control
obfuscation. Layout obfuscation alters the information
unnecessary to the execution of the program, such as
identifer names and comments. Data obfuscation changes
the storage, the organization structure, and the order of the
data in a program. Control obfuscation disguises the real
control fow in a program.

3.3.2. Signature Verifcation. It is necessary to sign the new
APK generated from the modifed byte-code fle before
redistributing it to the app store. When installing an APK,
the Android system will verify its digital signature in-
formation and check its integrity according to this. If the
signature of an APK is diferent from the original APK, then
the software is tampered.Tus, the system will stop running.

3.3.3. Shell Technology. Shell protection is a kind of code
encryption technology. In fact, shell technology means using
special algorithms to compress the resources of the exe-
cutable fle. Te compressed fle can run independently, and
its decompression process is hidden completely in the
memory. Te shell program is executed before the execution
of the original program so that it can obtain the control right
and decrypt as well as restore the program. After the pro-
gram is being restored, the shell program will return the
control right to the original program and the original code
will be executed. Adding a shell to the protected software
makes it difcult for the software to be cracked. Shell
technology and code obfuscation mentioned previously are
the most popular techniques applied in antidecompilation.

3.3.4. Vulnerability Disclosure. Tevulnerabilities of Android
apps not only threaten the stability of the running process and
security of the privacy information but also threaten the se-
curity of the whole system because of exposing the critical
function. Te vulnerability disclosure techniques aim to dis-
cover the potential vulnerabilities of the Android app so as to
restore the vulnerabilities and protect the operation of the
application. According to the diference in analyzed objects, the
techniques of vulnerability disclosure can be classifed as source
code-based techniques and target code-based techniques.

Agriculture Factory Bank Hospital Ofce

Cloud server

Hacker

Reverse-engineering
of app

Develop a fake app

Fake app

Communication between devices

Operating process of app

Set of legal apps

Access point or base station

Figure 1: Illustration of Android-based attacks.

Vulnerabilities Attacks

Repackaging app
Component

exposure

Sensitive API call

Drive-by download

Dynamic payload

Countermeasures

Code obfuscation

Shell technology

Vulnerability
disclosure

Malware detection

Signature
verifcation

Figure 2: Vulnerabilities, common attacks, and countermeasures
of Android apps.

4 Security and Communication Networks



3.3.5. Malware Detection. Malware detection can fnd out
those apps with a malicious code. Usually, the malware
detection techniques are divided into two kinds: static de-
tection techniques and dynamic detection techniques. Static
detection techniques analyze the code without actually
running it; hence, their execution speeds are quick, and this
method is simple as well as efcient. Dynamic detection
techniques monitor the executed code and inspect its in-
teraction with the system by extracting the critical data of the
app operation process as a characteristic. Malware detection
plays an important role in the protection of Android apps.
Hu et al.propose a new system named MIGDroid that le-
verages the method invocation graph-based static analysis to
detect repackaged Android apps [4].

4. Empirical Study on Commercial Smart
Bracelets of Three Different Brands

4.1. General Protocol Stack for Smart Bracelets. Te structure
of the general communication protocol stack for smart
bracelets is shown in Figure 3. Our research study concentrates
on the UART profle layer, which lay above the BLE stack.
Te UART profle is realized at the smart bracelet end. Tere
are two kinds of characteristics in the UARTprofle layer, one
is the write characteristic and the other is the read charac-
teristic. Every time the smartphone wants to interact with the
smart bracelet, it frst sends an operation code to the receiving
interface of the smart bracelet through the write characteristic.
If the smart bracelet can parse the operation code, then it will
execute the corresponding operations. Finally, a value will be
returned to the smartphone through the read characteristic of
the smart bracelet to notify the smartphone whether the op-
eration is executed successfully or not. Since we only imple-
ment our attacks on the UART profle layer, we can bypass
the authentication between the smart bracelet and the
smartphone aswell as the operations related to the cloud server.

4.2. Methodologies. Trough the description of the smart
bracelet protocol stack, it is easy to know that the key point
of the deception attack is to obtain the interactive in-
structions (write, read, and notify instructions) between the
smart bracelet and the smartphone. Only when a specifc
instruction is written to the relevant characteristic can the
attacker obtain the sensitive data contained in the smart
bracelet or control the smart bracelet. Tere are three
methods we use to obtain the instructions: log analysis, hook
technology, and Android reverse engineering.

4.2.1. Log Analysis. We frst fnd the process of the ofcial
app installed on the smartphone using a specifc software
tool and then dynamically receive the corresponding log fles
through the process. By analyzing the log fles, we can obtain
the instructions sent from the app to the smart bracelet and
the returned results sent from the smart bracelet to the app.
Figure 4 shows the instruction we obtained through this
method. However, for some smart bracelets, the log fles of
their ofcial apps are processed with security precautions;
hence, the method fails in this situation.

4.2.2. Hook Technology. Te hook is a message-processing
mechanism as well as a program segment to process the
message. Te hook mechanism allows the application to the
captured message and to get its control rights before the
message is being transmitted to the target address. Te
specifc Xposed module application installed on the
smartphone can monitor the instructions of the interaction
between the ofcial app and the smart bracelet, as shown in
Figure 4. However, the instructions of some smart bracelets
have a timestamp, namely, the instruction sent to implement
the same function every time is diferent. So, this method is
not applicable to these smart bracelets.

4.2.3. Android Reverse Engineering. Te process of applying
shell removal, decompilation, program understanding, and
other computer technologies to an executable app, then
analyzing the structure, fow, algorithms, and code of the
program, and fnally inferring the app’s source code and
design principle, is called Android reverse engineering.
Applying reverse engineering to an ofcial app corre-
sponding to a smart bracelet can help the attacker un-
derstand their interaction process and obtain the
instructions. Reverse engineering is generally time-
consuming and difcult. When the log analysis and hook
technology both fail, reverse engineering can remedy this
faw. Some details about reverse engineering will be involved
in the following contents.

4.3. Deception Attacks Based on Reverse Engineering.
Since Android reverse engineering is complicated, it is
necessary to introduce the process in detail. In the following,
we frst describe the overall attack idea, then the attack
process is depicted, and fnally, we illustrate the attack route.
Te Android reverse engineering process of the ofcial app
of the smart bracelet is shown in Figure 4.

4.3.1. Overall Attack Procedure

(i) We should be familiar with the interfaces, opera-
tions, and functions of the ofcial app that matched
with the smart bracelet. Tis step provides conve-
nience for the analysis of the decompiled code.

(ii) We should get the targeted APK and check the type
and the version number of its shell by using An-
droid Killer. Ten, we should remove its shell with
the proper program and software tools.

(iii) We should decompile the APK fle whose shell has
been removed and analyze the decompiled code,
locating the function we want to emulate.

(iv) We should develop an app according to the pa-
rameters and instructions found in the previous
step, which can read data or modify some settings of
the smart bracelet.

4.3.2. Detailed Attacking Procedures. Figure 5 shows the
process of cracking an app, of which the most challenging
thing is to apply reverse engineering to the app. In the

Security and Communication Networks 5



reverse engineering stage, the frst step is to remove the shell
from the APK fle. Since we do not need to repackage the
app, we can bypass the signature verifcation.Ten, we make
an analysis of the code derived from the decompilation of the
APK fle. After reverse engineering, we develop a fake app in
light of the instructions or methods found in the decompiled
code. In the following paragraph, some details of the attack
process are introduced.

(i) Shell Removal. We use Android Killer to check the shell
type of the APK, and then we remove the shell manually
using IDA Pro. Te key idea of this procedure is to set
a breakpoint on the dvmDexFileOpenPartial() function and
dump the dex fle in the memory.

(ii) Decompiled Code Analysis. After the abovementioned
step, we begin to analyze the logic of the code. Te analyzing
process is shown in Figure 4. First, we make sure to get
familiar with the interfaces of the ofcial app and understand
its functions along with operations. Second, we fnd the
program entry of the project. In our experiment, the pro-
gram entry is a welcome activity. Tird, we track the code

according to the implementation of the function we are
interested in. Fourth, we locate the targeted function and
fnally fnd out the parameters and instructions which are
necessary for the function to be realized. Table 1 shows the
information on instructions we found in the decompiled
code, and the instructions are represented by byte arrays.
When the app sends an instruction to the smart bracelet, it
will receive the returned value later, according to which the
app can obtain the data contained in the smart bracelet or
the results indicating whether the instruction is executed
successfully or not. A challenge in this process is that there
are many errors in the decompiled code resulting from the
security reinforcement techniques of the app. Apparently,
we cannot trust the code completely and need to avoid
code traps.

4.4. Fake App Development. We frst describe the function
design of the fake app simply. According to the function and
operating process of the ofcial app, we design the function
framework and the call relations among modules. Since the
main function of the fake app is to obtain sensitive/health
data and control the smart bracelet without authentication,
the corresponding functional module should weaken the
authentication process so that we can get the sensitive/health
information and control the smart bracelet more directly.
Hence, compared with the ofcial app, the functions and
interfaces of the fake app are simpler [10, 24–26]. Te fol-
lowing are the concrete steps of the development process,
and critical procedures together with the related code are
shown in Figure 5:

Step 1. Discover nearby Bluetooth devices
Te most basic functionality this fake app should
implement is to discover the nearby Bluetooth devices
which have not got paired with any other Bluetooth
devices and add them to the list. Tis step is executed
when the user taps the scan button. Te Android
system provides a BluetoothAdapter class, of which the
bluetoothAdapter.startLeScan(callback) method can be
used to scan peripheral Bluetooth devices. After the
scanning procedure, the device information will be
placed in the deviceList.
Step 2. Connect the smart bracelet to the smartphone
Bluetooth connections operate like any other com-
municating connections. Tere is a server and a client,
which communicate via RFCOMM sockets. On

Application Layer

Transport Layer

BLE Stack

Smartphone

Receive
interface

Write
interface

Characteristic
operate

Characteristic
operate

Smartband

notify Read
Characteristic

write Write
characteristic

Write
interface

Receive
interface

UART Profile

Figure 3: Communication protocol stack of the smart bracelet.

Get the ofcial app APK Research the ofcial 
APP function

Whether the application 
is shelling

Yes

Shelling-of

No

Decompile

Get the Smali source code

Whether it compiled
into Java

Analyze the Smali
source code

Find the program
entry

Track and locate key 
codes

Get the method of 
reading and writing 

data

Analyze
 Java code

Develop sofware to 
implement attacks

Android reverse
 attack is successful

Figure 4: Te Android’s reverse-engineering process.

6 Security and Communication Networks



Android, RFCOMM sockets are represented as
a BluetoothSocket object. Fortunately, most of the
technical code for servers is handled by the Android
SDK and available through the Bluetooth API. We
obtain the RFCOMM socket from the desired Blue-
toothDevice by calling the method crea-
teRfcommSocketToServiceRecord(), using a 128-bit
UUID which is similar to a port number.
Step 3. Open the setCharacteristicNotiffcation of the
related characteristic
If the value of the BluetoothGatt.GATT SUCCESS is
true, then we use BluetoothGATT to set the value of the
related characteristic A to true in the method
onServicesDiscovered().
Step 4. Write the instruction to the related
characteristic
We write the instruction to the related characteristic B
in the method onServicesDiscovered(), triggering the
method onCharacteristicChanged().
Step 5. Read the returned results through the
characteristic
Te characteristic A gives the result to the app by
notifcation while the result is the executed result of the
instruction written to the characteristic B. At the same
time, the result is a condition of whether to execute the
next instruction.

5. Experiments and Results

5.1. Tools and Environment. Our experiment setup consists
of fve devices, three commercial smart bracelets, a smart-
phone, and a computer. In this paper, the brands of the
smart bracelets are made anonymous and we only introduce
the partial parameters of their hardware. Teir MCU adopts
W25Q80BV, STM32L151CBU6, and nRF51822 chips, re-
spectively. Te brand of the smartphone is Leno, and its
model is K30-T; besides, its Android version is 4.4.4. Te
computer’s OS is Windows 7. Te software tool for shell
removal is IDA pro v6.6. In order to reverse engineer on the
ofcial APK fle, we apply Android Killer v1.3.1.0 to it. Log
analysis also uses Android Killer v1.3.1.0. Te fake app
development uses Android Studio v2.2. Table 2 shows the
information about experimental tools and the environment.

5.2. Experimental Results. We adopt log analysis to conduct
research studies on the frst smart bracelet. According to the
instructions we fnd, we can obtain the motion data of the
user from the smart bracelet. Te results are shown in
Figure 6.

For the second smart bracelet, we used hook technology
to fnd its instructions. Figure 7(a) shows that the fake app
can get motion data (step number, distance, and calories
burned) contained in the smart bracelet, and Figure 7(b)
shows that the fake app can set an alarm for the smart

Deception attacks

Tree methods of getting instructions

Remove shell
Bypass 

signature 
verifcation

Analyze code

Decompiled code analysis

Reverse engineering

Understand
 ofcial App

Find program 
entry Track code Locate target 

function
Get 

instructions

Critical process of fake App development

setCharacteristicNotifcation

Write instruction

Read result

Attack route

Read data

Control function
Fake App Smartband

Figure 5: Illustration of deception attacks, where the focus is on the process of reverse engineering of the ofcial app and the development of
the fake app. Te fake app aims to read the data and modify some settings of the smart bracelet.

Security and Communication Networks 7



Ta
bl

e
1:

In
st
ru
ct
io
ns

fo
un

d
in

th
e
de
co
m
pi
le
d
co
de
.

In
st
ru
ct
io
ns

Fu
nc
tio

n
Re

tu
rn
ed

va
lu
e
ty
pe

Re
m
ar
ks

11
0,

1,
15
,1

,−
11
3

Re
ad

ba
tte

ry
po

w
er

By
te

ar
ra
y

T
e
3r
d
di
gi
to

fr
et
ur
ne
d
by
te

ar
ra
y
m
ul
tip

lie
d
by

5
is
cu
rr
en
t
ba
tte

ry
po

w
er

11
0,

1,
21
,m

,d
,y

,h
,m

,s
Se
td

at
e
an
d
tim

e
0
or

1
m
,d

,a
nd

y
re
pr
es
en
td

at
e;
h,

m
,a

nd
s
re
pr
es
en
tt
im

e

11
0,

1,
4,

1,
−
11
3

Re
ad

m
ot
io
n
da
ta

By
te

ar
ra
y

T
e1

2t
h
an
d
th
e1

8t
h
di
gi
ts
of

th
er

et
ur
ne
d
by
te
ar
ra
y
re
pr
es
en
tt
he

ca
lo
ri
es
bu

rn
ed

an
d
th
e
st
ep

nu
m
be
r

..
.

-
-

-

8 Security and Communication Networks



bracelet. Besides, the fake app can shake the smart bracelet so
as to realize the search function. Unfortunately, the search
function cannot be shown in the fgures.

We apply reverse engineering to the third smart bracelet.
From Figure 8, we can see that the fake app obtains the same
data from the smart bracelet as the ofcial app does.

Table 2: Experimental tools and environments.

Experiment equipment or
software tool Model or confguration

Smart bracelet1 MCU: W25Q80BV
Smart bracelet2 MCU: STM32L151CBU6
Smart bracelet3 MCU: nRF51822
Smartphone Android 4.4.4
Computer Windows7
IDA pro v6.6
Android Killer v1.3.1.0
Android Studio v2.2

(a) (b)

Figure 6: Fake app (a) shows the same motion data as that of the ofcial app (b).

(a) (b)

Figure 7: Fake app (right) shows the same motion data as the ofcial app (left) does and can set an alarm for the smart band. (a) Fake app
(right) shows the same motion data as the ofcial app (left). (b) Fake app (right) can set an alarm for the smart bracelet.

Security and Communication Networks 9



Figures 8(a)–8(c), respectively, show that the fake app can
get the privacy information (gender and height) of the user,
motion data (step number, distance, and calories burned),
and battery power from the smart bracelet. Figure 9(a) shows
that the fake app can synchronize the local time of the
smartphone to the smart bracelet, and Figure 9(b) shows that
the fake app can set an alarm for the smart bracelet.

Our attacks work on the smart bracelets efectively. Te
deception attacks in this paper result from the vulnerability
that the smart bracelet and smartphone do not authenticate
each other at every connection time so that the smart
bracelet cannot diferentiate a legal user’s smartphone from
a hacker’s one.

6. Conclusion

In this paper, we study the loopholes of three popular brands
of business intelligence bracelets. We introduced the general
methods of security analysis, mainly by forging an app and
attacking a small number of intelligent devices in close range
through the app. In addition, smart devices usually connect
and communicate with the cloud through the app and
penetrate the cloud. Trough Android reverse engineering

and the discovered vulnerabilities, a fake Android appli-
cation was developed, which successfully spoofed the target
three smart bracelets. Te tested experiment results show
that our fake application can obtain the sensitive data of the
owner of the smart bracelet and remotely activate/deactivate
some key functions of the smart bracelet. Of course, the
attack is not the purpose.Trough the attack, the defects and
vulnerabilities of the device can be found so that the
manufacturer can correct and improve it so that the in-
telligent device can serve people’s lives more safely.

Data Availability

Te data used to support the fndings of the study can be
obtained from the corresponding author upon request.

Disclosure

An earlier version of the manuscript has been presented as
conference in “Cyberspace Safety and Security.”

Conflicts of Interest

Te authors declare that they have no conficts of interest.

(a) (b) (c)

Figure 8: Fake app (right) shows the same privacy information, motion data, and battery power as the ofcial app (left). (a) Privacy
information. (b) Motion data. (c) Battery power.

Te time of smartband before modifcation

Te time of smartband afer modifcation Te time of smartphone

(a) (b)

Figure 9: Fake app synchronizes the local time of the smartphone to the smart bracelet and sets an alarm for the smart bracelet. (a) Fake app
synchronizes the local time of the smartphone to the smart bracelet. (b) Fake app sets an alarm for the smart bracelet.

10 Security and Communication Networks



Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (Grant no. 61872387), the Philosophy
and Social Science Foundation of Hunan Province (Grant
no. 21YBA224), and the Hengyang Science and Technology
Innovation Project, China (Grant no. 202250045133).

References

[1] Data Bridge, “Global wearable device industry market analysis
in 2019,” 2019, https://bq.qianzhan.com/reports/detail/300/
191211-a7603d1f.html.

[2] E. Miluzzo, A. Varshavsky, S. Balakrishnan, and
R. R. Choudhury, “Tapprints: your fnger taps have fnger-
prints,” in Proceedings of the ACM MobiSys, pp. 323–336,
Durham, NC, USA, June 2012.

[3] Y. Ren, Y. Chen, M. C. Chuah, and J. Yang, “User verifcation
leveraging gait recognition for smartphone enabled mobile
healthcare systems,” IEEE Transactions on Mobile Computing,
vol. 14, no. 9, pp. 1961–1974, 2015.

[4] H. Wang, T. T. T. Lai, and R. R. Choudhury, “Mole: motion
leaks through smartwatch sensors,” in Proceedings of the 27th
Annual International Conference on Mobile Computing and
Networking, pp. 155–166, New Orleans LA, USA, October,
2015.

[5] X. Liu, Z. Zhou, W. Diao, Z. Li, and K. Zhang, “When good
becomes evil: keystore inference with smartwatch,” in Pro-
ceedings of the ACM CCS, pp. 1273–1285, Toronto Canada,
October, 2015.

[6] C. Wang, X. Guo, Y. Wang, Y. Chen, and B. Liu, “Friend or
foe? Your wearable devices reveal your personal PIN,” in
Proceedings of the ACM ACM ASIA CCS, pp. 189–200, New
York, NY, USA, May, 2016.

[7] X. Pan, Z. Ling, A. Pingley, W. Yu, N. Zhang, and X. Fu, “How
privacy leaks from bluetooth mouse?” in Proceedings of the
ACM ACM CCS, pp. 1013–1015, London, UK, November,
2012.

[8] M. “B. Ryan, “With low energy comes low security,” in
Proceedings of the USENIX WOOT, pp. 4–10, Santa Clara CA
USA, August, 2013.

[9] R. Hasan, “StreetBit: a bluetooth beacon-on the basis of
personal safety application for distracted pedestrians,” in
Proceedings of the 2021 IEEE 18th Annual Consumer Com-
munications & Networking Conference (CCNC), IEEE, Las
Vegas, NV, USA, January, 2021.

[10] L. Ma, Z. Wang, Y. Chen, and X. Yi, “Probability-guaranteed
distributed secure estimation for nonlinear systems over
sensor networks under deception attacks on innovations,”
IEEE Transactions on Signal and Information Processing over
Networks, vol. 7, pp. 465–477, 2021.

[11] A. Heidari and M. A. Jabraeil Jamali, “Internet of Tings
intrusion detection systems: a comprehensive review and
future directions,” Cluster Computing, vol. 12, pp. 1–28, 2022.

[12] A. R. Khan, M. Kashif, R. H. Jhaveri, R. Raut, T. Saba, and
S. A. Bahaj, “Deep learning for intrusion detection and se-
curity of Internet of things (IoT): current analysis, challenges,
and possible solutions,” Security and Communication Net-
works, vol. 2022, Article ID 4016073, 13 pages, 2022.

[13] Y. Chen-Duo, Y. M. Wu, and M. Xu, “Privacy-preserving
average consensus control for multi-agent systems under
deception attacks,” Acta Automatica Sinica, vol. 48, pp. 1–12,
2022.

[14] C. Chen, L. Wei, L. Zhang, Y. Peng, and J. Ning, “DeepGuard:
backdoor attack detection and identifcation schemes in
privacy-preserving deep neural networks,” Security and
Communication Networks, vol. 2022, Article ID 2985308,
20 pages, 2022.

[15] H. Huang, S. Zhu, P. Liu, and D. Wu, “A framework for
evaluating mobile app repackaging detection algorithms,” in
Trust and Trustworthy Computing, pp. 169–186, Springer,
Berlin, Germany, 2013.

[16] M. Lee, K. Lee, J. Shim, S. Cho, and J. Choi, “Security threat on
wearable services: empirical study using a commercial
smartband,” in Proceedings of the ACM IEEE International
Conference on Consumer Electronics-Asia (ICCE-Asia),
pp. 1–5, Yeosu, South Korea, October, 2016.

[17] D. Ding, Z. Tang, Y. Wang, and Z. Ji, “Secure synchronization
of complex networks under deception attacks against vul-
nerable nodes,” Applied Mathematics and Computation,
vol. 399, pp. 126017–126399, 2021.

[18] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci,
“Wireless sensor networks: a survey,” Computer Networks,
vol. 38, no. 4, pp. 393–422, 2002.

[19] J. Xie, S. Wu, Y. Li, J. Guo, W. Sun, and J. Liu, “My
smartphone knows your health data: exploiting android-on
the basis of deception attacks against smartbands,” Cyberspace
Safety and Security, vol. 22, pp. 291–306, 2017.

[20] K. S. Kim and B. S. Song, “Accessibility analysis of android-on
the basis of smart phones targeted at people with upper limb
dysfunctions,” Journal of Rehabilitation Welfare Engineering
& Assistive Technology, vol. 10, no. 4, pp. 267–272, 2016.

[21] W. Hu, J. Tao, X. Ma, and W. Zhou, “MIGDroid: detecting
APP repackaging android malware via method invocation
graph,” in Proceedings of the ACM IEEE International Con-
ference on Computer Communication and Networks (ICCCN),
pp. 1–7, Athens, Greece, March, 2014.

[22] X. Zheng, L. Pan, and E. Yilmaz, “Security analysis of modern
mission critical android mobile applications,” in Proceedings
of the Australasian Computer Science Week Multiconference,
New York, NY, USA, January, 2017.

[23] W. Hu, J. Tao, X. Ma, W. Zhou, S. Zhao, and T. Han,
“MIGDroid: detecting APP-repackaging android malware via
method invocation graph,” in Proceddings of the IEEE ICCCN,
pp. 1–7, Shanghai, China, August 2014.

[24] S. Khan, M. U. Farooq, and M. O. Beg, “BigData analysis of
stack overfow for energy consumption of android frame-
work,” in Proceedings of the ACM International Conference on
Innovative Computing (ICIC), Lahore, Pakistan, January,
2019.

[25] H. C. Kang and J. W. Jwa, “Development of android on the
basis of smart tourism application on the basis of on tourism
bigdata analytics,” Journal of Engineering and Applied Sci-
ences, vol. 15, no. 3, pp. 1164–1169, 2018.

[26] K. Chen, P. Wang, Y. Lee et al., “Finding unknown malice in
10 seconds: mass vetting for new threats at the google-play
scale,” in Proceedings of the 24th USENIX Conference on
Security Symposium, pp. 659–674, New York, NY, USA,
August, 2015.

Security and Communication Networks 11

https://bq.qianzhan.com/reports/detail/300/191211-a7603d1f.html
https://bq.qianzhan.com/reports/detail/300/191211-a7603d1f.html



