
Research Article
HLOChain: A Hierarchical Blockchain Framework with
Lightweight Consensus and Optimized Storage for IoT

Qingqing Xie ,1 Fan Dong ,1 and Xia Feng 2

1School of Computer Science and Communication Engineering, Jiangsu University, Zhenjiang 212013, China
2School of Automotive and Trafc Engineering, Jiangsu University, Zhenjiang 212013, China

Correspondence should be addressed to Qingqing Xie; xieqq@ujs.edu.cn

Received 6 January 2023; Revised 4 February 2023; Accepted 20 February 2023; Published 11 April 2023

Academic Editor: Jie Cui

Copyright © 2023 Qingqing Xie et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Blockchain can efectively deal with the security and trust issues in Internet of Tings (IoT) due to its salient features including
decentralization, immutability, traceability, openness, and transparency. However, most IoTdevices have too limited computing,
storage, and bandwidth resources to maintain the complete operation of a blockchain system. To this end, we propose a hi-
erarchical blockchain framework called HLOChain for IoT scenarios. First, according to computing and storage capabilities, the
IoT devices are classifed into three levels, i.e., high, medium, and low. Tey are deployed on diferent layers. In this way,
a hierarchical blockchain architecture is designed. Second, we propose a lightweight proof of random (PoR) consensusmechanism
to provide low-energy block mining, so that even the medium nodes can participate in the consensus task. Tird, in order to
reduce the ledger storage overhead, we design a blockchain storage optimization strategy based on the account model. Finally, the
security analysis demonstrates that our HLOChain is secure against double-spend attack, Sybil attack, and so on.Te experimental
evaluation shows that our HLOChain achieves better performance in ledger storage cost, consensus computing cost, throughput,
and transaction confrmation latency.

1. Introduction

Te Internet of Tings (IoT) [1] is a network where objects
can connect to the Internet through information sensing
devices. Te objects exchange information and communi-
cate to realize intelligent recognition, tracking, positioning,
and so on. At present, the IoT is widely used in smart home,
smart city, medical care, logistics, transportation, and other
felds to provide users with convenient services, efcient and
reliable management control. However, the IoT is a trustless
environment. Considering that the mass data generated in
IoT are exposed in the network, some security and privacy
concerns are rising. In traditional security protocols, net-
work nodes communicate with each other through a cen-
tralized entity. Tis kind of centralized protocol not only
increases network delay and interaction times but is also
prone to single-point failures. Furthermore, most IoT de-
vices are resource-constrained. Most of the resources of IoT
devices [2] are used to perform core functions such as

collecting, processing, and transmitting data. Tey cannot
aford the resource consumption of existing security tech-
niques [3]. A low-energy and decentralized approach is
needed to realize security and privacy preservation in
the IoT.

Blockchain is a new type of distributed ledger technology
that combines the P2P network, smart contract, consensus
mechanism, and cryptography. Its decentralization feature
makes a trust foundation come true under a trustless sce-
nario. It can provide a new idea for solving the security and
trust problems existing in the traditional service architec-
ture. As we know, the traditional blockchain relies on
computation-intensive consensus algorithms and highly
redundant storage to provide transaction security. A typical
application feld is cryptocurrency [4]. With the develop-
ment of blockchain, people try to apply the blockchain into
fnancial economy [5], Internet ofTings (IoT) [6, 7], supply
chain [8], healthcare [9], and other felds. However, there are
many resource-constrained devices in these application

Hindawi
Security and Communication Networks
Volume 2023, Article ID 3412200, 14 pages
https://doi.org/10.1155/2023/3412200

https://orcid.org/0000-0001-5112-3519
https://orcid.org/0000-0002-2616-0972
https://orcid.org/0000-0003-3677-6823
mailto:xieqq@ujs.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/3412200


areas, such as sensors, smart home devices, and so on. Tey
cannot aford the computation-intensive consensus algo-
rithms and highly redundant storage of traditional
blockchain.

Edge computing is decentralized and owns rich com-
putation, storage, and communication resources. Tus, it
can provide a natural solution to overcome the aforemen-
tioned resource-poor situation [10, 11]. Edge nodes with rich
computing, storage, and communication capabilities can
take on the role of blockchain miners. Integrated edge
computing is expected to make blockchain technology
widely used in resource-constrained scenarios.

Some related works on the combination of blockchain and
edge computing have been carried out so far. Liu et al. [12]
proposed a wireless blockchain framework supporting mobile
edge computing. In this framework, the computationally in-
tensive block mining work is undertaken by the edge nodes,
and the ledger is stored on the edge servers. Chen et al. [13]
proposed a collaborative and distributed computing ofoading
algorithm for the blockchain-driven Industrial Internet of
Tings (IIoT), where both data processing tasks and mining
tasks are taken into consideration. Groupchain [14] is a novel
double-chain structure blockchain. It improves the scalability
of blockchain and fog computing integration. Lang et al. [15]
proposed a blockchain-based data sharing architecture for
vehicular edge computing networks. It uses the collaborative
computing ofoading method to ofoad some computing and
storage tasks to edge nodes. In this way, it enables efcient data
sharing between smart vehicles and service providers. Xu et al.
[16] proposed a blockchain-based edge computing architecture
by integrating edge computing and blockchain into the IoT. It
not only realizes secure and scalable IoT transactions but also
provides ample data storage space. Guo et al. [17] combined
blockchain edge computing and blockchain and proposed
a distributed and trusted authentication system. To improve
authentication efciency, the smart contracts are deployed on
the edge nodes to provide name resolution and distribute
authentication services. In these aforementioned schemes, the
resource-constrained devices do not directly participate in
consensus but operate as light nodes. Te maintenance of the
blockchain depends on the edge nodes.

In this study, we also introduce edge computing into
deploying the blockchain system.Te frst motivation is that
the edge computing is distributed, which is consistent with
the blockchain’s decentralized characteristic. Te second
motivation is that edge computing can provide abundant
computation, storage, and communication resources for
maintaining a blockchain system, especially for some
resource-constrained IoT scenarios. Nevertheless, combin-
ing edge computing and blockchain is not straightforward. It
faces the following challenge.

1.1.Challenge. Tedirect integration of blockchain and edge
computing cannot completely solve the problem of
resource-constrained devices participating in the block-
chain. Tose low-resource devices do not always work as
light nodes. Tey also wish to participate in consensus as full
nodes and maintain the blockchain. In addition, existing

consensus mechanisms, such as PoW, PoS, and PBFT,
cannot be directly applied to the IoT. In order to enable
resource-constrained devices to participate in consensus, it
is necessary to design a more efcient and low-energy
consensus mechanism. Te confict between relieving
storage pressure and protecting ledger data integrity also
urgently needs to be solved.

1.2.MainContributions. To address the previous challenges,
this study proposes a hierarchical blockchain framework
with lightweight consensus and optimized storage for
resource-constrained scenarios. Te main contributions are
summarized as follows:

(1) We design a novel hierarchical system architecture,
in which all the nodes are divided into three levels,
i.e., high, mid, and low, according to their capability.
With the support of lightweight consensus protocol
and data storage optimization, our HLOChain en-
ables mid-level nodes with limited resources to
maintain the blockchain such as full nodes.

(2) In order to reduce the resource consumption of the
consensus mechanism, we propose a lightweight
consensus mechanism, Proof of Random. Te miner
node is selected in a random way rather than relying
on computing power or stake.Te consensus process
only consumes a few resources and is friendly to
resource-constrained devices.

(3) Facing the problem of ever-increasing ledger data,
this study designs an account model-based storage
optimization strategy combined with the hierarchi-
cal node architecture. Te blockchain ledger is di-
vided into a full ledger and a state ledger. In the case
of ensuring data integrity and normal operation of
the system, resource-constrained nodes can partic-
ipate in the consensus by only storing the state
ledger. It is needed noting that the size of the state
ledger is much smaller than the full ledger.

(4) Te security analysis shows that our HLOChain
could resist some common blockchain attacks well
(such as double-spend attack, Sybil attack, and so
on.). Te experimental results show that our
HLOChain can achieve better performance in ledger
storage cost, consensus computing cost, throughput,
and transaction confrmation latency.

1.3. Organization. Te rest of this paper is organized as
follows: Section 2 reviews the related work. Our system
architecture is introduced in Section 3. Sections 4 and 5
present our HLOChain design in detail. Section 6 analyzes
the security, and Section 7 experimentally evaluates the
performance. Finally, Section 8 concludes this paper.

2. Related Works

2.1. Consensus Mechanism Optimization. Te computing
resource consumption of the blockchain is caused mainly by
the consensus mechanism. Resource-constrained devices

2 Security and Communication Networks



cannot aford computing-intensive consensus mechanisms.
Terefore, optimizing the consensus mechanism is an im-
portant way to achieve lightweight computing. Some
scholars have improved the consensus mechanism. Li et al.
[18] proposed an improved PBFT blockchain consensus
mechanism for federated blockchain. In this work, the
strategy of reward and punishment is utilized, and the
primary node is selected by voting. It reduces the com-
munication complexity of PBFT. Puthal et al. [19] designed
a consensus protocol, proof-of-authentication, to replace the
PoW consensus. It can greatly reduce computing con-
sumption in the consensus process. However, its application
scope is limited to the permissioned blockchain.

In PoEWAL [20] (Proof of Elapsed Work and Luck)
consensus protocol, each miner has a fxed period to solve
a cryptographic puzzle similar to PoW. Tis mechanism
relies on the amount of work carried out by nodes within
a preset period. It can reduce the computational con-
sumption in each block iteration by adjusting the period to
calculate the cryptographic puzzle. Huang et al. [21] pro-
posed a trust-based PoW mechanism to reduce the com-
puting power consumption of honest nodes. Tis
mechanism introduced the node credit value which is related
to the behavior of the node. Te credit value of nodes will be
reduced if they perform malicious behavior. Te higher the
credit value of a node, the lower its mining difculty. Saad
et al. [22] introduced an extended PoS protocol e-PoS, where
the nodes compete to propose a new block through auction.
Tis process does not need to run complex cryptographic
algorithms. In addition, each node has the same initial
auction funds to ensure a fairer competition.

Khan et al. [23] proposed a lightweight authenticated
encryption-based proof-of-authentication consensus
mechanism. It utilizes a lightweight hash function and
a hardware sharing architecture to reduce the overhead of
computing resources. Microchain [24] randomly selected
some nodes to form a committee according to the stake of
the node. Te committee members compute the crypto-
graphic puzzles related to their credit value to compete to
propose a new block. Dorri et al. [25] exploited the overlay
network to organize nodes in the form of clusters. Te nodes
with rich resources are selected as cluster heads. Te cluster
heads reach a consensus through a lightweight time-based
distributed algorithm. Kara et al. [26] proposed a Proof of
Chance (PoCh) consensus mechanism. Nodes become
candidates by chance and randomly select a miner from the
candidates. Consensus relies on the chance value of nodes
rather than computing power. However, there are only
a small number of candidates in each block iteration. It is
vulnerable to malicious attacks and reduces the security of
the blockchain.

Te previous work can reduce the resource consumption
of the consensus process to a certain extent, but there are still
several problems as follows: (1)Te application scenarios are
limited. Moreover, some are more suitable for federated
blockchain [18, 19]. (2) PoW problem needs to be solved.
Consensus relies on computing power and is not applicable
to resource-constrained devices [20, 21]. (3) Te proposed
optimization measures in turn bring additional resource

overhead, which will increase the burden on nodes [21, 22].
(4) Resource-constrained devices do not directly participate
in consensus, but instead elect resource-rich cluster heads as
representatives, which may go against the wishes of some
users [20, 25]. (5) Tere are security loopholes, and the
blockchain is vulnerable to security attacks [24, 26]. Te PoR
consensus proposed in this study reaches consensus in
a random form that does not depend on computing power.
Te whole process consumes very few resources. Te
resource-constrained devices can also participate directly.
Tus, it is suitable for resource-constrained IoT scenarios.

2.2. Blockchain Storage Optimization. Reducing the block-
chain data storage to alleviate the storage burden of
resource-constrained devices is the key to obtaining light-
weight storage. Currently, a number of solutions have been
put forth by some scholars. Zhao et al. [27] developed
a lightweight enhanced SPV (simplifed payment verifca-
tion) node named ESPV. ESPV nodes store all new blocks
and reserve some old blocks according to their storage
capability. Furthermore, some projects [28–30] proposed
various lightweight clients. Tese lightweight clients only
store a subset of the most recently generated blocks rather
than the entire blockchain ledger.

Li et al. [18] proposed an RS erasure code-based storage
optimization strategy. Based on the RS erasure code, a new
block is encoded into several segments. Tese code segments
are distributed and stored in diferent nodes. To recover
blocks, the nodes request the missing encoded segments
from other nodes. However, this method increases the
computing and communication overhead of the nodes. Liu
et al. [31] proposed a lightweight blockchain system for the
industrial IoT. Blocks that do not contain unspent trans-
action output (UTXO) sets are defned as unrelated blocks.
To reduce the consumption of node storage resources, an
unrelated block ofoading flter is utilized to unload un-
related blocks. Wang et al. [32] proposed an UTXO model-
based efcient storage scheme (ESS). To reduce blockchain
storage consumption, ESS divides the blocks into three types
according to UTXO weight. Ten, it utilizes pruning
strategies to reduce the size of the blockchain ledger. Ehmke
et al. [33] introduced a Proof of Property (PoP) protocol
based on the account model. Each transaction includes
a proof of property, which proves that the input account of
a transaction has enough coins to pay for this transaction.
Terefore, the nodes only need the latest block header to
verify the transaction. Kim et al. [34] proposed a ledger data
compression scheme. By organically combining with the
consensus mechanism, the historical block data are com-
pressed to fully improve the utilization of node storage
space. Biswas et al. [35] designed a novel type of local
transaction to decrease the growth rate of the blockchain
ledger. However, this approach is only applicable to a spe-
cifc framework. In addition, Bitcoin-NG [36] and the works
in [37–39] divide the entire blockchain network into smaller
committees based on the sharding protocol. Each committee
runs the consensus protocol independently and in parallel.
Nodes store less ledger data.

Security and Communication Networks 3



To some extent, the previous work can relieve the storage
pressure of nodes, but the following issues still exist: (1)
lightweight clients allow nodes to store only a small amount
of data, but these lightweight clients cannot participate in the
consensus process [27–30], (2) unloading and compressing
historical blocks lacks protection for the integrity of ledger
data [31–35], and (3) the sharding technology is used to deal
with the storage problem, but the problem of cross-sharding
transaction is generated [36–39]. Under the premise of
preserving data integrity, our storage optimization strategy
enables those resource-constrained nodes to participate in
the consensus by storing only a small amount of data.

3. System Architecture

Our system architecture is shown in Figure 1. Considering
the diversity of IoT devices and the diferent levels of re-
sources they have, we provide three diferent levels of
clients. Te high-level client includes the blockchain full
ledger. Te mid-level client includes the state ledger and
a historical block unloading module. Te low-level client
only includes block header data. When joining the
blockchain network, users select appropriate clients
according to their own computing and storage resources.
Diferent clients correspond to diferent node levels. High-
level nodes and mid-level nodes participate in consensus,
similar to full nodes. Low-level nodes are similar to light
nodes, submitting transactions by connecting to high-level
nodes or mid-level nodes. Te detailed description of each
level of node is as follows:

(i) High-level nodes (H): Tis layer consists of nodes
with rich computational and storage resources, such
as servers, high-performance computers, and so on.
In our HLOChain, edge nodes are deployed on the
high-level nodes layer. Tey are responsible for
block proposal and full ledger storage. It is also our
motivation of introducing edge computing into
deploying the blockchain system, i.e., utilizing the
rich resources provided by edge computing to
maintain the operation of a blockchain system.

(ii) Mid-level nodes (M): Tis layer consists of some
nodes with limited computational and storage re-
sources, such as personal notebooks, smartphones,
and tablets. Tese nodes are unable to run
computation-intensive tasks for a long time and
store hundreds of gigabytes of data. Our HLOChain
optimizes the working mechanism of the consensus
and the storage, so that mid-level nodes can par-
ticipate in the consensus process even if their re-
sources are limited.

(iii) Low-level nodes (L): Tis layer consists of nodes
that are severely resource-constrained, such as
sensors, webcams, and smart home devices. Tese
nodes cannot aford tasks other than normal op-
erations. Tey propose transactions by connecting
to high-level or mid-level nodes, which only need to
store the block headers.

In the consensus module, inspired by [20, 26], we design
a green and low-energy consumed consensus protocol, Proof
of Random (PoR). Te node decides whether it can become
a candidate node according to the random value. According
to a special comparison process, the only miner in consensus
iteration is determined from the candidate nodes. Te whole
process consumes very little resources and is suitable for
resource-constrained devices. Te protocol is a strongly
consistent consensus protocol, and there is no fork problem.

In terms of data storage, we learned from Ethereum’s
account model and optimized the block structure. Te
blockchain ledger is divided into a full ledger and a state
ledger. Te full ledger stores all data from the genesis block
to the current latest block, including all transactions and all
account states. Te state ledger stores only the blocks
containing the latest state tree. Note that the state ledger
contains no any transaction data. As we all know, of all data
storage, transaction data storage cost accounts for the
highest proportion. Terefore, compared with the full led-
ger, the size of the state ledger is much smaller.Temid-level
nodes only need to store the state ledger to participate in the
consensus. In addition, the mid-level client also provides
historical block unloading service, which is called when the
storage space of the mid-level node is insufcient. Te high-
level nodes are encouraged to store the full ledger by in-
creasing the block reward. Tey need to provide the proof of
storing the full ledger to obtain the corresponding block
reward.

Some major notations used in this paper are shown in
Table 1. Te following will introduce our lightweight con-
sensus protocol PoR and account model-based storage
optimization strategy.

4. Proof of Random

Deploying blockchains in resource-constrained IoT sce-
narios requires avoiding computationally intensive con-
sensus. PBFT consensus will increase the communication
burden of IoT devices. PoR is based on the concept of
“Random,” meaning that the node must have double luck to
get block rewards. Nodes reach consensus through a two-
stage random process. Te frst stage is the candidate test.
Te node calculates a hash value P with the random value
Rval and ID, in which P � Hash(Rval‖IDi). If the hash value
meets the given conditions (i.e., <Target), it becomes
a candidate node. Te candidate node generates a Proof
associated with its ID and broadcasts it to the blockchain.
Rval and Target will be modifed at each consensus iteration
according to equations (2) and (3), respectively. Proof
generation refers to part (1) in Section 4.1. Te second stage
is to compare the P in the Proof of all candidate nodes, and
the candidate node with the smallest P becomes the miner of
the current consensus iteration.

In order to facilitate the verifcation of candidate nodes,
each candidate node includes its public key in the broadcast
proof and signs it with its private key. It takes a certain time
interval (t1 in Algorithm 1) before the candidate nodes get
Proof s from other candidate nodes. Te t1 is based on the

4 Security and Communication Networks



present state of the network.Te nodes that do not follow the
rules will be prevented from taking part in consensus. After
t1, if the number of candidate nodes (Ncand) is in the range
[W/2 − W], candidate nodes normally execute the second
stage consensus to determine the fnal miner. Otherwise, the
message of consensus failure is broadcast. If the miner has
been elected (W/2≤Ncand ≤W), all candidate nodes will get
a new block generated by the miner after a time interval (t2
in Algorithm 1).

Once receiving a new block, the candidate node updates
Rval and Target and broadcasts the triplet (Rval, Target, and
Block). If the block verifcation fails, the miner node will be
reselected. Similarly, the candidate node broadcasts “con-
sensus failure, new Target” if Ncand ∉ [W/2 − W]. If a node is
not a candidate, it must wait for a new (Rval, Target, and

Block) or the message of consensus failure. In order to
reduce the probability of consensus failure, only candidate
nodes have the right to determine the state of the current
consensus. A decision is considered valid only when it is
from at least half of the candidate nodes. Algorithm 1 depicts
the suggested consensus process.

According to the synchronous consensuses, such as
PoW, the system state is updated upon the completion of
every consensus round. Nevertheless, there is no clear upper
restriction for message delivery in asynchronous consen-
suses, such as DPoS. To address deadlocks, partially syn-
chronous consensuses, such as PBFT, can use timeouts,
preset hierarchies, and additional rules [40]. In our PoR, the
nodes cannot forward to the next consensus round until
a new block or consensus failure message is broadcast.

Full ledger Full ledger Full ledger Full ledger

High-Level
Nodes

Mid-Level
Nodes

Low-Level
Nodes

State ledger State ledger State ledger State ledger

Proof of Random

Consensus Module

Figure 1: Te system architecture.

Table 1: Some major notations used in this paper.

Notations Description
Nodei Te i-th node
IDi Te identity of nodei

iLevel ∈ H,M,L{ }
Te role level identifer of nodei, where H,M, and L represent high-level, mid-level,

and low-level nodes, respectively
(PKi, SKi) Te public and private key pair of nodei

BH Te block height
Hpre Te hash of previous block (the last validated block)
Ncand Te number of candidate nodes in the current consensus iteration
Rval Random value Rval � Hash(BH‖Hpre‖Ncand)

W Te maximum number of candidate nodes that the network load can tolerate
Sign(∙) A signature algorithm
Bi Te i-th block
Bi.h Te i-th block header
Bi.s Te state body of i-th block
Bi.t Te transaction body of i-th block
Acctj.ver Te version number of account j

Security and Communication Networks 5



4.1. PoR Main Operation Principles. Te main steps defned
in our PoR are explained as follows:

4.1.1. Generating Proof

P � Hash Rval
����IDi . (1)

Te node calculates the hash value P by equation (1). If
P<Target, the node becomes a candidate node and gen-
erates a Proof (P, IDi,PKi, Sign(RVal)). Te generation of ID
is very important here, which needs to ensure uniqueness,
unpredictability, and verifability. Te uniqueness guaran-
tees the uniqueness of P and ensures that only one miner is

generated in the second stage of the consensus. Tus, the
fork problem can be avoided. Unpredictability is the
guarantee of system security. Verifability is to ensure the
legitimacy of ID generation and prevent nodes from mali-
ciously forging ID to skip candidate tests. We give the
calculation principle of ID, which is
IDi � Hash(Sign(RVal)). Sign(RVal) is the signature of
Nodei to the random value RVal, which is unique,
unforgeable, and verifable. In each consensus interation, the
values of Rval and Target will be updated according to
equations (2) and (3).Terefore, in each consensus iteration,
the ID is changing and unpredictable. In addition, in order
to prevent malicious nodes from forging multiple ID

Require: params: BH; RVal; Target; t1, t2: time interval
Ensure: consensus
(1) procedure
(2) P←Hash(RVal‖IDi)

(3) if (P<Target) then
(4) generate Proof(P, IDi, PKi, Sign(RVal))

(5) broadcast Proof
(6) waiting for t1, and:
(7) receive Proof (incrementing Ncand)
(8) if (Ncand <W/2‖Ncand >W) then
(9) update (Target)
(10) broadcast “consensus failure, new Target”
(11) go to (line 2)
(12) else
(13) select the luck Proof: the P of Proof is minimum
(14) if (my Proof is the luck) then
(15) generate a new block
(16) update block height: BH←BH + 1
(17) update RVal←Hash(BH‖Hpre‖Ncand)

(18) update Target←currentTarget/log3W/4Ncand
(19) broadcast new (RVal, Target, Block)
(20) go to (line 2)
(21) else
(22) waiting for t2, and:
(23) if (the new Block has arrived) then
(24) verify it
(25) if (the Block passes validation) then
(26) update Blockchain
(27) update (RVal, Target)
(28) broadcast new (RVal, Target, Block)
(29) go to (line 2)
(30) end if
(31) else
(32) update (Target)
(33) broadcast “consensus failure, new Target”
(34) go to (line 2)
(35) end if
(36) end if
(37) end if
(38) else
(39) wait for the new (RVal, Target, Block) or (consensus failure, new Target), go to (line 2)
(40) end if
(41) end procedure

ALGORITHM 1: Proof of random.

6 Security and Communication Networks



through multiple public and private keys to increase their
probability of passing the candidate test, nodes need to
pledge a certain number of tokens when generating Proof .

4.1.2. RVal Update. In equation (2), BH, Hpre, and Ncand are
the block height, the hash of the previous block, and the
number of candidate nodes, respectively. Terefore, the
random value RVal is computed by the concatenation of
these three parameters. Te block height can ensure that
each update process is uniquely identifed when the other
two parameters stay unchanged. Te Hpre is used because it
cannot be manipulated by the miner of the current con-
sensus. Te Ncand is used in the update procedure to prevent
malicious nodes from manipulating their blocks to pass the
next candidate test.

RVal � Hash BH Hpre

�����

�����Ncand . (2)

4.1.3. Target Update

Target �
currentTarget
log3W/4Ncand

. (3)

After each round of consensus, we use equation (3) to
update Ncand. If Ncand > 3W/4, the Target value will be
reduced after the update. Te difculty of the next round of
the consensus candidate test will increase. As a conse-
quence, fewer nodes can pass the candidate test. If
Ncand < 3W/4, the Target value will be increased after the
update. Te difculty of the next round of the consensus
candidate test will decrease. More nodes can pass the
candidate test. Tus, Ncand remains near 3W/4, i.e., in the
range [W/2 − W]. If Ncand is equal to 0 or 1, then Ncand←2.
Here, W is dependent on the Proof size and the network
throughput, i.e., the propagation of W Proof in the P2P
network will not cause network congestion.

4.1.4. Miner Select. After t1, nodes will receive the Proof of
all candidate nodes that pass the candidate test. Tese Proof
form a candidate proof list. After that, one of these candidate
nodes needs to be selected as a miner node. Te specifc
measure is that the candidate node sorts the hash value P in
the proof list and selects the Proof with the smallest P. If the
Proof passes the verifcation, it is considered that the node
that generated the Proof becomes the miner of the current
consensus iteration. Because the P generated by equation (1)
is unique, a unique miner will be determined in this process.
Te miner will construct a new block and broadcast it to
other candidate nodes for verifcation.

4.1.5. Verifcation. Tis process includes Proof verifca-
tion, block verifcation, and transaction verifcation. Te
verifcation work is the responsibility of the candidate
node. Because our HLOChain is based on the account
model, transaction verifcation mainly depends on the
account state of the node. For Proof verifcation, frst
verify the legitimacy of the signature according to the

node public key, then verify whether the ID generation is
legal according to the signature, and fnally verify the
legitimacy of the hash value P according to the ID and
Rval. Te verifcation of the block includes the following
point:

(1) To verify the Proof of the miner node, the candidate
node is compared with the Proof selected in the
second stage of consensus with the Proof contained
in the block. Te signature is verifed with the public
key in the Proof.

(2) If the miner is a high-level node, it needs to include
a digest of the full ledger in the block to prove that it
has stored the full ledger. Te verifcation of the
digest depends on the high-level nodes. Terefore,
the mid-level nodes among the candidate nodes need
to randomly send requests for verifcation digest to
10 high-level nodes. When more than half of the
verifcation success messages are received, the digest
is considered to be legal.

(3) All transactions are verifed and executed according
to the account state. If any transaction is illegal, the
block will not pass the verifcation.

After the candidate node is successfully verifed, the
ledger is updated and the new block is broadcast to the
noncandidate nodes. If the verifcation fails, a consensus
failure message will be broadcast.

4.2. PoR Additional Rules. A fork means that there are
multiple diferent versions of the blockchain simultaneously.
It seriously afects the scalability of the blockchain. To reduce
the probability of forks, we make the following additional
rules:

(1) Te candidate node is required to wait t1 before
selecting the miner. Te t1 depends on the network
conditions. It is guaranteed that the Proof of all
candidate nodes can be spread throughout the
network during this period.

(2) Te noncandidate node of each consensus iteration
must wait until a new block or a consensus failure
message is received

(3) Each candidate node is required to forward the re-
ceived Proof data to all candidate nodes

(4) Each noncandidate node is required to forward the
received Proof data to 10 randomly nodes

(5) If a new candidate node for the previous block
consensus iteration (i.e., block k − 1) appears in the
block k consensus iteration, and the block k’s mining
work must be aborted. Nodes must reselect the
miner based on the proof list of this candidate node.

(6) If a new candidate node for the block k − 2 consensus
iteration appears in the block k consensus iteration,
this new candidate node should be disregarded

(7) If there are two candidate proof lists U and U′, where
U ⊂ U′, only the U′ is taken into consideration by the
network. Otherwise, if U⊄U′ and U′⊄U, both U and

Security and Communication Networks 7



U′ are disregarded. Simultaneously, consensus fail-
ure message is broadcasted.

5. Storage Optimization Strategy

We optimize data storage based on the Ethereum account
model. Each node has a unique account, and the verifcation
of its transactions mainly depends on the account state of the
node. Te structure of the state tree is a Merkle Patricia Tree
(MPT). Te leaf nodes store the account states. Once a new
block is generated, the states of the accounts involved will
change. Te corresponding nodes in the state tree will
change as well. Note that the change is not made directly in
the original nodes. Instead, some new branches are created
to store the changed accounts. As shown in Figure 2, we will
take the genesis block and block 1 as an example to show the
state tree update process. Assume that the block 1 only
changes the account 7. Tus, a new branch marked by the
blue boxes is created to store the new state of the account 7.
Other unchanged nodes directly point to the counterparts in
the previous block. In this way, the state tree is updated, and
a newMPT is created. So, there is only one latest state tree in
the blockchain. To participate in mining and verify trans-
actions, nodes need to keep a full ledger.

In order to solve the storage pressure of resource-
constrained devices, so that they can participate in the
consensus by only storing a small amount of data, we have
optimized the data layer. First, we optimize the block
structure, as shown in Figure 3. A complete block Bi includes
block header Bi.h, state body Bi.s, and transaction body Bi.t,
i.e., Bi � Bi.h, Bi.s, Bi.t . Te block header contains some
common parameters such as block height BH, timestamp
TS, hash of the previous block Hpre, hash of the root of the
state tree SR, hash of the root of the transaction tree TR,
Proof of miner, role level identifer ilevel, and full ledger
digest Dig, i.e., Bi.h � BH,TS, Hpre, SR,TR, Proof , iLevel,

Dig}. Te state body contains a list of accounts whose
current state has changed, i.e., Bi.s � Acct−list . Te
transaction body is the list of transactions in the current
block, i.e., Bi.t � Tx list{ }. We separate the account state
from the block, and nodes only need to store the block
header and state body to participate in the consensus.
Terefore, the transaction body can be ofoaded when the
storage space is insufcient without afecting the normal
operation of the blockchain.

In addition, we found that the state of accounts in the
blockchain is constantly changing, and the historical state of
those accounts has no efect on subsequent transaction
verifcation. Terefore, they can be deleted without afecting
the normal operation of the blockchain to save space. Tose
blocks that do not contain the latest account state are defned
as useless blocks. Add a version number fag Acctj.ver to the
account, which corresponds to the block height of the block
storing the current account, i.e., Bi.BH � Acctj.ver. Tere-
fore, we only need to fnd the smallest version number of all
accounts from the latest state tree, and the historical blocks
before the block height corresponding to this version
number are all “useless blocks.” So, they can be deleted.
Here, we consider all accounts to be active because IoT

devices are collecting, processing, and exchanging data all
the time. Tese actions will be recorded in the blockchain in
the form of transactions.

Finally, we designed a historical block ofoading algo-
rithm for mid-level nodes. As shown in Algorithm 2, our
purpose is to delete those useless blocks and transaction
bodies. First, obtain the latest account list from the state tree
of the latest block and fnd the minimum version number of
the account from the account list. Ten, delete those his-
torical blocks whose block height is less than the minimum
version number. Finally, delete the transaction body of the
remaining blocks. Te rest is the state body that only
contains the block header and the latest account. We call this
part of the data the state ledger.

In this study, edge nodes with strong computational
power and large storage space are deployed at the high-level
nodes layer, which need to store the full ledger to maintain
the integrity of blockchain ledger. Te mid-level nodes
whose storage space is limited just need to store the state
ledger to participate in consensus. Te state ledger only
occupies a small amount of storage space, and it does not
strictly increase with the increase of the block height. Te
new block contains the new state of the account. Te his-
torical blocks that store the expired account state will
eventually be unloaded. Terefore, as time goes by, the size
of the state ledger tends to a stable range, which depends on
the total number of accounts in the current blockchain and
the average number of accounts stored in each block.

6. Security Analysis

Unpredictability and unmanipulability are signifcant
properties required for a secure consensus protocol. Un-
predictability assures that malicious nodes cannot predict
the consensus result until it is generated. Unmanipulability
ensures that nodes cannot maliciously manipulate and
tamper with the consensus result. In our PoR, malicious
nodes can neither forecast the outcome of the miner’s se-
lection nor tamper with the outcome by manipulating the
consensus process. Tis is because we use two unpredictable
parameters Hpre and Ncand to calculate RVal. RVal cannot be
manipulated because its calculation parameters are public to
all nodes. Also, our ID generation is an unpredictable
process. Te RVal and Target used by all nodes in the
candidate test are the same, and the node that passes the
candidate test must generate a Proof to prove its candidate
identity. Terefore, a malicious node cannot forge its Proof
because each Proof is broadcast in the blockchain network.
Temalicious nodes cannot tamper with the proof list to fool
other candidate nodes when honest nodes are in the
majority.

Furthermore, the malicious nodes cannot manipulate
the outcomes of miner selection because our selection
methods are reasonable and verifable. If a malicious node
violates Rule 1 in Section 4.2, i.e., it does not wait for t1, but
uses a smaller proof list (W/2) to recommend itself or its
collaborators to become miners, this decision is disregarded
because the blockchain network contains a larger proof list
(Rule 6 of Section 4.2). Similarly, if a candidate node does

8 Security and Communication Networks



Tx Merkle
Tree

State Root
=

Hash(Top Hash')
 )

H0123 =
Hash(H01 || H23)

H4567 =
Hash( H45 || H67)

Top Hash =
Hash(H0123|| H4567)

Account
7'

 H4567'=
Hash(H45 || H67' )

Top Hash ' =
Hash(H0123 || H4567' )

H67' =
Hash(H6 || H7' )

H01 =
Hash(H0 || H1)

H23 =
Hash(H2 || H3)

H67 =
Hash(H6 || H7 )

H45 =
Hash(H4 || H5 )

H7' =
Hash(Account 7')

Account
4

H4 =
Hash(Account 4)

Account
0

H0 =
Hash(Account 0)

Account
1

H1 =
Hash(Account 1)

Account
2

H2 =
Hash(Account 2)

Account
3

H3 =
Hash(Account 3)

Account
6

H6 =
Hash(Account 6)

Account
5

H5 =
Hash(Account 5)

Account
7

H7 =
Hash(Account 7)

State Root
=

Hash(Top Hash)

Full ledger
digest

Transaction
 Root

Previous Hash Block Height Timestamp

Full ledger
digest

Transaction
 Root

Previous Hash Block Height Timestamp

Genesis Block Block 1

ProofProof

Tx Merkle
Tree

iLevel
iLevel

Figure 2: Example of the state tree update process (only account 7 state changes).

Previous Hash TimestampBlock Height

State Root Transaction Root

Block header

State Merkle 
Tree

Transaction body State body

Full ledger digestProof iLevel

Tx Merkle Tree

Figure 3: Block structure.

Input: B � B1, B2, ..., Bt : A blockchain composed of t blocks B1, B2, ..., Bt where the blocks are sorted in chronological order, and Bt

is the latest block.
Output: B: A shorter blockchain
(1) procedure
(2) get list_of_newAcct from B

(3) get the min Acct.ver from list_of_newAcct
(4) V← the min Acct.ver
(5) for all Bi ∈ B do
(6) if Bi.BH<V

(7) delete Bi

(8) end if
(9) for all Bi ∈ B do
(10) delete Bi.t

(11) return B

(12) end procedure

ALGORITHM 2: Historical block ofoading.

Security and Communication Networks 9



not follow the consensus rules to wait for t2 and maliciously
broadcasts its new block or the consensus failure message,
this decision is also disregarded because the decision must
come from half of the candidate nodes to be valid.

6.1. Fault Tolerance. For a blockchain network with n
consensus nodes (a collection of high-level nodes and mid-
level nodes), our HLOChain can tolerate f Byzantine nodes,
where n≥ 2f + 1.

Since all nodes use the same RVal and Target, they have the
same probability of passing the candidate test. Assuming that
Byzantine nodes account for 50% of the current system, in the
worst case, there are W nodes that pass the candidate test,
among which there are W/2 Byzantine candidate nodes. Tese
W/2 Byzantine candidate nodes will form a candidate list with
the lowest number of candidate nodes W/2 to successfully
launch an attack. As a result, if Byzantine nodes do not surpass
50%, i.e., n≥ 2f + 1, then all nodes can ensure fault tolerance.

6.2. Attack Resistance. In this section, we evaluate PoR’s
resistance against some common attacks, including double-
spending attack, 51% computing power attack, and Sybil
attack.

(1) Double-spending attacks: In this attack, the attacker
attempts to spend the same coin in diferent trans-
actions. Te attack relies on the fork of the block-
chain and the transaction delay confrmation
mechanism. Te collusion of more than 50% of
nodes can cause forks. However, the fork is pre-
vented through the additional rules in which we
restrict this phenomenon of forks through additional
rules in Section 4.2. Terefore, within our fault
tolerance range, malicious nodes cannot launch
double-spending attacks through forks.

(2) 51% computing power attacks: In a 51% computing
power attack, the attacker who owns more than 51%
computing power of the entire blockchain network is
able to become a miner at a high advantage. Ten, he
can generate a longer blockchain to roll back his-
torical transactions. Nevertheless, in our proposed
PoR, the miners are generated randomly, instead of
depending on the computing power of nodes. Tus,
even if malicious nodes occupy 51% of the com-
puting power, they cannot launch attacks
through forks.

(3) Sybil attacks: In the Sybil attack, the attacker forges
a large number of false identities to participate in the
blockchain to interfere with the normal operation of
the blockchain system. Assume an attacker generates
a large number of ID, which exceed 50% of the total
number of nodes in the blockchain. Te probability
that the attacker becomes a miner is greatly in-
creased. It will seriously afect the fairness of miner
selection. Terefore, we increase the cost of be-
coming a candidate node by pledging tokens in the
process of generating Proof, so as to resist Sybil
attacks.

7. Performance Evaluation

To evaluate the performance of the proposed solution,
a concept-proof prototype of HLOChain is implemented in
Java. Te performance metrics include consensus time,
transaction throughput, transaction confrmation latency,
and ledger storage. Consensus time refers to the time that it
takes to reach consensus on a given number of transactions.
Transaction throughput refers to the number of transactions
per second which are packed into the blockchain. Trans-
action confrmation latency refers to the time from when
a transaction is proposed to when it is deposited on the
ledger.Te ledger storage indicates the size of the ledger data
required to be stored by diferent type nodes at a given
number of blocks.

We developed a private blockchain environment based
on a virtual machine cluster built over several laptops and
local servers. 4 laptops and 2 servers make up the hardware
environment. We simulate diferent types of nodes by
assigning diferent CPU cores and hard disk space to virtual
machines. Among them, the confguration of the server is
Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, and the
confguration of the laptop is Intel(R) Core (TM) CPU i5-
12500H @ 2.50GHz.

7.1. Consensus Time. In the experiment, we deployed 50
nodes. Te block size is 1MB, and each block contains 3000
transactions on average. Te changes in the consensus time
of PoW, PoS, PoEWAL, PoCh, and our PoR under diferent
number of transactions are simulated, and Figure 4 shows
the data results. It is clear that the consensus time of PoW is
much higher than that of other algorithms because nodes
need to continuously solve a cryptographic problem to mine
new blocks in PoW. As the computing power of nodes
increases, the difculty is also increasing. For example,
Bitcoin generates a new block in about 10minutes on av-
erage. PoS uses stake to reduce the difculty of mining.
PoEWAL expects nodes to reach a consensus by partially
solving the cryptographic puzzle within a fxed mining time.
Teir consensus time is much shorter than Pow, but they still
need to continuously calculate the cryptographic puzzle. In
the consensus process of PoCh and our PoR, there is no need
to continuously calculate the cryptographic puzzle. A more
energy-saving randommethod is used to select miner nodes.
However, PoCh consumes a lot of time in the process of
node interaction. Figure 4 clearly shows that when the
number of transactions mined increases, PoR requires
minimal consensus time compared to other lightweight
algorithms.

7.2. Transaction Troughput. Te transaction throughput is
afected by two factors: the consensus time and the block
size. Diferent block sizes are used to test the throughput of
PoW, PoS, PoEWAL, PoCh, and our PoR. Figure 5 shows the
experimental results. We found that with the increase of
block size, the throughput increased signifcantly.Tis is due
to the block size afecting the number of transactions
contained in each block. Te larger the block size, the higher

10 Security and Communication Networks



the number of transactions per block. In addition, diferent
consensus algorithms have diferent consensus time. It leads
to diferent throughputs. Te lower the consensus time, the
higher the throughput. Compared to PoW, PoS, PoEWAL,
and PoCh, our PoR has the lowest consensus time. As
a consequence, the throughput of PoR is the highest. Tis
shows that our HLOChain is more applicable to the IoT
scenarios with large-scale transactions.

7.3. Transaction Confrmation Latency. We adjust the
number of nodes to test the change of transaction confr-
mation latency. Figure 6 shows the experimental results. It

can be found that with the increase of the number of nodes,
the transaction confrmation latency of PoW changes sig-
nifcantly. It is mainly afected by the consensus time and the
fork problem. Te latency of PoS, PoEWAL, and PoCh is
much lower than PoW and slightly higher than our PoR.
However, they are still afected by the forking problem. In
the case of 50 nodes, PoR only needs an average of 1.06 s for
transactions to be confrmed. Tis is mainly due to the fact
that we use additional rules to efectively alleviate the fork
problem, and transaction confrmation does not need to wait
for 6 blocks.

7.4. Ledger Storage. In the blockchain system, the full nodes
need to store full ledger data to participate in the consensus
process, while light nodes only need to store block headers
and do not participate in consensus. We divide blockchain
ledgers into a full ledger and a state ledger. High-level nodes
need to store full ledgers, mid-level nodes only need to store
state ledgers to participate in consensus, and low-level nodes
only need to store block headers.

We compare the size of the full ledger and state ledger
under diferent block heights, diferent block sizes (that is,
the number of transactions contained in each block), and
diferent numbers of accounts. Figure 7 shows the storage
diference between the full ledger and the state ledger
under diferent block heights. It is clear that the full ledger
increases signifcantly with the increase of the number of
blocks, while the state ledger is less afected by the number
of blocks. Moreover, the state ledger is signifcantly
smaller than the full ledger. Figure 8 shows the storage
diference between the full ledger and the state ledger
under diferent block sizes. It is clear that the impact of the
block size is basically the same as that of the number of
blocks. Figure 9 shows the storage diference between the
full ledger and the state ledger under diferent account

PoW
PoS
PoEWAL

PoCh
Our PoR

Co
ns

en
su

s T
im

e (
s)

0

100

200

300

400

500

600

500 15000 2000 2500 30001000
Number of Transactions

Figure 4: Consensus time under diferent number of transactions.

PoW
PoS
PoEWAL

PoCh
Our PoR

Tr
an

sa
ct

io
n 

Th
ro

ug
hp

ut

0

50

100

150

200

250

1 2 3 4 5 6 70
Block Size (MB)

Figure 5: Transaction throughput under diferent block sizes.

PoW
PoS
PoEWAL

PoCh
Our PoR

Tr
an

sa
ct

io
n 

Co
nfi

rm
at

io
n 

La
te

nc
y 

(s
)

0

2.5

5

7.5

10

12.5

15

17.5

10 20 30 40 500
Number of Nodes

Figure 6: Transaction confrmation latency under diferent
number of nodes.

Security and Communication Networks 11



numbers. In this respect, the growth rate of the full ledger
decreases, while the growth rate of the state ledger in-
creases.Terefore, it can be concluded that the state ledger
is greatly afected by the number of accounts because the

state ledger mainly stores the latest state of all accounts. It
can be observed from the previous three fgures that the
size of the state ledger is signifcantly smaller than the full
ledger, which is friendly for resource-constrained devices.

Full Ledger
State Ledger

St
or

ag
e O

ve
rh

ea
d 

(M
B)

00

0

20

40

60

80

250 500 750 1000 1250 15000

Block Height

0.1
0.08
0.06
0.04
0.02

250 500 750 1250

Figure 7: Ledger storage size under diferent block heights.

St
or

ag
e O

ve
rh

ea
d 

(M
B)

2.96
2.98

3
3.02

1000 3000 5000

0

100

200

300

400

500

600

30002000 4000 5000 60001000
Block Size (transactions/block)

Full Ledger
State Ledger

Figure 8: Ledger storage size under diferent block sizes.

12 Security and Communication Networks



8. Conclusion

In this study, we proposed a hierarchical blockchain
framework with lightweight consensus and optimized
storage for IoT scenarios, which aims to solve the problems
of high resource consumption and low efciency of tradi-
tional blockchain. We fully considered the resource con-
fguration of various types of devices in the IoT and
combined edge computing to build a hierarchical system
model. To enable mid-level nodes with limited resources to
participate in the consensus, we designed a lightweight
consensus protocol which provides lightweight and efcient
mining operations and alleviates the computational power
consumption of nodes. In addition, in order to reduce the
storage pressure of nodes, we designed a storage optimi-
zation strategy, so that resource-constrained nodes just store
a small amount of data to work like the full node. Finally,
security analysis and experiments showed that our HLO-
Chain is safe and feasible.

In the future, we will further study the data sharing
problems under the proposed HLOChain for the IoT.
Considering most IoT clients are resource-constrained and
may not be trusted, realizing secure data sharing in IoT
scenarios is facing the challenges of light weight, efciency,
and privacy preservation. To this end, we will try to utilize
the smart contracts in implementing access control, to
achieve lightweight, efcient, and secure data sharing
for IoT.

Data Availability

All the experimental data used to support the fndings of this
study are included within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China (grant nos. 62002139 and 62272203),
Natural Science Foundation of Jiangsu Province (grant no.
BK20200886), and Project funded by China Postdoctoral
Science Foundation (grant no. 2019M651738).

References

[1] F. Xia, L. T. Yang, L. Wang, and A. Vinel, “Internet of things,”
International Journal of Communication Systems, vol. 25,
no. 9, pp. 1101-1102, 2012.

[2] A. Dorri, S. S. Kanhere, and R. Jurdak, “Blockchain for IoT
security and privacy: the case study of a smart home,” in
Proceedings of the 2017 IEEE Int. Conf. Pervasive Comput.
Commun. Workshops, pp. 618–623, Kona, HI, USA, March,
2017.

[3] M. Salimitari and M. Chatterjee, “A survey on consensus
protocols in blockchain for IoTnetworks,” 2018, https://arxiv.
org/abs/1809.05613.

[4] A. Faturahman, V. Agarwal, and C. Lukita, “Blockchain
technology-the use of cryptocurrencies in digital revolution,”
IAIC Transactions on Sustainable Digital Innovation (ITSDI),
vol. 3, no. 1, pp. 53–59, 2021.

[5] S. Alam, M. Shuaib, W. Z. Khan et al., “Blockchain-based
initiatives: current state and challenges,” Computer Networks,
vol. 198, Article ID 108395, 2021.

[6] A. Alkhateeb, C. Catal, G. Kar, and A. Mishra, “Hybrid
blockchain platforms for the internet of things (IoT): a sys-
tematic literature review,” Sensors, vol. 22, no. 4, p. 1304, 2022.

[7] L. D. Xu, Y. Lu, and L. Li, “Embedding blockchain technology
into IoT for security: a survey,” IEEE Internet of Tings
Journal, vol. 8, no. 13, pp. 10452–10473, 2021.

[8] M. K. Lim, Y. Li, C. Wang, and M. L. Tseng, “A literature
review of blockchain technology applications in supply
chains: a comprehensive analysis of themes, methodologies
and industries,” Computers and Industrial Engineering,
vol. 154, Article ID 107133, 2021.

St
or

ag
e O

ve
rh

ea
d 

(M
B)

4000 6000 80002000 104

Number of Accounts

0

25

50

75

100

125

Full Ledger
State Ledger

Figure 9: Ledger storage size under diferent number of accounts.

Security and Communication Networks 13

https://arxiv.org/abs/1809.05613
https://arxiv.org/abs/1809.05613


[9] I. Yaqoob, K. Salah, R. Jayaraman, and Y. Al-Hammadi,
“Blockchain for healthcare data management: opportunities,
challenges, and future recommendations,” Neural Computing
and Applications, vol. 34, no. 14, pp. 11475–11490, 2022.

[10] A. Awad Abdellatif, L. Samara, A. Mohamed et al., “Medge-
chain: leveraging edge computing and blockchain for efcient
medical data exchange,” IEEE Internet of Tings Journal,
vol. 8, no. 21, pp. 15762–15775, 2021.

[11] R. Yang, F. R. Yu, P. Si, Z. Yang, and Y. Zhang, “Integrated
blockchain and edge computing systems: a survey, some
research issues and challenges,” IEEE Communications Sur-
veys & Tutorials, vol. 21, no. 2, pp. 1508–1532, 2019.

[12] M. Liu, F. R. Yu, Y. Teng, V. C. M. Leung, and M. Song,
“Computation ofoading and content caching in wireless
blockchain networks with mobile edge computing,” IEEE
Transactions on Vehicular Technology, vol. 67, no. 11,
pp. 11008–11021, 2018.

[13] W. Chen, Z. Zhang, Z. Hong et al., “Cooperative and dis-
tributed computation ofoading for blockchain-empowered
industrial internet of things,” IEEE Internet of Tings Journal,
vol. 6, no. 5, pp. 8433–8446, 2019.

[14] K. Lei, M. Du, J. Huang, and T. Jin, “Groupchain: towards
a scalable public blockchain in fog computing of IoT services
computing,” IEEE Transactions on Services Computing,
vol. 13, no. 2, pp. 252–262, 2020.

[15] P. Lang, D. Tian, X. Duan, J. Zhou, Z. Sheng, and
V. C. M. Leung, “Cooperative computation ofoading in
blockchain-based vehicular edge computing networks,” IEEE
Transactions on Intelligent Vehicles, vol. 7, no. 3, pp. 783–798,
2022.

[16] R. Xu, L. Hang, W. Jin, and D. Kim, “Distributed secure edge
computing architecture based on blockchain for real-time
data integrity in IoT environments,” Actuators, vol. 10, no. 8,
p. 197, 2021.

[17] S. Guo, X. Hu, S. Guo, X. Qiu, and F. Qi, “Blockchain meets
edge computing: a distributed and trusted authentication
system,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 3, pp. 1972–1983, 2020.

[18] C. Li, J. Zhang, X. Yang, and L. Youlong, “Lightweight
blockchain consensus mechanism and storage optimization
for resource-constrained IoTdevices,” Information Processing
& Management, vol. 58, no. 4, Article ID 102602, 2021.

[19] D. Puthal, S. P. Mohanty, and P. Nanda, “Proof-of-
Authentication for scalable blockchain in resource-
constrained distributed systems,” in Proceedings of the 2019
IEEE International Conference on Consumer Electronics,
pp. 1–5, Yilan, Taiwan, May, 2019.

[20] N. Raghav, N. Andola, S. Venkatesan, and S. Verma,
“PoEWAL: a lightweight consensus mechanism for block-
chain in IoT,” Pervasive and Mobile Computing, vol. 69,
Article ID 101291, 2020.

[21] J. Huang, L. Kong, G. Chen, M. Y. Wu, X. Liu, and P. Zeng,
“Towards secure industrial IoT: blockchain system with
credit-based consensus mechanism,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3680–3689, 2019.

[22] M. Saad, Z. Qin, K. Ren, D. Nyang, and D. Mohaisen, “e-PoS:
making Proof-of-Stake decentralized and fair,” IEEE Trans-
actions on Parallel and Distributed Systems, vol. 32, no. 8,
pp. 1961–1973, 2021.

[23] S. Khan, W.-K. Lee, and S. O. Hwang, “AEchain: a lightweight
blockchain for IoT applications,” IEEE Consumer Electronics
Magazine, vol. 11, no. 2, pp. 64–76, 2022.

[24] R. Xu, Y. Chen, and E. Blasch, “Microchain: a hybrid con-
sensus mechanism for lightweight distributed ledger for IoT,”
2019, https://arxiv.org/abs/1909.10948.

[25] A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, “LSB:
a lightweight scalable blockchain for IoT security and ano-
nymity,” Journal of Parallel and Distributed Computing,
vol. 134, pp. 180–197, 2019.

[26] M. Kara, A. Laouid, M. Hammoudeh, M. AlShaikh, and
A. Bounceur, “Proof of chance: a lightweight consensus al-
gorithm for the internet of things,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 11, pp. 8336–8345, 2022.

[27] Y. Zhao, B. Niu, and P. Li, “A novel enhanced lightweight
node for blockchain,” in Blockchain and Trustworthy Systems,
pp. 137–149, Springer, Singapore, 2020.

[28] Light client protocol, “Light client protocol,” 2019, https://
github.com/ethereum/wiki/wiki/Light-client-protocol.

[29] Getting synced, “Getting synced,” 2019, https://github.com/
paritytech/parity/wiki/Getting-Synced.

[30] Electrum, “Electrum,” 2019, https://electrum.org/#home.
[31] Y. Liu, K.Wang, Y. Lin, andW. Xu, “A lightweight blockchain

system for industrial internet of things,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 6, pp. 3571–3581, 2019.

[32] X. Wang, C. Wang, K. Zhou, and H. Cheng, “ESS: an efcient
storage scheme for improving the scalability of Bitcoin net-
work,” IEEE Transactions on Network and Service Manage-
ment, vol. 19, no. 2, pp. 1191–1202, 2022.

[33] C. Ehmke, F. Wessling, and C. M. Friedrich, “Proof-of-
Property - a lightweight and scalable blockchain protocol,” in
Proceedings of the 2018 IEEE/ACM 1st International Work-
shop on Emerging Trends in Software Engineering for Block-
chain (WETSEB), pp. 48–51, Gothenburg, Sweden, May, 2018.

[34] T. Kim, J. Noh, and S. Cho, “SCC: storage compression
consensus for blockchain in lightweight IoT network,” in
Proceedings of the 2019 IEEE International Conference on
Consumer Electronics (ICCE), pp. 1–4, Las Vegas, NV, USA,
January, 2019.

[35] S. Biswas, K. Sharif, F. Li, S. Maharjan, S. P. Mohanty, and
Y. Wang, “PoBT: a lightweight consensus algorithm for
scalable IoT business blockchain,” IEEE Internet of Tings
Journal, vol. 7, no. 3, pp. 2343–2355, 2020.

[36] I. Eyal, A. E. Gencer, and E. G. Sirer, “Bitcoin-NG: a scalable
blockchain protocol,” in Proceedings of the 13th Usenix
Conference on Networked Systems Design and Implementation,
pp. 45–59, Santa Clara CA, USA, March, 2016.

[37] M. Zamani, M. Movahedi, and M. Raykova, “RapidChain:
scaling blockchain via full sharding,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Commu-
nications Security, pp. 931–948, Toronto, Canada, October,
2018.

[38] E. Kokoris-Kogias, P. Jovanovic, and L. Gasser, “Omniledger:
a secure, scale-out, decentralized ledger via sharding,” in
Proceedings of the 2018 IEEE Symposium on Security and
Privacy (SP), pp. 583–598, San Francisco, CA, USA, May,
2018.

[39] L. Luu, V. Narayanan, and C. Zheng, “A secure sharding
protocol for open blockchain,” in Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications
Security, pp. 17–30, Vienna, Austria, November, 2016.

[40] J. Nijsse and A. Litchfeld, “A taxonomy of blockchain con-
sensus methods,” Cryptography, vol. 4, no. 4, p. 32, 2020.

14 Security and Communication Networks

https://arxiv.org/abs/1909.10948
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/ethereum/wiki/wiki/Light-client-protocol
https://github.com/paritytech/parity/wiki/Getting-Synced
https://github.com/paritytech/parity/wiki/Getting-Synced
https://electrum.org/#home



