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Deep neural network (DNN) has replaced humans to make decisions in many security-critical senses such as face recognition and
automatic drive. Essentially, researchers try to teach DNN to simulate human behavior. However, many evidences show that there
is a huge gap between humans and DNN, which has raised lots of security concern. Adversarial sample is a common way to show
the gap between DNN and humans in recognizing objects with similar appearance. However, we argue that the diference is not
limited to adversarial samples. Hence, this paper explores such diferences in a new way by generating fooling samples in 3D point
cloud domain. Specifcally, the fooling point cloud is hardly recognized by human vision but is classifed to the target class by the
victim 3D point cloud DNN (3D DNN) with more than 99.99% confdence. Furthermore, to search for the optimal fooling point
cloud, a new evolutionary algorithm named Multielites Harris Hawk Optimization (MEHHO) with enhanced exploitation ability
is designed. On one hand, our experiments demonstrate that: (1) 3D DNN tends to learn high-level features of one object; (2) 3D
DNN that makes decisions relying on more points is more robust; and (3) the gap is hardly learned by 3D DNN. On the other
hand, the comparison experiments show that the designed MEHHO outperforms the SOTA evolutionary algorithms w.r.t.
statistics and convergence results.

1. Introduction

Deep Neural Network (DNN) techniques have achieved
remarkable success on a variety of tasks, particularly in the
felds of 2D image [1–5] and 3D shape [6–11]. In many
security-critical senses, DNN has replaced humans to make
decisions, such as natural language recognition, face rec-
ognition, and pedestrian reidentifcation. In the future,
many complicated scenarios will urge to apply DNN for
development, for example, level-fve automatic driving and
human-like service robot. Essentially, one common char-
acteristic of these tasks is to teach DNN to simulate human
behavior.

Although the prospects look bright, DNN has been
proven to be vulnerable to a carefully crafted adversarial
attack, no matter whether in the feld of 2D images [12–20]
or 3D point clouds [21–25]. Te aim of adversarial attack is
to generate fake samples that will not cause people to be
alarmed but will mislead DNN to make wrong decision, as

shown in Figure 1(b). Such a phenomenon has raised many
security concerns. Szegedy et al. [12] are the pioneers to
point out the vulnerability of DNN in the 2D image domain.
Later, lots of attacking methods are designed [13, 16, 26]. For
the 3D point cloud which is the most simple format to
represent a 3D shape, adversarial samples are generated by
points perturbing, attaching, and detaching [21, 22, 27, 28].

Adversarial attack takes the benign samples as the initial
target and adjusts its feature to cross the decision boundary.
It can be modeled as a roughly min-max problem which
minimizes the probability of the original class and maxi-
mizes the probability of the targeted class. Many recent
adversarial attacks on 3D point cloud are able to achieve
100% success rate [21, 27, 28]. Tese successes exhibit the
huge diference between 3D DNN and human vision. Ex-
ploring such diferences is helpful to accelerate the devel-
opment of 3D DNN robustness. However, most adversarial
defenses [29–36] for 3D DNN are mainly aimed at defense
specifc attack and do not explain this diference clearly.
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Essentially, the adversarial sample itself is one way to
show the gap between 3D DNN and humans in recognizing
objects with similar appearance. But we argue that the gap
will not be limited to adversarial samples since the disparity
between DNN and the human brain. Unfortunately, the
adversarial samples usually stay near the decision boundary
and will not move inside the class space since the attacking
purpose is already achieved. Such a characteristic prevents it
from further exhibiting information about the disparity
between 3D DNN and human vision.

Hence, this paper aims to explore the disparity using the
newly defned fooling samples (illustrated in Figure 1(a)).
Te fooling samples exhibit the gap between appearances
that humans and 3D DNN think category t should look like.
For this purpose, we should have an extremely high level of
the confdence in fooling samples. Terefore, the fooling
sample is searched by an evolutionary algorithm with high
exploitation ability. Te formal generation process is as
follows: given a 3D DNN and a target class, we generate
a fooling point cloud by an evolutionary algorithm. Te 3D
DNN believes it belongs to the target class with more than
99.99% confdence, but human vision can hardly
recognize it.

To efciently generate fooling samples, we model the
generation process as an optimization problem and design
MEHHO with high exploitation ability to solve it. Specif-
cally, Harris Hawk Optimization (HHO) [37] is an evolu-
tionary algorithm which simulates the hunting process of
harris hawk. It has dealt with a wide variety of problems
ranging from operational cost optimization, engineering
design, to copyright protection and data authentication
[38–41]. However, HHO always stuck in the local optimum
due to the nonlinearity of DNN function. Terefore, we
propose the Muti-Elite Harris Hawk Optimization
(MEHHO) based on group besiege and spiral-shaped attack.
Te experiment results show that the classifcation conf-
dence of the fooling point cloud generated by MEHHO is
higher than the compared algorithms.

After obtaining the fooling point cloud by MEHHO, we
explore the gap between 3D DNN and human vision and
further give some advice about the characteristics of 3D
DNN by analyzing the fooling samples. In summary, we
make the following contributions in this paper:

(i) We exhibit the diference between 3D DNN and
human vision in a new way by generating fooling
point cloud.

(ii) A new evolutionary algorithm MEHHO is pro-
posed, which achieves better statistic and conver-
gence results on the generation of fooling
point cloud.

(iii) We explore the characteristics of 3D DNN by an-
alyzing the feature of the fooling point cloud.

2. Related Works

2.1. DNNs for 3D Point Cloud. In order to perform weight
sharing or other kernel optimizations, typical DNNs require
regular data format as input, such as 2D image. However,

a 3D point cloud is unordered and therefore cannot be
directly put into typical DNNs. Most researchers transform
such data to regular format by multiview projection [42–44]
or 3D voxel grids [45–47], but such transformation will
inevitably cause disturbances. To address this issue, Qi et al.
[6] proposes PointNet which directly processes on the point
cloud. It is the benchmark for many efcient 3D DNNs.
Since PointNet cannot capture local structure information,
Qi et al. [7] propose PointNet++, whose key is composed by
the sampling layer and the grouping layer. DGCNN [48] is
a typical work of graph-based methods; it transforms a point
cloud to a graph and learns 3D feature using EdgeConv.
LDGCNN [49] links extracted features between diferent
layers and simplifes the transformation network of DGCNN
to improve its performance. Due to the irregularity of the
point cloud, it is more complicated to design the convolution
kernel for 3D DNN. RS-CNN [50] implements the con-
volution by MLP, which aims to learn the mapping from
low-level relations to high-level relations between points in
the local subset. Point-Bert [10] learns 3D point cloud
transformers by a Bert-style pretraining to. It achieves 93.8%
accuracy on ModelNet40 for classifcation which surpasses
most 3D DNNs.

2.2. Adversarial Attack and Defense on 3DDNN. Xiang et al.
[21] propose the frst work to generate adversarial point
clouds; the author crafts adversarial point clouds against
PointNet by point perturbation and point generation. To
limit the deformation of adversarial point cloud, three
perturbation metrics were introduced as the constraint.
Since critical points have the greatest impact on 3D DNN
whenmaking its decisions, Zheng et al. [22] and Naderi et al.
[51] focus on generating a point cloud saliency map to il-
lustrate which points are important for 3D DNN. Ten the
author drops top n most important points for attack. Zhao
et al. [23] propose a black-box attack and a white-box attack
in 3D adversarial settings, respectively. Te result shows the
vulnerability of the 3D deep learning model under isometric
transformations. Aiming at improving the time efciency of
adversarial attack, Zhou et al. [52] proposed LG-GAN for
real-time fexible targeted point cloud attack. In the feld of
autonomous driving which requires higher robustness,
Wang et al. [27] attack a 3D object detection task, and 3D
adversarial point clouds are generated based on the idea of
point cloud perturbations. To promote the robustness of 3D
DNN directly, Yang et al. [28] proposed an attack and
defense scheme at the same time. Otherwise, the imper-
ceptibility of the adversarial point cloud is important for
bypassing defense. Wen et al. [53] newly design geometry-
aware objectives, whose solutions favor the desired surface
properties of smoothness and fairness. Liu and Hu [54] shift
each point in the direction of its normal vector within
a strictly bounded width so as to keep geometric properties
of the original point clouds. Transferability of attack method
means the scope of application of one attack method; to this
extent, Hamdi et al. [25] develop a point attack method by
exploring the input data distribution and adding an
adversarial loss.
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Compared with adversarial attack, there are only a few
methods proposed for 3D point cloud adversarial defense.
Adversarial training retrains DNN with adversarial samples
which is an efective way to defend against an adversarial
attack. Liu et al. [30] extend this defense method to 3D DNN
and achieve promising results. Restoring the adversarial
point cloud is another way to defend against an adversarial
attack. Zhou et al. [31] design a denoiser network to remove
the outlier points to defend the attacks. Meanwhile, the
smoothness of the point cloud surface is guaranteed. Dong
et al. [32] extracted the global feature to confuse the benign
point cloud and the adversarial point cloud by the designed
vector. Liang et al. [34] propose a novel perturbation ad-
aptation generation network. Tis model can adaptively
generate adversarial point clouds according to the victim
point cloud. Diferent from improving the robustness of the
whole point cloud, Wicker and Kwiatkowska [35] analyzed
the pointwise robustness of 3D DNN in an adversarial
setting.

As we can see, most attack methods achieve a nearly
100% success rate by crafting visually similar adversarial
point cloud. Te gap between 3D DNN and human vision is
obvious. In this paper, we further explore such a gap by
generating the fooling point cloud as the supplement of
adversarial “attack-defense” of 3D DNN.

2.3. Evolutionary Algorithm. Te evolutionary algorithm
simulates the behavior of animals in nature and is a kind of
typical global optimization technique which has dealt with
lots of engineering problems [55, 56]. Te initial evolu-
tionary algorithm is inspired by the biology and the natural
selection principle to optimize the problems. After that,
many efcient evolutionary algorithms are designed, and
they can be grouped in the three main categories which
include swarm-based, evolution-based, and physics-based
methods. In detail, swarm-basedmethods [38, 57–59] mimic
the cooperative mechanism of group animals. Evolution-

based methods [60–66] are inspired by Darwinian evolution
law, which follows the saying: survival of the fttest and
elimination of the unft. Physics-based methods [56, 67–69]
simulate the physical laws of how things work in the uni-
verse. Although the thriving of the evolutionary algorithm, it
is impossible that one evolutionary algorithm is able to adapt
to all optimization problems due to the unique character-
istics of each problem. For the above point cloud generation
problem, we design a new evolutionary algorithm named
MEHHO based on group besiege and spiral-shaped attack to
enhance the exploitation ability.

3. Method to Generate a Fooling Point Cloud

3.1. Problem Defnition. A 3D point cloud X ∈ RN∗3 is de-
fned as a set of N 3D points, where each point xi ∈ R3 is
represented by its 3D coordinates (xi, yi, and zi). Mean-
while, the 3D DNN is defned as F: X⟶ y, which maps an
input point cloud X to its corresponding class label y ∈ Y.
Te probability thatX is classifed as target class t is indicated
by P(t | X, θ) with the well trained parameters θ.

For the ease of understanding, we frst illustrate the
process of an adversarial attack. It aims to mislead a 3D
DNN F to classify an adversarial example X′ as the target
class t, by adding perturbations that are imperceptible to
humans. Adversarial example shows the disparity of human
andDNNwhen recognizing objects with similar appearance.
Te formal description is

minD X, X
adv

  s.t.F X
adv

  � t, (1)

where D(X, Xadv) means the distance between adversarial
point cloud Xadv and benign point cloud X. Te common
metrics include Lp normal, chamfer distance, and hausdorf
distance.

Diferent from adversarial attack, we mainly explore the
gap between appearance that human and 3D DNN think
category t should look like. We frst randomly generate
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Figure 1: Illustration of the proposed fooling sample (a) and adversarial sample. (b) Adversarial sample has a slight diference from the
benign sample but is able to mislead DNN to make a wrong decision. By contrast, the fooling sample is very diferent from the benign, but
DNN believes it belongs to the target class with more than 99.99% confdence.
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a point cloud as the initial, and then maximize its probability
w.r.t. category t to generate fooling sample Xfool:

maxP t | θ, X
fool

  s.t.F X
fool

  � t. (2)

Here, we utilize exp(Ft(Xfool))/|X|
i�1expFi(Xfool)) to

quantify probability of category t, where X is the inference
set. It is obvious that higher probability will better refect the
inside of 3D DNN when it recognizes category t. In the next
section, we design a new evolutionary algorithm to solve
equation (2). Te generation process is as shown in Figure 2.

3.2. Harris Hawks Optimization (HHO). Given the number
of points and target class, there are massive permutations to
compose into a point cloud. We urge to fnd the optimal one
with the highest confdence efciently. Evolutionary

algorithm (EA) [70] is a good kind of global optimization
technique and has dealt with a wide variety of problems.

HHO is one of the most efcient EAs which mimic the
hunting mechanism of harris hawks. It is simple and
straightforward and can be divided into exploration phase
and exploitation phase. HHO has the advantages of well the
convergence rate, competitive exploration ability, and good
time efciency. Meanwhile, it has shown to be good at
handling high-dimensional data despite its weak exploita-
tion ability. In lots of practical engineering applications,
HHO has been proven to be very efective and stable.

3.2.1. Exploration Phase. Since the rabbit (global optimum)
is not easy to be found, the hawks wait, observe, and monitor
the desert site by two ways, which as shown in the following
equation:

X(t + 1) �
Xrand(t) − r1 Xrand(t) − 2r2X(t)


, q≥ 0.5,

Xrabbit(t) − Xm(t)(  − r3 LB + r4(UB − LB)( , q< 0.5,

⎧⎨

⎩ (3)

where X(t) is the position of hawk in t iteration, Xrand is the
position of a random hawk in population,
Xm � (1/N)

N
i�1(Xi) is the average position of the pop-

ulation, Xrabbit means the current optimal hawk, UB and LB
means the upper bound and lower bound of variables, and
r1, r2, r3, r4 and q are random numbers inside (0, 1).

3.2.2. Exploitation Phase. Tere are abundant search
strategies in the exploitation phase. Te hawks exchange
search strategy according to the random number q and
search energy E � 2E0(1 − t/T) with E0 decreases from
0 to 1, t the current iteration and T the total
iteration times.

(1) Soft Besiege. When r≥ 0.5 and |E|≥ 0.5, the rabbit is
energetic and tries to escape by misleading jumps. To make
the rabbit exhausted, the hawks encircle it softly by

X(t + 1) � ∆X(t) − E JXrabbit(t) − X(t)


,

∆X(t) � Xrabbit(t) − X(t),
(4)

where J � 2(1 − r5) means the random jump strength of the
rabbit throughout the escaping procedure and r5 is a random
number inside (0, 1).

(2) Hard Besiege. When r≥ 0.5 and |E|< 0.5 the rabbit is
tired and the hawks attack it by hardly encircle:

X(t + 1) � Xrabbit(t) − E|∆X(t)|. (5)

(3) Soft Besiege with Progressive Rapid Dives. When r< 0.5
and |E|≥ 0.5, the hawks progressively select the best possible
dive to attack the rabbit. Te new site of hawks is calculated
by

X(t + 1) �
Y, ifF(Y)<F(X(t)),

Z, ifF(Z)<F(X(t)),
 (6)

where

Y � Xrabbit(t) − E JXrabbit(t) − X(t)


,

Z � Y + S · LF(D).
(7)

here S is a random vector and LF(·) means levy fight
function which can be computed as follows:

LF(x) � 0.01 · α · β/|v|
1/c

, (8)

where α, v are two random number, and β is obtained by

β �
Γ(1 + c) · sin(πc/2)

Γ(1 + c/2) · c · 2(c−1/2)
 

1/c

. (9)

where c is a constant number which equal to 1.5.

(4) Hard Besiege with Progressive Rapid Dives. When r< 0.5
and |E|< 0.5, the rabbit is exhausted and be trapped. Te
hawks dive and kill the rabbit:

X(t + 1) �
Y, ifF(Y)<F(X(t)),

Z, ifF(Z)<F(X(t)),
 (10)

where Y and Z are obtained by

Y � Xrabbit(t) − E JXrabbit(t) − Xm(t)


,

Z � Y + S · LF(D).
(11)

3.3. Multielites HHO. Our purpose is to excavate the inside
of 3D DNN by generating a fooling point cloud which 3D
DNN sincerely believes belongs to the target class.Terefore,
we push the initial point cloud away from the decision
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boundary as far as possible. Tat is, we search for fooling
point cloud X′ whose probability P(t′ | θ, X′)⟶ 100%.
Tus, it requires an evolutionary algorithm with excellent
exploitation ability.

Tough HHO boosts the exploitation behavior through
abundant searching strategies and diferent Levy fight-based
patterns, it is hard to impend over 100% due to several local
optimum of 3D DNN. Tus, we propose the multielites
HHO (MEHHO) with better exploitation ability by the
designed group besiege and spiral-shaped attack. Its pseudo-
code is shown as Algorithm 1.

3.3.1. Group Besiege. In HHO, the rabbit in each iteration is
decided by one elite hawk who has the best position as most
evolutionary algorithms do. Although this mechanism ac-
celerates the convergence around the current optimum, it
will move along zigzag when close to the optimum position
and will increase time cost. Terefore, we propose the group
besiege stage which utilizes the top k best individual to
represent Xrabbit. By this way, the hawks will search for the
rabbit based on abundant information from multielites:

Xrabbit(t) �
X
∗
1 + X

∗
2 + · · · + X

∗
k

k
, (12)

where X∗1 , X∗2 , · · ·, X∗k are the hawks with the top k best
positions.

3.3.2. Spiral-Shaped Attack. Logarithmic spiral is a well-
known attack stage in nature, and thus many mathematical
optimization techniques based on logarithmic spirals are
designed, such as WOA and MFO. Here, we design a prey
factor m to leverage the movement toward the rabbit and the
jump combined of HHO with logarithmic spiral. Terefore,
the hawk position Y in stage soft besiege with progressive
rapid dives and stage hard besiege with progressive rapid
dives is reformulated by equation (13), as shown in Figure 3.

Y � (1 − m) · Xrabbit − m E Xrabbit − X(t)


  · e
bl

· cos(2πl),

(13)

where m is the prey factor which randomly selected in
[0.3, 0.9], l is a random number in [−1, 1], b is a constant
number which is set to 1.

3.4. Generate a Fooling Point Cloud by MEHHO. Te gen-
eration process for fooling point cloud is modeled as
a maximization problem. Ten, we solve the maximi-
zation problem by MEHHO. In detail, each hawk of one
population is represented by one point cloud. Te ftness
of one hawk is calculated by equation (2). During evo-
lution, to limit the search space, we constrain the points
of the point cloud in a bounding box. Besides, the initial
population is composed by the point clouds with random
points in the bounding box.

4. Results and Analysis

We conduct experiments to answer the following three
questions: (1) whether fooling samples can be found?
(Subsection 4.2) (2) what characteristic of 3D DNN does
a fooling sample reveals? (Subsection 4.3) (3) does the
improvement of MEHHO work in generating fooling
samples? (Subsection 4.4).

4.1. 3D DNNs and Datasets

4.1.1. 3D DNNs. Te results are mainly obtained on
PointNet [6]. Besides, PointNet++ [7], DGCNN [48], and
RS-CNN [50] are also selected to prove the transferability.
Tey are typical works of pointwise MLP methods,
convolution-based methods, and graph-based methods,
respectively [11]. In the experiments, we follow their default
setting for fairness.

Which is more like airplane?

airplane 98.79% airplane 99.99%

airplane 0.02%

Exploration phase

target

output

Soft besiege

Hard besiege

Soft besiege with 
progressive rapid 

dives

input

The 3D DNN believes the generated fooling point cloud is airplane with 
more than 99.99% confidence, despite it is unrecognizable for human. 

Inputting a random point cloud and specifying a target class,
MEHHO aims to search the fooling point cloud.

MEHHO

Hard besiege with 
progressive rapid 

dives

Fooling sampleBenign sample

Initial sample

Figure 2: Te framework to generate a fooling point cloud. Inputting a random point cloud to MEHHO and specifying a target class,
MEHHOwill generate a point cloud that can hardly be recognized by human vision. But the victim 3DDNNwill classify it to the target class
with more than 99.99% confdence which is higher than the benign point cloud.
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4.1.2. Datasets. Te experiments are conducted on 3D
Minist and ModelNet40, respectively [46], which are widely
used in adversarial attack experiments
[21–23, 25, 27, 28, 52, 53]. In detail, there are 12,311 objects
from 40 categories in ModleNet40, where 9,843 are used for

training and the other 2,468 for testing. 3D Mnist includes
6000 3D handwritten digits from 10 categories, of which
5,000 are used for training and 1,000 for testing. For con-
venience of comparison, we uniformly sample 1,024 points
from each object and rescale them into a unit cube.

Y Y

Z Z

S.LF (D) S.LF (D)

XXm

Xm

X
X*

Δ
Δ X

X

X*
2 X*

3

X*
1

Xrabbit

Xrabbit

HHO MEHHO

Xrabbit-E|JXrabbit-Xm|

Figure 3: Te stage of soft besiege with progressive rapid dives and stage of hard besiege with progressive rapid dives in MEHHO.

Initialize the population;
Calculate the ftness of each hawk in X;
Find top k best hawks X∗1 , X∗2 , · · ·, X∗k ;
while t<T do
Obtain Xrabbit(t) � X∗1 + X∗2 + · · · + X∗k /k.
for i � 1 to |X| do
for j � 1 to Ns do
Update E � 2E0(1 − t/T)

if |E|≥ 1 then
update X (t+ 1) by equation (3)

else if |E|< 1 then
if r≥ 0.5 and |E|≥ 0.5 then

X(t + 1) � ∆X(t) − E|JXrabbit(t) − X(t)|

else if r≥ 0.5 and |E|< 0.5 then
X(t + 1) � Xrabbit(t) − E|∆X(t)|

else if r< 0.5 and |E|≥ 0.5 then
if F(Y)<F(X(t)) then
update X (t+ 1) by equation (13)

else if F(Y)<F(X(t)) then
X(t + 1) � Y + S · LF(D)

else if r< 0.5 and |E|< 0.5 then
if F(Y)<F(X(t)) then
update X (t+ 1) by equation (13)

else if F(Y)<F(X(t)) then
X(t + 1) � Y + S · LF(D)

end
Update X∗1 , X∗2 , X∗3
t+� 1

end
end

ALGORITHM 1: Pseudo-code of MEHHO.
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4.2. Generate a Fooling Point Cloud

4.2.1. Fooling Point Clouds on 3D Minist. To evaluate
whether the fooling point clouds able to fool 3D DNN, we
frst generate fooling point clouds on 3DMnist by PointNet,
as shown in Figure 4. Te results show that the proposed
MEHHO can fnd a fooling point cloud for all classes of 3D
Mnist. At the same time, all fooling point clouds are hardly
recognized by human vision, but PointNet labels them as the
target class with more than 99.99% confdence which are
higher than the benign point cloud.

Although the fooling point cloud is unrecognizable by
human vision, the fooling point clouds do contain a similar
outline to the victim class. For example, the fooling point
clouds w.r.t. class 0 tend to appear an oval outline. Fooling
point clouds classifed to 3, 5, 6, and 9 all tend to exhibit
outline like the benign digit class. Such a result suggests that
MEHHO explores the global feature that PointNet used to
recognize a point cloud and utilizes the explored feature to
generate fooling point clouds.

4.2.2. Fooling Point Clouds on ModelNet40. Furthermore, to
verify whether PointNet is overftting on 3D Mnist, we
generate fooling point clouds on ModelNet40, which has
bigger training data and more categories. Te generated
fooling point clouds are shown in Figure 5. Te result
suggests that it is feasible to generate fooling point clouds on
all 40 classes. In detail, 32 classes of them only need 100
iterations, and the rest 8 classes need more than 1000 it-
erations and a larger population. Te hypothesis is that
MEHHO stuck in the local optimum. In sum, Figures 4 and
5 illustrate thatMEHHOhas the ability to fool PointNet with
100% success rate on both 3D Mnist and ModelNet40.

4.2.3. Generate Fooling Samples by Other 3D DNNs. In this
section, we further generate fooling samples on other 3D
DNNs.Te chosen 3DDNNs are PointNet++, DGCNN, and
RS-CNN. Te result illustrates that MEHHO can generate
point clouds that fool PointNet++, DGCNN, and RS-CNN
on all 40 classes of ModelNet40. Portion results are shown in
Figure 6.

4.3. Further Analysis of Fooling Samples. For each fooling
sample, the confdence of the victim 3D DNN on it is 100%.
In this section, we explore characteristics of 3D DNN by
analyzing the feature of fooling point clouds.

4.3.1. Infuence of Iteration Times. We frst visualize the
process to generate fooling point clouds in Figure 7. Te
result suggests that the confdence of the fooling point cloud
goes up obviously, and the outline gradually approaches to
the benign point cloud at the same time, according to the
increase in iterations t. Meanwhile, we fnd that the points of
fooling point cloud tend to gather to the center of the
bounding box. But the benign point cloud whose points are
evenly distributed in the bounding box will slow the gath-
ering tendency. Te phenomenon suggests that the global

structure mainly guides the generation of the fooling
point cloud.

To further explore the infuence of iterations times T, we
compare fooling point clouds from diferent T as shown in
Figure 8. Te result indicates that the points in the point
cloud are more concentrated toward the center, and their
outline change slightly with the increase of T which further
exhibits the importance of the global feature.

4.3.2. Which Points Are Matter in the Fooling Point Cloud?
We fnd that lots of points in the fooling point cloud tend to
gather toward the center rather than the surface. However,
psychophysical evidence shows that humans perceive 3D
object shapes from combined sources of boundary contour,
motion, texture, and shading [71]. For human vision, the
gathered points are redundant to represent object shape.
When PointNet makes decisions, it does not regard each
point equally. To evaluate whether the gathered points are
crucial for PointNet, we visualize point cloud by the saliency
map technology which aims to evaluate point-wise impor-
tance [22]. Te saliency map of fooling point clouds and the
corresponding benign point cloud are shown in Figure 9.
Te results show that the gathered points contain pro-
portional high score points which exhibit their importance
for PointNet.

At the same time, Zheng et al. [22] reduce the accuracy of
PointNet from 89.20% to 44.30% by dropping 200 high score
points. For comparison, we drop the same number of high-
score points of the fooling point cloud, causing the accuracy
to reduce to 21.05%. Te phenomenon illustrates that the
fooling point cloud is more fragile in spite of its high
confdence. Te possible reason is that PointNet makes
decisions based on fewer points of fooling point cloud than
the benign. In sum, the result suggests that more points a 3D
DNN relies on whenmaking decisions, the harder it is for 3D
DNN to be fooled.

4.3.3. What Type of Feature PointNet Learns? To explore
what feature the PointNet learns, we generate several fooling
point clouds from independent runs which are shown as
Figure 10. Te basis is that the generated fooling point cloud
is what PointNet thinks one class should be. In Figure 10, we
observe that the fooling point clouds belonging to the same
class are similar to the benign. Specifcally, for class “vase,”
the fve fooling point clouds all exhibit narrow bottleneck,
base, and a wide body. For class “tent,” the fve fooling point
clouds all exhibit the shape of a triangle like the victim point
cloud. Te result exhibits the similarity between human
vision and PointNet. It is infeasible to generate objects
recognizable by the human vision only through the evolu-
tionary algorithm in the 2D image domain unless adding
specifc constraints [72].

Tese results suggest that PointNet tends to learn
high-level features rather than low- or middle-level
feature. If PointNet properly learns low- or middle-
level features, the generated fooling point cloud
should contain repetitions of object subcomponents [72]
such as bottleneck.
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Figure 4:Te generated fooling point clouds on 3DMnist. Each column denotes the same digit class.Te frst row is the benign point clouds
and the rest rows are fooling point clouds generated by independent runs. MEHHO explores the main feature that PointNet uses to
recognize a point cloud. Terefore, most fooling point clouds exhibit a similar outline to the corresponding benign point cloud.

bed bowl car chair curtain guitar glass_box laptop

keyboard monitor person sofa stairs table bathtub plant

tent toilet tv_stand bench bottle desk mantel piano

dresser lamp airplane bookshelf night_stand cone vase range_hood

xbox wardrobe radio flower_pot door sink cup stool

Figure 5: Te generated fooling point clouds on ModelNet40. PointNet believes that they should be classifed as the target class with more
than 99.99% confdence.
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4.3.4. Features Extracted by Diferent 3D DNN.
Discussing the similarity of features extracted from diferent
3D DNNs is helpful to understand the disparity between
diferent 3D DNNs. In this section, we feed the fooling point
clouds generated by one DNN to other DNNs and evaluate
the inference accuracy. Te chosen 3D DNNs are PointNet,
PointNet++, and DGCNN.

In Table 1, we fnd that PointNet and PointNet++ both
able to recognize the fooling point clouds generated by each

other more efciently than DGCNN. Te possible reason is
that the two 3D DNNs tend to extract similar high-level
features due to their similar structures.

Comparing each column of Table 1, we fnd that
PointNet and PointNet++ both achieve higher test accuracy
than DGCNN, which means that DGCNN is harder to be
fooled than PointNet and PointNet++. Furthermore, it is
reasonable to say that the features extracted from one class
by one 3D DNN are not unique, since one 3D DNN is

airplane bookshelf bed chair night_stand vase toilet range_hood table
Po

in
tN

et
++

D
G

CN
N

RS
-C

N
N

Figure 6: Te generated fooling point clouds by PointNet++, DGCNN, and RS-CNN. Each fooling point cloud achieves more than 99.99%
confdence on corresponding 3D DNN.

t 0 10 20 30 40 50 60 70 80 90 100 benign

C 8.42% 13.54% 56.34% 68.17% 78.17% 79.90% 88.71% 99.79% 99.93% >99.99% >99.99% 99.18%

C 0.01% 0.06% 0.04% 0.28% 28.12% 69.81% 69.47% 60.06% 92.63% 93.19% >99.99% 97.59%

Figure 7: Te process to generate the fooling point clouds, t means iteration steps and C means confdence of generated point cloud. Result
suggests that the global structure mainly guides the generation of fooling point cloud.

T 100 200 500 800 1000 benign

PC

C >99.99% >99.99% >99.99% >99.99% >99.99% 99.18%

Figure 8: Fooling point clouds from fve independent runs with diferent iterations times T. Teir outlines are similar to the benign, and
more points gather to the center as iteration number increases.
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vulnerable to fooling samples generated by another 3D
DNN. Tus, we can draw the conclusion that 3D DNN can
be fooled in diferent ways.

To verify whether the same 3D DNN from independent
training learns discriminative features, we separately train
two PointNets named PointNet_1 and PointNet_2. Te two
PointNets have the same network structure and are trained
on the same dataset, but the initialization parameters are
diferent. We then test the accuracy of each PointNet on the
fooling point clouds generated by another PointNet. Te
results are shown in Table 2 which illustrates that the

features extracted by the same 3D DNN are similar to a large
extent. Te diference may come from the randomness of
independent training.

4.3.5. Try to Eliminate Fooling Sample. To explore the defense
against fooling samples, we regard the fooling point clouds as
a new class and add them to the training dataset as an “n+1”
class. After that, we retrain PointNet using the created dataset
to fnd whether PointNet is able to recognize the fooling
samples. Te result shows that the retrained 3D DNN can
recognize the fooling point clouds with accuracy of 96.88%.

airplane chair bench vase

Figure 9: Saliency map of point cloud. Te more important the point is, the more big and green the point will be. Te result shows that the
gathered points are useful for PointNet, while they are redundant for human vision.

ai
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>99.99% >99.99% >99.99% >99.99% >99.99% 96.89%

va
se

>99.99% >99.99% >99.99% >99.99% >99.99% 99.18%

be
nc

h

>99.99% >99.99% >99.99% >99.99% >99.99% 94.86%

te
nt

>99.99% >99.99% >99.99% >99.99% >99.99% 97.59%

Figure 10: Te generated fooling point clouds and their confdence from fve independent runs of MEHHO. 3D DNN tends to learn high-
level feature rather than low- or middle-level feature.

Table 1:Te accuracy of the 3D DNN tested on fooling point clouds generated by another 3D DNN. For example, 30.56% is the accuracy of
PointNet++ tested on fooling point clouds generated by PointNet. We fnd that DGCNN is harder to fool than PointNet and PointNet++.
Otherwise, PointNet and PointNet++ tend to extract similar high-level feature due to similar network structures, which illustrates that 3D
DNN can be fooled in diferent ways.

Pointnet Pointnet++ DGCNN
Pointnet 100% 30.56% 5.56%
Pointnet++ 37.93% 100% 3.45%
DGCNN 10.71% 17.86% 100%
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However, we fnd that MEHHO can explore new fooling
point clouds to fool the retrained PointNet even after ten
retrainings. Tis phenomenon indicates that the diference
between PointNet and human vision is hardly learned.

4.4. Evaluation of MEHHO

4.4.1. Comparison Evolutionary Algorithms. To evaluate the
advantages of MEHHO w.r.t. searching for fooling point
cloud, we compare the statistical results and the con-
vergence results with WOA [73], BWO [74], SSA [75],
SO [76], I-GWO [77], and HHO [37]. Te victim 3D
DNN and dataset is PointNet and ModelNet40,
respectively.

4.4.2. Parameters Setting. We set the iteration times T � 50
and the population size to 100.Te hyper-parameters of each
evolutionary algorithm are shown in Table 3.

Since the softmax layer always assigns probability to all
classes, the probability of the target class will not achieve to
100%, but will close to 100% as possible. Te results in Table 4
suggest that the generated fooling point cloud of MEHHO is
closer to 100% than other evolutionary algorithms. In detail,
WOA always fails to generate fooling point cloud since it falls
into the local optimum, when attacking ‘bathtub’. For model
bed, bench, bookshelf, MEHHO is able to generate fooling point
cloud withmore than 99.99% confdence. Formodel bottle and
bowl, I-GWO is the better one to generate fooling samples, but
it is inferior to MEHHO on other models.

Table 2: Te accuracy of 3D DNN tested on fooling point clouds generated by the same 3D DNN that from independent training. Features
learned by the same 3D DNN are similar to a large extent.

Pointnet 1 Pointnet 2
Pointnet 1 100% 89.86%
Pointnet 2 88.75% 100%

Table 3: Parameter settings for evolutionary algorithms.

Algorithms Parameters Values
MEHHO r1, r2, r3, r4, r5, q; c, k, m Random in (0, 1); 1.5; 3; random in [0.3, 0.9]
WOA a; r; l Liner reduction from 2 to 0; random in [0, 1]; random in [−1, 1]
BWO m; p Random in [0.4, 0.9]; 0.3
SSA a; ST Random in (0, 1]; random in [0.5, 1]
SO c1; c2; c3 0.5; 0.05; 2
I-GWO a; r1, r2 Liner reduction from 2 to 0, random in [0, 1]
HHO r1, r2, r3, r4, r5, q; c Random in (0, 1); 1.5

Table 4: Te probability of fooling point cloud generated by seven evolutionary algorithms, bigger is better. Max, avg, and min means
maximum value, average value, and minimum value obtained by running the algorithm fve times, respectively.

Model Value WOA BWO SSA SO I-GWO HHO MEHHO

Bathtub
Max 3.38E− 05 0.9998 0.0092 0.9956 0.9923 0.0003 0.9999
Avg 3.31E− 05 0.9579 0.0030 0.9937 0.0001 0.0003 0.9999
min 2.84E− 05 0.9999 1.63E− 08 0.9868 0.2093 0.0003 0.9992

Bed
Max 0.9998 0.9997 0.9772 0.9689 0.9499 0.9991 0.9999
Avg 0.6915 0.9779 0.9625 0.9996 0.9987 0.9985 0.9999
min 0.4911 0.9849 0.5453 0.9995 0.9889 0.9976 0.9999

Bench
Max 0.20 0.9949 0.9922 0.9984 0.9994 0.9989 0.9999
Avg 0.1554 0.9991 0.3178 0.9942 0.9984 0.8868 0.9999
min 0.1200 0.9998 0.0508 0.9933 0.9949 0.8293 0.9999

Bookshelf
Max 0.7559 0.9932 0.9888 0.9980 0.9886 0.9621 0.9999
Avg 0.6654 0.9981 0.4457 0.9968 0.969170 0.8501 0.9999
min 0.6069 0.9886 0.2135 0.9958 0.8389 0.7031 0.9999

Bottle
Max 0.2946 0.9978 0.9959 0.9649 0.9999 0.9999 0.9968
Avg 0.2295 0.9976 0.8927 0.9986 0.99 9 0.9910 0.9942
min 0.0280 0.99 7 0.5923 0.9901 0.9978 0.9891 0.9935

Bowl
Max 0.5162 0.9779 0.2730 0.9834 0.9989 0.9999 0.9999
Avg 0.0129 0.9699 0.2684 0.9041 0.9709 0.9549 0.9999
min 0.0075 0.9989 0.0002 0.8415 0.9999 0.9136 0.9990

Te bold number means the best result. Besides, the number with bold and italics and italics represent the second and third best value, respectively.
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Figure 11 shows the convergence curves on classes bed,
bottle, airplane, bench, bookshelf, and bowl. Te closer the
curve is to the upper left, the better. For the model bench,
the probability of MEHHO increases rapidly when t< 8
and converges when t> 18. Meanwhile, we argue that the
model bed is easily fooled since the probability of all
evolutionary algorithms increases at the early stage of
iteration and all achieve probabilities greater than 90%.
Furthermore, for model Bookshelf and Bottle, MEHHO is
able to generate fooling point cloud using the minimum
iteration times. Terefore, the results suggest that
MEHHO outperforms other algorithms w.r.t. conver-
gence performance.

5. Conclusions and Future Works

To research the diference between 3D DNN and human
vision, we generate a fooling point cloud using MEHHO.
Te fooling point cloud is unrecognizable to humans but is
classifed as target class by 3D DNN frmly. We analyze the

characteristic of 3D DNN by analyzing features of the
fooling point cloud and give the following main conclusions:
(1) 3D DNN tends to learn high-level feature of one object;
(2) 3D DNN that makes decision relying on more points is
more robust; (3) Te gap is hardly learned by 3D DNN. In
the end, we evaluated the proposed MEHHO on several
models, and the results suggest that MEHHO achieves better
statistics and convergence results.

In the future, we will extend the research from the
following two aspects: First, explore the feature extracted by
each layer of 3D DNN to learn more about it. Second, some
generated fooling point clouds exhibit similar shapes as the
victims in our experiments. Tus, it is meaningful to study
whether such a method can generate a point cloud that
conforms to human vision.

Data Availability

TeModelNet40 is a public dataset widely used for academic
research.
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Figure 11: Convergence results of the comparison algorithms.Te closer the curve is to the upper left, the better. MEHHO achieves the best
convergence performance.
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