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Existing malicious encrypted trafc detection approaches need to be trained with many samples to achieve efective detection of a
specifed class of encrypted trafc data. With the rapid development of encryption technology, various new types of encrypted
trafc are emerging and difcult to label. Terefore, it is an urgent problem to train a deep learning model using only a small
number of samples to detect new classes of malicious encrypted trafc. Tis paper proposes a few-shot malicious encrypted trafc
detection (FMETD) approach based on model-agnostic meta-learning (MAML), integrating feature selection and classifcation
into an end-to-end framework. Te FMETD approach frst converts the raw trafc data into two-dimensional grayscale images.
Ten, FMETD trains a deep learning model (2D-CNN) using the MAML, which is to learn an optimal set of model initialization
parameters for the model from a set of classifcation tasks consisting of grayscale images.Temodel with this set of parameters can
detect new classes of maliciously encrypted trafc data efciently with a few samples by a few iterations steps. Te experimental
results show that the FMETD approach has 99.8% accuracy for two-class classifcation encrypted trafc and 98.5% average
accuracy for multi-classifcation. When the number of grayscale images of each class in the support set and validation set is
reduced to 20, the accuracy of our approach to multi-class classifcation is 97.9% for new classes of trafc.

1. Introduction

Te Internet is fooded with massive amounts of encrypted
trafc. As of November 2021, the proportion of encrypted
trafc in all Google products and services has exceeded 95% [1].
While encryption technology protects communication security
and user privacy, it also brings many security risks. More and
more criminals use encryption technology to bypass frewalls
and hide their true intentions to conduct malicious attacks on
the network, which seriously threatens users’ privacy and the
security of cyberspace. Te most efective defense against
cyberattacks is detecting and intercepting malicious encrypted
trafc before it intrudes the secure network environment.
Studying efcient and accurate anomaly detection approaches
for encrypted trafc is imperative.Malicious cyberattacks based
on encrypted trafc are challenging to defend accurately and
efectively without corresponding decryption algorithms. Te

detection approaches based on decryption techniques are time-
consuming, and the decryption of encrypted trafcmay violate
the user’s private information. Terefore, a maliciously
encrypted trafc detection method that can quickly detect
malicious encrypted trafcwithout decrypting encrypted trafc
is crucial for maintaining cyberspace security and user privacy
security.

Existing approaches for detecting malicious encrypted
trafc are divided into four categories mainly. Te tradi-
tional port-based approaches are no longer reliable in in-
creasingly complex network environments. Te approaches
based on deep packet inspection technology [2, 3] are not
suitable for encrypted trafc. Te approaches based on
traditional machine learning learn specifed features from a
large amount of training data, which can achieve high-
precision classifcation. Still, traditional machine learning
approaches require determining statistical features manually
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which would be selected, and the classifcation accuracy
depends heavily on expert experience and dataset distri-
bution. Also, deep learning-based approaches [4] train
neural networks to extract features of encrypted trafc
automatically and classify them, which has good detection
performance while overcomes the shortcomings of tradi-
tional approaches and is a research hotspot in the direction
of malicious encrypted trafc detection in recent years.

However, deep learning models with good performance
need to be trained on a large number of accurately labeled
datasets to detect malicious encrypted trafc efectively. In
the context of the explosive growth of encrypted trafc, new
classes of trafc are constantly emerging. Te performance
of deep learning-based approaches in detecting this newly
emerging encrypted trafc, which is few and hard to label,
will decrease dramatically. Improving the generalization
ability of classifcation models and making them perform
efciently in the new classes of trafc with only a few samples
has become an urgent problem to be solved in malicious
encrypted trafc detection.

We propose a meta-learning-based encryption trafc
detection approach in response to the above problems. Our
approach can efectively make up for the defect that the
performance of existing methods deteriorates when there are
few labeled samples, and at the same time, this method can
efectively identify new classes of malicious encrypted trafc.
We aim to achieve few-shot malicious encrypted trafc
detection, so we choose the model-agnostic meta-learning
algorithm to train the deep learning model. Te model-
agnostic meta-learning (MAML) algorithm is an optimi-
zation-based meta-learning algorithm, and it can be directly
applied to any learning problem and model that is trained
with a gradient descent procedure. MAML is a method that
can quickly adapt to new tasks when only a small number of
labeled samples are available, so we combine MAML with
convolutional neural network to achieve fast detection of
emerging encrypted malicious trafc.

Representation learning is a method of trying to im-
prove the defects of traditional machine learning, which
automatically learns features from raw data. CNN was used
as a representation learning technique in our experiments.
CNN is mainly used to identify two-dimensional graphics
with displacement, scaling, and other forms of distortion
invariance. So, we train the 2D-CNN using MAML on a set
of classifcation tasks consisting of grayscale images. We
convert raw trafc to grayscale images and use 2D-CNN to
learn trafc features for classifcation. It can fully extract
the spatial features of the raw trafc and directly learn the
deep abstract features of the trafc data. Visual processing
solves the difculty of extracting original trafc features
and transforms the difculty of extracting original trafc
features into image feature extraction, making the training
results more accurate. Our approach splits the raw trafc
data into sessions with a uniform length of 784 bytes in the
data preprocessing phase and converts each session into a

grayscale image of 28 bytes∗28 bytes. A session is defned as
bidirectional fows, in which all packets have the same 5-
tuple. Te 5-tuple is source IP, source port, destination IP,
destination port, and transport-level protocol. Te few-
shot malicious encrypted trafc detection (FMETD) ap-
proach uses the model-agnostic meta-learning (MAML)
algorithm to train a deep learning model on various
classifcation tasks so that this model can learn a good
initialization parameter for the deep learning model. Tis
model consists of a meta-training phase and a meta-testing
phase. In the meta-training phase, our approach will learn
to adapt to the new class by training in few-shot class-
adaptive malicious trafc detection tasks. Te meta-testing
phase will use the pretrained model to adapt the new class
through a few iterative steps. Te model needs only a small
amount of labeled data to quickly adapt to new classes of
malicious encrypted trafc after a few gradient descent
steps. Finally, comparative experiments on public datasets
demonstrate the superiority of this approach.

Te main contributions of this paper are as follows:

(1) A maliciously encrypted trafc detection approach
based on model-agnostic meta-learning (MAML),
termed FMETD, is proposed, which provides a new
idea for solving the encrypted trafc classifcation
problem.

(2) We apply the end-to-end approach to few-shot
malicious encrypted trafc detection for the frst
time. In the FMETD approach, we converted the
trafc data to grayscale images in the data pre-
processing process as the input of a two-dimensional
convolutional neural network model. Ten, we use
MAML to train CNN with only a few training
samples to learn an optimal set of initialization
parameters for the model. Te end-to-end approach
can detect and classify new classes of malicious
encrypted trafc fastly, improving the accuracy of
few-shot malicious encrypted trafc detection
signifcantly.

(3) We designed and conducted comparison experi-
ments to verify the efectiveness of FMETD on two
public datasets. When the number of grayscale
images in each class of data reduced to 20, the de-
tection accuracy of this approach for new class trafc
is 97.9%, which was signifcantly higher than that of
other existing approaches. Te experiment results
prove that the FMETD approach has obvious ad-
vantages in detecting new class malicious encrypted
trafc with a few labeled samples.

Te rest of this paper is organized as follows. In Section
2, we review related work of the malicious encrypted trafc
detection. Section 3 introduces the data preprocessing op-
eration, which converts raw trafc data into grayscale im-
ages. In Section 4, the algorithmic details of the FMETD
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approach are described. In Section 5, the experimental
environment and dataset are introduced. Section 6 intro-
duces the traditional and few-shot experiment based on the
FMETD approach and gives the results and analysis of the
experiment. Finally, this paper’s conclusion and future work
are given in Section 7.

2. Related Work

Tis section mainly summarizes the existing malicious
encrypted trafc detection and classifcation approaches and
research progress related to meta-learning.

2.1. Malicious Encrypted Trafc Detection. In the early re-
search, researchers mostly used rule-based approaches to
detect malicious encrypted trafc. Such approaches need to
choose the distinguishing factors of various trafc data
automatically from gigantic data as classifcation features.
Te process is time-consuming and labor-intensive. Due to
the complexity of the network environment, the classifca-
tion efciency and efect of these approaches are unsatis-
factory. Existing malicious encrypted trafc detection
approaches are mostly based on traditional machine
learning and deep learning. Te machine learning-based
approaches use encrypted trafc statistical features to build
models and summarize trafc features to distinguish trafc
categories. Traditional machine learning algorithms include
C4.5 decision tree (DT) [5], Naive Bayes (NB) [6], K-means
[7], support vector machine (SVM) [8], and random forest
(RF) [9]. Approaches based on traditional machine learning
[10–12] make up for rule-based approaches’ defciencies and
have greatly improved classifcation accuracy. However,
these approaches still need to determine statistical features
manually which would be selected, and the classifcation
efect depends heavily on expert experience and the dis-
tribution of the dataset. Approaches based on deep learning
[13–15] train neural networks on massive amounts of data to
automatically learn the classifcation features of encrypted
trafc, which can achieve end-to-end encrypted trafc
classifcation. In other words, these approaches can get the
classifcation results through raw trafc.

Wang et al. [16] proposed an end-to-end encrypted
trafc classifcation approach using one-dimensional
convolutional neural networks, which integrated feature
extraction, feature selection, and classifer into a unifed
end-to-end framework, intending to automatically learn
the nonlinear relationship between the original input and
the expected output. In the same year, Wang et al. [17]
proposed an approach to classify encrypted network trafc
using two-dimensional convolutional neural networks,
which converted the frst 784 bytes of trafc data into the
two-dimensional format IDX fles to implement encrypted
trafc classifcation. Tey also found that sessions with all
layers were the best types of trafc representation. Aceto
et al. [18] proposed a scheme for classifying encrypted
network trafc on mobile using deep learning methods and
provided a comparative analysis of the classifcation ef-
fectiveness of various types of deep learning models.

Lotfollahi et al. [19] proposed a deep learning-based ap-
proach which integrates both feature extraction and clas-
sifcation phases into one system. Te system can identify
encrypted trafc and also distinguishes between VPN and
non-VPN network trafc. Aceto et al. [20] also proposed a
novel multi-modal DL framework for encrypted trafc
classifcation, which overcomes performance limitations of
existing (myopic) single-modality DL-based TC proposals
and supports the challenging mobile scenario. Zeng et al.
[21] sliced encrypted trafc data into 30 bytes× 30 bytes
two-dimensional format IDX fles and used three network
structures of CNN, LSTM, and SAE to identify and classify
encrypted trafc. Liu et al. [22] applied recurrent neural
networks to the problem of encrypted network trafc
classifcation and proposed an end-to-end classifcation
model using stacked autoencoders to deeply mine the
potential time features of the trafc data, efectively en-
hancing the feature validity. Lim et al. [23] extended the
dataset provided by UPC’s Broadband Communication
Research Group to classify network trafc using con-
volutional neural network (CNN) and residual network
(Resnet) as deep learning models. Hu et al. [24] proposed
the OpenCBD model based on convolutional neural net-
works and transformer encoder to identify unknown
encrypted trafc and classify known encrypted trafc.

2.2. Few-Shot Malicious Encrypted Trafc Detection.
Many approaches based on deep learning depend heavily on
a large amount of correctly labeled data for training to obtain
good malicious trafc detection results. So, the performance
of the existing approaches will be degraded dramatically by
the increasingly complex network environment and the
emergence of various classes of new malicious trafc.
Nowadays, designing and implementing few-shot learning
algorithms for malicious encrypted trafc detection is a hot
and challenging research feld. Sun et al. [25] represented the
structure of network trafc data by constructing KNN
graphs. Te proposed encrypted trafc classifcation model
consisted of a graph convolutional network module and an
autoencoder module to learn the trafc structure feature
representation of the trafc data. Rezaei and Liu [26] pro-
posed a semisupervised learning approach. Te approach
frst pretrains a model on a training set containing a large
number of samples and then transfers the pretrained model
to a new architecture and retrains it with a small amount of
data. With only a few labeled trafc data, the pretrained
model can quickly solve other new encrypted trafc clas-
sifcation problems.

2.3. Meta-Learning. Te success of deep learning relied on
multiple gradient descent to optimize weights and update
internal parameters. Gradient descent-based optimization
algorithms will fail on few-shot learning. Te reason is that
the few parameter update iterations of few shot cannot make
the network learn a feature representation with strong
generalization ability, resulting in poor classifcation efect.
Meta-learning [27–30] is a high-level cross-task learning
strategy that can fnd an optimal set of initialization
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parameters for deep learning models with only a few iter-
ations on a few labeled training samples. It is an efective way
to achieve few-shot learning.

Tere are three main types of meta-learningmodel-
based, metric-based, and optimization-based. Most algo-
rithms with more applications and better experimental
accuracy come from optimization-based meta-learning al-
gorithms. In optimization-based meta-learning, Finn et al.
[31] proposed a model-agnostic meta-learning (MAML)
algorithm, which fnds a good set of initialization parameters
for the basic learner through a cross-task training strategy.
Te basic learner with this initialization parameter can
quickly adapt to a new task using only a few support samples.
MAML can be combined with any models amenable to
gradient-based training for classifcation, regression, and
reinforcement learning. Antoniou et al. [32] analyzed the
advantages and disadvantages of the MAML framework and
proposed an improved algorithm MAML++. Tey took
multiple methods to reduce the inner loop hyperparameter
sensitivity, improved the generalization error, and stabilized
and sped up the MAML. Ravi and Larochelle [33] proposed
an LSTM-based meta-learning model that uses LSTM states
to represent neural network parameters and learn neural
network parameter update rules by training the LSTM. Tis
meta-learning model fnds a successful parameter update
mechanism with optimal initialization parameters for new
classifcation tasks with only a small number of samples.
Nichol et al. [34] extended Finn et al.’s research by proposing
a new meta-learning algorithm Reptile based on FOMAML.
Reptile is the same as MAML to fnd the optimal initiali-
zation parameters for the neural network. Still, it difers from
MAML in that its gradient update approach is changed from
second order to frst order, saving computational costs and
speeding up learning.

A summary of existing work in the literature dealing
with malicious trafc detection is presented in Table 1.

In this paper, we propose a malicious encrypted trafc
detection approach with MAML. We use the excellent few-
shot learning ability of MAML to detect and classify new
classes of maliciously encrypted trafc efciently with a few
labeled training samples.

3. Data Preprocessing

In this section, we describe the four steps of data pre-
processing, which converts raw trafc to grayscale images.

Te data preprocessing operation converts the raw trafc
data in pcap form into two-dimensional grayscale image
data. Te data preprocessing process is shown in Figure 1,
including the steps of trafc data slice, data cleaning, data
trimming, and image generation.

(1) Trafc Data Slice. Tis step splits the continuous raw
trafc data in packets into discrete trafc units with
all protocol layer data by session. It is the best type of
trafc representation in deep learning-based mali-
cious trafc detection evaluated by Wang et al. [17].

(2) Data Cleaning. We frst randomize each session’s IP
address andMAC address in this step.Te IP address

and MAC address in data link layer and IP layer are
inefective features to distinguish diferent kinds of
trafc. If the classifcation model learns these fea-
tures, it will overft. Terefore, this paper obfuscates
MAC addresses and IP addresses using the random
substitution operation. Te second work of this step
removes some duplicate and empty data generated
by trafc data slice operation, which can interfere
with the model’s training.

(3) Data Trimming.Sessions from the diferent networks
have diferent lengths, and the structure of the
classifcation model is fxed, so the session length
needs to be uniform. Tis step modifes the length of
all sessions to 784 bytes uniformly. In order to
compare experimental results with related work, we
refer toWang et al.’s [17] data preprocessing step and
select 784 bytes as the fxed length of the session. Te
excess part is intercepted if the length is more sig-
nifcant than 784 bytes. If the length is less than 784
bytes, 0 is added at the end.

(4) Image Generation.Te unifed length data are con-
verted into 28 bytes× 28 bytes two-dimensional
grayscale images. Images in png format are con-
sidered the output of this step. One byte in the raw
trafc data represents a one-pixel value in the
grayscale image, for example, 0x00 for black and 0xf
for white.

4. Methodology

In this section, we introduce the algorithm of FMETD
approach in detail based onMAML, which detects encrypted
malicious trafc with only a few labeled samples.

In this paper, we use MAML to train CNN to detect and
classify malicious encrypted trafc with only a few samples.
As shown in Figure 2, this approach consists of a meta-
learner and a basic learner. Te meta-learner is a model-
agnostic meta-learning (MAML) algorithm, and the basic
learner is deep learning model CNN. Te meta-learner
consists of a meta-training phase and a meta-testing phase.
Few-shot malicious encrypted trafc detection aims to train
a basic learner that can adapt to new malicious trafc with
only a few training data and parameter iterations. To achieve
this, an optimal set of initialization parameters is learned
during the meta-training phase by training the basic learner
through a few gradient descent steps on a set of tasks. In the
meta-testing phase, new malicious encrypted trafc not
present in the training data is detected and classifed by the
trained basic learner.

4.1.MAML. In this paper, we use MAML to train CNNwith
only a few training samples to learn an optimal set of ini-
tialization parameters for the model. MAML is an optimi-
zation-based meta-learning algorithm, and it can be directly
applied to any learning problem and model that is trained
with a gradient descent procedure. MAML is a high-level
cross-task learning strategy that can fnd an optimal set of
initialization parameters for deep learning model so that the
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Figure 1: Data preprocessing process.

Table 1: Overview of research methods (frst group adopted ML, second one employed DL, and third one is few-shot learning).

Paper Recognition
methods Classifer Input data Research conclusion

[5] Machine
learning C4.5 decision tree HTTP trafc TCP fow:98.16%

UDP fow:99.65%

[9] Machine
learning RF Packet header information

and payload
Acc:99.13%
Dr:99.26%

[10] Machine
learning SVC, K-means Statistics of PS and IAT Acc≥ 90%

[11] Machine
learning

Soft/hard combination of
trafc classifers Statistics of PS +9.5% rec. with respect to best classifer (49/45

Android/iOS apps)

[12] Machine
learning WF methods First 64 TCP PS 88% best acc. (1595 Android apps)

[16] Deep learning 1D-CNN First 784 bytes of raw trafc Two-class acc:99.5%
Multi-class acc:99.41%

[17] Deep learning 2D-CNN
First 784 bytes Four-class acc

ALL layer + session two-
dimensional image Multi-class acc:99.17%

[18] Deep learning
SAE, LSTM

1D-CNN, 2D-CNN
Hybrid LSTM+2D-CNN

ALL/L7 layers
4–6 felds

Packet directions

Comprehensive evaluation
86%/83% acc. (49/45 Android/iOS apps)

[19] Deep learning 1D-CNN, SAE Tor’s trafc Recall� 94%Pcap fle

[20] Deep learning Multi-modal DL (1D-CNN,
LSTM/GRU)

Heterogeneous input data,
session iOS apps acc� 82.99%

[21] Deep learning Deep-full-range 30 bytes× 30 bytes two-
dimensional image Identify and classify encrypted trafc

[22] Deep learning FS-Net Packet length sequences 99.14% TPR, 0.05% FPR, and 0.9906 FTF

[23] Deep learning CNN and Resnet Two-dimensional image Classify network trafc without the intervention
of the network operator

[24] Few-shot
learning OpenCBD ALL layer + session two-

dimensional image 9-class classifcation is over 72%

[25] Few-shot
learning GCN KNN graphs Obtain higher classifcation performance with

only very few labeled data

[26] Few-shot
learning 1-D CNN Raw trafc data Use only 20 samples per class accuracy:98%
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model with this initialization can quickly adapt to a new task
only using a few samples. During meta-training, multiple
tasks are sampled from the dataset D, and the model is
trained with K samples from these tasks to obtain its pa-
rameters θ. Ten, the model is tested on the new samples
from all tasks, the test error is computed, and parameters θ
are updated by gradient descent. Te parameter θ obtained
at this point is highly sensitive to the new task, and it is used
as the initialization of the model, which can make the model
adapt to the new task quickly with only a few samples.

4.2. Task Defnition. After the data preprocessing step, the
raw trafc data in the dataset D consist of two partsthe
image x in png format and label data a. Te dataset D has
H types of encrypted trafc. We divide the dataset D into
three partsthe support setDs, the validation setDv, and the
test set Dt. Te classes of these three parts of data Cs �

1, . . . , H1 , Cv � H1 + 1, . . . , H2 , and
Ct � H2 + 1, . . . , H  are disjoint. Our approach uses
MAML algorithm to train CNN, and we will aim to learn a
classifcation model on Ds and Dv, which can make rapid
progress on new tasks drawn from T, without overftting.
During meta-training, our approach trains the classifcation
model with the samples from Ds, and then the model is
tested on the new classes of samples fromDv (new classes of
trafc) and the loss is fed back to update the parameters θ of
the model by one or more steps of gradient descent. So, we
can fnd model parameters that are highly sensitive to the
new classes of trafc, and it is used as the initialization of the
model, which canmake themodel adapt to the new classes of
trafc quickly with only a few samples. Our approach trains
the model to learn the features of trafc which are broadly
applicable to all tasks from datasetD rather than one task. In
the meta-test phase, the model initialized with parameter θ
can quickly adapt to new malicious encrypted trafc in the
test set Dt.

Before the meta-training begins, we frst explain the
composition of the training task. Our approach updates the
initialization parameters over a set of M-way-K-shot clas-
sifcation tasks T � Ti � Ds

i,Dv
i  N to quickly adapt to

new tasks with only a small number of training samples. We

defne a task asTi � Ds
i,Dv

i , and each taskTi consists of
a support set Ds

i and a validation set Dv
i. In the meta-

training phase, we randomly sampleM classesCM1 fromCs,
and then we sample K labeled two-dimensional grayscale
images from each class in CM1 from Ds to construct the
support setDs

i � (x1,a1), (x2,a2), . . . , (xk,ak)  of task
Ti. Ten, we randomly sampleM classesCM2 fromCv, and
then we sample K labeled two-dimensional grayscale images
from each class in CM2 from Dv to construct the validation
set Dv

i � (x1,a1), (x2,a2), . . . , (xk,ak)  of task Ti. In
the meta-training phase, we train the classifcation model
with the support set Ds

i.

4.3. Meta-Training. In the meta-training phase, the meta-
learner updates the initialization parameters through the
inner loop and the outer loop. In the inner loop, the meta-
learner optimizes the weights of the neural network on the
support set Ds

i of Ti by means of the gradient descent
algorithm. In the outer loop, the loss values of each
training task on the validation set are summed while the
initialization parameters of the basic learner are updated
by the gradient descent algorithm. We represent the basic
learner algorithm with a parametric function fθ with
parameter θ. θ is actually the parameter of the two-di-
mensional convolutional neural network in our approach.
Te algorithm for the meta-training phase is outlined in
Algorithm 1.

In the inner loop of the meta-training phase, the basic
learner updates the local parameters θ by one or more steps
of gradient descent on each task Ti. First, we compute the
loss function of the basic learner Ti according to the fol-
lowing formula:

LTi
fθ(  � 

(x,a)∈Ds
i

L fθ(x),a( .
(1)

We use the cross-entropy error L(fθ(x),a) between
the predicted label fθ(x) of the basic learner and the true
label a as the loss function in our approach. Te cross-
entropy loss function of a single sample in the case of two-
class classifcation is defned as

Raw traffic data
28bytes × 28bytes
Grayscale image
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Dv

Di

Di
s
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v
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Sampling
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traffic data
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M
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Figure 2: Overview of the FMETD approach.
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L fθ(x),a(  � − [x∙log(p) +(1 − x)∙log (1 − p)], (2)

where p is the probability that the sample x is predicted to be
positive by the basic learner.

When the basic learner adapts to a new task Ti, the
parameter θ is updated to θi

′. When using one-step gradient
descent, the parameter θ varies as follows:

θi′ � θ − α∇θLTi
fθ( , (3)

where α is the step size of local parameter update, which is a
fxed hyperparameter.

Te purpose of the outer loop is to compute the loss
value on the validation set for all tasks. Further summing all
loss values utilizes a gradient descent algorithm to update the
parameter θ of the base learner. For each taskTi, we defne a
loss function on the validation set, where L(fθi

′(x),a) is
also the cross-entropy loss function:

LTi
fθi
′  � 

(x,a)∈Dv
i

L fθi′(x),a .
(4)

Ten, we sum the loss values on the validation set for all
tasks and update the parameter θ using one or more of
gradient descent steps. β is the meta-step size of global
parameter update, which is a fxed hyperparameter.

θ←θ − β∇θ 

N

i�1
LTi

fθi′ . (5)

4.4. Meta-Testing. After the meta-training phase, our ap-
proach fnds an optimal initialization parameter θ for the
basic learner. Te test set Dt is composed of new classes of
malicious encrypted trafc that do not appear in the support
set and validation set. During the meta-test phase, the basic
learner initialized with parameter θ can quickly adapt to new
malicious encrypted trafc in the test set.

4.5. Architecture of CNN. Te deep learning model of our
approach is CNN, which has four modules. Te convolu-
tional layer of each module consists of 3× 3 convolutions
and 48 flters, followed by a nonlinear activation function
ReLU and a batch normalization operation. 2× 2 max-
pooling operation is used in the pooling layer of our model
after the convolutional layer. Te input of the frst module
includes raw trafc data from 28 bytes× 28 bytes two-di-
mensional grayscale images. A softmax function follows the
last layer to output the probability of each class.

5. Experiment Setup

5.1. Experiment Environment. Pytorch [35] was used as deep
learning framework on a server with Ubuntu 18.04.5 64 bit
OS. A server with CPUmodel AMD Ryzen 9 3950X 16-Core
Processor and GPUNVIDIA GeForce RTX 3090 was used in
the experiments. Te programming language was Python
3.8.

5.2. Dataset. To evaluate the capability of the FMETD ap-
proach in malicious encrypted trafc detection, we applied
our approach to two public datasets, ISCXVPN2016 and
CICAndMal2017. ISCXVPN2016 dataset has twelve classes
of normal encrypted raw trafc data, and the malicious
trafc data of CICAndMal2017 dataset came from 42
malware families.

(1) ISCXVPN2016 Dataset. Lashkari et al. [36] released
the ISCXVPN2016 dataset in 2016. Fourteen classes
of trafc data were in the ISCXVPN2016 dataset,
including seven regular encrypted trafc and seven
protocol encapsulated trafc. Te dataset has two
formatstrafc characteristics and raw trafc (packets
in pcap form). Our approach selected the raw trafc
for experiments. Te ISCXVPN2016 dataset has
twelve classes of accurately labeled raw trafc data,
including six classes of conventional encrypted trafc
data and six classes of protocol encapsulated trafc.
Te specifc content of the dataset is shown in
Table 2.

(3) CICAndMal2017 Dataset.Te CICAndMal2017
dataset was published by Lashkari et al. [37] in 2018.
Te authors collected malicious and normal
encrypted network trafc data by running more than
5000 applications (426 malware and 5065 benign
software) on real devices. Te benign software
among them was from the Google Play Store from
2015 to 2017. Te malware was divided into four
categoriesadware, ransomware, scareware, and SMS
malware, from 42 malware families. Te trafc data
of malware in the dataset were used in this
experiment.

5.3. Evaluation Metrics. Te FMETD approach is evaluated
using the following four evaluation metricsaccuracy, pre-
cision, recall, and F1 score.

A confusion matrix is a specifc matrix used to present a
visualization of algorithm performance. It is very easy to
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show whether multiple classes are confounded (one class is
predicted to be another). In Table 3, each column represents
the predicted value and each row represents the actual value.
Confusion matrix reports the number of false positives, false
negatives, true positives, and true negatives.

TN is the number of samples for which the actual
negative prediction is also negative. TP is the number of
samples for which the actual positive prediction is also
positive. FN is the number of samples for which the actual
positive prediction is negative. FP is the number of samples
for which the actual negative prediction is positive.

Accuracy �
TP + TN

TP + TN + FP + FN
,

precision �
TP

TP + FP
,

recall �
TP

TP + FN
,

F1 � 2
precision × recall
precision + recall

.

(6)

Te F1 score represents the harmonic mean of precision
and recall, which can indicate the classifcation performance
of a deep learning model relatively accurately. It is expressed
in the range of 0 to 1, where the best value is 1. We compute
the recall, precision, and F1 score of all application labels and
then fnally average them to get a single overall F1 score
measurement for performance.

5.4. Baseline. Te algorithms we chose to compare with our
approach were support vector machine (SVM), long shot-
term memory (LSTM), and convolutional neural network
(CNN). Based on the analytical study in the related work
section, we can know that these approaches are the most
efective cryptographic malicious trafc detection algo-
rithms available today. Tis method unifed the session
length to 784 bytes in the data preprocessing part, referring
to the method proposed byWang et al. [17]. Tey used CNN
to classify the encrypted trafc after data preprocessing. So,
comparing our approach with these methods can better
refect the efectiveness and superiority of our approach.

6. Experiment Result and Analysis

In this section, we compared our approach with existing
state-of-the-art approaches, verifying whether the FMETD
approach outperforms existing state-of-the-art approaches
for malicious encrypted trafc detection.

We set up two experiments, one to verify the FMETD
approach’s capacity to detect malicious encrypted network
trafc, and the other to verify its ability to detect new class
malicious encrypted network trafc using only a few
training samples. Te hyperparameters in the experiment
were set as followsthe inner loop step size was 0.01, the
outer loop step size was fxed to 0.001, the batch size was 5,
and the basic learner was trained for 100 epochs, each
epoch consisting of 600 internal iterations. Te model
obtained in each round of training was saved. After the
training phase, the fve best-performing models on the
validation set were selected for testing on the test set, and
the average of the fve models was used as the fnal ex-
perimental result.

6.1.Malicious EncryptedTrafcDetection. First, experiments
were performed under traditional conditions (the classesCs
of test data were the same as the support data, and the
training set contained a large number of samples) to verify
the capacity of FMETD approach to detect and classify
malicious encrypted trafc. In the two-class classifcation
experiment, because we needed to detect malicious
encrypted trafc from normal trafc, we ran the experiments
on 1-way and 5-shot settings on the dataset to make sure all
samples in one task were from the same malicious class.

Require: distribution over tasks
Input:α, β Step size hyperparameter

(1) Randomly initialize the parameter θ for the basic learner fθ
(2) while not done do
(3) Sample batch of tasks Ti ∼ T

for allTido
(4) Compute the loss function LTi

(fθ) on the support set Ds
i

(5) Update adapted parameters by gradient descent algorithmθi′ � θ − α∇θLTi
(fθ)

(6) end for
(7) Compute the loss value on the validation set Dv

i for all tasksN
i�1LTi

(fθi′)

(8) Update initialization parametersθ←θ − β∇θ
N
i�1LTi

(fθi′)

(9) end while

ALGORITHM 1: MAML for few-shot malicious encrypted trafc detection.

Table 2: ISCXVPN2016 dataset.

Label Content
E-mail E-mail, Gmail (SMPT, POP3, IMAP)
Chat ICQ, AIM, Skype, Facebook, Hangouts
Streaming Vimeo, YouTube, Netfix, Spotify
File transfer Skype, FTPS, SFTP
VoIP Facebook, Skype, Hangouts, VoipBuster
P2P uTorrent, Bittorrent
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When we ran the two-class classifcation experiment, we
integrated ISCXVPN2016 and CICAndMal2017 to construct
a raw trafc dataset in which normal encrypted trafc came
from ISCXVPN2016 and malicious encrypted trafc came
from CICAndMal2017. Ten, we ran the multi-class ex-
periments on the CICAndMal2017 dataset. Te experi-
mental results of two-class classifcation are shown in
Figure 3 and Table 4, and the multi-class classifcation is
shown in Figure 4.

Te experimental results showed that when the training
set has a large number of samples, the two-class classifcation
accuracy of this approach reaches 99.8%, which was higher
than the 98.7% classifcation accuracy of the CNN. FMETD
approach has a multi-classifcation accuracy of 98.5% on the
CICAndMal2017 dataset for malicious encrypted trafc.Te
experimental results demonstrated that our approach has
the same good detection capability as the existing state-of-
the-art approaches in traditional malicious encrypted trafc
detection.

6.2. Few-Shot Malicious Encrypted Trafc Detection. In ad-
dition to enabling the detection of malicious encrypted
trafc when the training set contains a large number of
labeled samples, our approach can quickly detect new class
malicious encrypted trafc with only a few samples. We
compared the FMETD approach with the state-of-the-art
approaches, which are RF-based, LSTM-based, and CNN-
based.

First, we ran the experiments on the 5-way and 1/5-shot
settings on the ISCXVPN2016 dataset. For the 20 classes of
trafc data in the ISCXVPN2016 dataset, we randomly se-
lected 12 classes of them as the support set, 4 classes as the
validation set, and the remaining 4 classes as the test set, each
class containing 20 grayscale images. Tis experiment val-
idated the capacity of the FMETD approach to detect new
encrypted trafc with only small training samples. In all
comparison experiments, the dataset was divided into a
training set and a test set. Te training set consisted of 16
classes of trafc data, and the test set had the remaining 4
classes of trafc data. Every class also has 20 grayscale
images. Due to the number of samples in the training set
being too small, we conducted comparison experiments
until we got the optimal classifcation accuracy as the fnal
result. Te experimental results are shown in Table 5.

We ran the experiments on the 5-way and 5/10-shot
settings on the CICAndMal2017 dataset. For the 42 classes of
malicious data in the CICAndMal2017 dataset, we selected
23 as the support set, 8 as the validation set, and the
remaining 11 as the test set, each class containing 33
grayscale images. In each comparison experiment, the
dataset was divided into a training set (31 classes) and a test
set (11 classes). Figure 5 shows the trend of the accuracy rate
as the number of training rounds increases when the ex-
periment setting is 5-way-5-shot. Te accuracy of FMETD
and other comparison approaches on CICAndMal2017 is
shown in Table 6.

As shown in Figure 5, the accuracy of our approach on
the support set and validation set is all over 90% just after
two epochs. In the ffth epoch, the accuracy of FMETD on
the validation set is already at the best level. Te FMETD
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Figure 3: Two-class classifcation.

Table 3: Confusion matrix.

Confusion matrix Actual class
Positive Negative

Predictive class Positive TP FP
Negative FN TN
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Figure 4: Multi-class classifcation.
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approach can quickly adapt to new classes of encrypted
trafc, which proves the high efciency of this approach.

Table 6 shows that none of the existing approaches have
an accuracy rate of 90%. What we know is that both tra-
ditional machine learning-based and deep learning-based
approaches do not detect new encrypted malicious trafc
well with only a small number of samples. Te multi-class

classifcation accuracy of our approach was 94.3% on the 5-
way-1-shot settings (each task contains fve classes of
malicious encrypted trafc, with one sample in each class) on
the ISCXVPN2016 dataset. When the setting was changed to
5-way-5-shot, the accuracy of our approach increased to
97.9%. Te classifcation accuracy of the FMETD approach
was 95% when tested on the CICAndMal2017 dataset in the
5-way-5-shot tasks, and in the 5-way-10-shot tasks, the
accuracy reached 97.8%.

Experimentally, it can be found that when there are only
a few samples that can be used to train the classifcation
model, the detection accuracy of the FMETD approach for
new classes of malicious encrypted trafc is much higher
than that of the existing state-of-the-art approaches. Many
existing approaches need to be trained on a large amount of
trafc data to accurately detect specifc classes of encrypted
network trafc. However, in real network environments, the
classes of malicious encrypted trafc are not static and few
are labeled. So, the performance of existing approaches
drops dramatically on these new classes of trafc. Our ap-
proach uses MAML to learn an optimal set of initialization
parameters for CNN on a set of classifcation tasks. Te
model with these initialization parameters can quickly adapt
to new class data with few training samples. Te experi-
mental results show that the FMETD approach can efec-
tively make up for the shortcomings of the existing
approaches and signifcantly improve the classifcation efect
of the new class of trafc data under a low label rate of
training samples.

7. Conclusion

Te efectiveness of the existing malicious encrypted trafc
detection approaches is deteriorated due to the rapid de-
velopment of the Internet and the wide application of en-
cryption technology. Existing approaches have low detection
accuracy and poor generalization when only a few labeled
trafc is available. In this paper, we propose a few-shot
malicious encrypted trafc detection (FMETD) approach
based on MAML, which integrates feature selection and
classifcation into an end-to-end framework. In our ap-
proach, we take the two-dimensional grayscale images
converted from the raw trafc data as the input of the deep
learning model. We train the CNN on the classifcation tasks
consisting of support set and validation set using MAML for
efcient malicious encrypted trafc detection. Experimental
results show that the FMETD approach can quickly classify
malicious encrypted trafc with high multi-class classifca-
tion accuracy. Our approach achieves efcient and accurate
detection of new classes of malicious encrypted trafc which
is invisible in the training phase when there are only a few
kinds of labeled trafc, demonstrating the strong general-
ization of this approach.

Tis paper converts the raw trafc data into grayscale
images for feature extraction and malicious trafc classif-
cation. Only the spatial features of the trafc data are used in

Table 4: Confusion matrix of two-class classifcation.

Confusion matrix Actual class
Positive Negative

Predictive class Positive 119 0
Negative 1 120
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Figure 5: Te accuracy on CICAndMal2017 and 5-way-5-shot
setting.

Table 5: Few-shot malicious encrypted trafc detection on
ISCXVPN2016.

ISCXVPN2016 Accuracy
5-way-1-shot (%) 5-way-5-shot (%)

1 FMETD 94. 97.9
2 RF 74.9
3 LSTM 84.2
4 CNN 75.6
Te bold values given in above Table emphasize the higher accuracy of our
method.

Table 6: Few-shot malicious encrypted trafc detection on
CICAndMal2017.

CICAndMal2017 Accuracy
5-way-5-shot (%) 5-way-10-shot (%)

1 FMETD 95 97.8
2 RF 65.7
3 LSTM 76.2
4 CNN 67.3

Te bold values given in above Table emphasize the higher accuracy of our
method.
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this process. Te next step of the work is to investigate how
to add temporal features to the detection to achieve a more
efcient detection of malicious encrypted trafc. In future
work, we will research how to add these temporal features in
our few-shot learning approach, using recurrent neural
network (RNN) to replace the CNN model, following, e.g.,
[38].

Acronyms

FMETD: Few-shot malicious encrypted trafc detection
MAML: Model-agnostic meta-learning
DT: Decision tree
NB: Naive Bayes
SVM: Support vector machine
RF: Random forest
CNN: Convolutional neural network
LSTM: Long short-term memory
Resnet: Residual network
KNN: K-nearest neighbor
FOMAML: First-order MAML
IP: Intellectual property
MAC: Media access control
SMS: Short message service
RNN: Recurrent neural network
Tree-RNN: Tree structural recurrent neural network.
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