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Aiming at the network security problem of power system cable trench control industrial Internet system, we studied an intrusion
detection method applied to the embedded industrial Internet ofTings gateway.Tis method extracts rules from the DBN-DNN
deep neural network to obtain intrusion detection models that are conducive to integration into embedded systems. We frst use
the DBN network to reduce the dimensionality of the data, then use the DNN to train the classifcationmodel, and extract the rules
from the DNN’s neurons to form a rule tree for intrusion detection. Te KDD CUP99 training database is used to verify the
feasibility of the method, and the test is carried out in the embedded gateway.Te results show that the detection method based on
rule extraction used in this paper can ensure detection efciency and accuracy compared to the traditional detection methods. At
the same time, it saves more computing resources and is more conducive to integration in embedded gateway systems.

1. Introduction

With the advent of the information age, the application of
the industrial Internet has become increasingly popular,
and increased security issues have followed [1]. Te wide
application of network interconnections in production and
manufacturing not only brings convenience and efciency
to production, but also many hidden dangers to security. At
present, the security of the Industrial Internet mainly in-
volves six major security issues: equipment security, con-
trol security, network security, identifcation resolution
security, platform security, and data security [2]. Among
them, the security of platforms and data is a new issue that
needs to be urgently addressed for industrial Internet se-
curity. Once a platform and data are compromised and
attacked, it can cause serious damage and loss to the entire
production system. Intrusion detection is an efective
network attack detection method, which is widely used in
the feld of network security detection [3]. Te traditional
intrusion detection technology is divided into misuse-
based intrusion detection technology (MIDS) and
anomaly-based intrusion detection technology (AIDS).

Among them, intrusion detection technologies related to
machine learning include an intrusion detection technol-
ogy based on autoencoder [4], intrusion detection tech-
nology based on deep learning [5–7], intrusion detection
technology based on reinforcement learning [8], and an
intrusion detection technology based on visual analysis [9].
Detection methods based on deep learning can process
large-scale network trafc data more efectively, and have
a higher detection efciency and accuracy [10]. Te per-
formance of DBN-based detection technology in network
intrusion detection is widely recognized by researchers, but
due to the complex training process of deep neural net-
works, poor model interpretability, and high requirements
for equipment computing power [11], industrial Internet
security is diferent from traditional Internet security and
industrial Internet is a real-time requirement closely re-
lated to the production. In the network, if there is
a problem, it will not be solved in time, which will cause
heavy losses [12]. Te breadth of the Industrial Internet
determines that it will not be equipped with Internet
gateways with high computing power, regardless of eco-
nomic or practical considerations, which makes it difcult
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for traditional network detection methods to be directly
applicable to complex industrial Internet systems [13].
Tere are also some research studies on the security de-
tection methods for embedded systems. Some of them
study the optimization of embedded system architecture
and try to optimize the security detection performance by
adding complex detection devices, which considerably
increases the deployment cost of embedded systems. Te
other part is to study the optimization of energy con-
sumption and memory utilization in the implementation of
security detection methods for embedded systems, which
can achieve better security detection results by saving
computational energy consumption and using the limited
memory cells of the embedded systems efciently. Despite
the impact of these studies, most of them are still at the
theoretical stage and there are still some issues to overcome
in the actual deployment of the embedded systems. Ref-
erence [14] uses a method to detect malicious network
trafc by extracting learning rules from neural networks.
Tis method reduces the computational requirements
during the detection process, and may be more benefcial to
devices with small computational resources. In the current
research study on industrial network security, it is very
necessary to study the security detection methods that are
more conducive to the deployment of embedded systems.
Based on existing research studies, this study studies
a security detection method that is more conducive to
implementation in the embedded systems. Te contribu-
tion of this research is as follows:

(i) Aiming at the application of traditional security
detection technology in the embedded gateway of
industrial Internet, due to the limited hardware
computing resources, difculties in deployment,
and weak detection capabilities, this paper proposes
a solution to save computing resources while en-
suring the detection efect.

(ii) In order to make the security detection technology
easier to deploy to the embedded gateway, this
paper proposes a detectionmethod that frst extracts
rules from the DBN-DNN network, and then de-
ploys the rules to the embedded gateway, and de-
signs an experimental scheme to verify it.

(iii) Te detection technology based on the deep net-
work rule extraction is tested on the KDD CUP99
dataset, which proves the feasibility of the method.
Te results show that the method guarantees an
excellent detection efect when converting complex
neural networks into logical calculations that is
more conducive to the implementation in embed-
ded systems.

2. Related Work

Existing research studies show that the machine learning
methods have been widely used in the study of security
detection methods as machine learning techniques have
been developed. Tis section introduces the work related to
the method studied in this paper in the following two parts:

the security detection method based on machine learning
and the security detection method of embedded IoTgateway
with limited resources.

2.1. Safety Detection Method Based on Machine Learning.
Machine learning-based security detection methods include
artifcial neural networks, association rules, and fuzzy as-
sociation rules, Bayesian networks, clustering, decision trees,
integrated learning, evolutionary computing, hidden Mar-
kov models, inductive learning, Naive Bayesian, sequential
patternmining, and support vector machines. Reference [15]
proposes a network intrusion detection method based on
deep learning.Te deep confdence neural network is used to
extract the features of the network monitoring data, and the
BP neural network is used as the top-level classifer to classify
the intrusion types. Te verifcation results show that this
method is signifcantly improved compared with the tra-
ditional machine learning methods. Reference [16] proposes
an integration method to improve the detection perfor-
mance by simultaneously constructing numerous in-
dependent decision trees for diferent subsets in diferent
parts of the training samples. Tis method improves the
accuracy of the method by combining numerous decision
trees for fnal judgment because any decision tree in the
random forest is diferent, and the variance is reduced,
which makes the method have a strong generalization to
avoid problems such as dataset imbalance and overftting.
Reference [17] proposes a hybrid detection framework that
depends on data mining classifcation and clustering tech-
nology. Te random forest classifcation algorithm is used to
automatically build intrusion patterns from the training
dataset, and then the K-Means clustering algorithm is used
to detect new intrusions. Tis method detects the intrusion
of one or more clusters by clustering the detection data.
Reference [18] proposed a hybrid network-based high-
efciency model (HNIDS) using the enhanced genetic al-
gorithm, particle swarm optimization (EGA-PSO), and the
improved random forest (IRF) method. Tis method uses
the mixed EGA-PSO method to enhance the secondary
sample. By adding multiobjective functions to select the best
features and to achieve improved ftness results, the decision
tree list is merged in each iteration process, thereby efec-
tively preventing the overftting problem.

2.2. Security Detection Methods for Embedded Systems.
Research studies on security detection techniques for in-
dustrial Internet-embedded systems have also yielded var-
ious results in the recent years. Reference [19] proposed
a multicore-based detection architecture for real-time em-
bedded systems, which is related to a novel monitoring
technology. Te security of the real-time embedded system
can be improved by analyzing and observing the inherent
property of the real-time system, and detecting malicious
activities through statistical analysis of its execution. Ref-
erence [20] analyzes the detailed energy of the feature ex-
traction engine and the three machine learning classifers are
implemented in decision tree (DT), Naive Bayes (NB), and
k-nearest neighbors (KNN) in the embedded system security
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detection technology. It hopes to propose more energy-
saving detection methods. Reference [21] proposes a de-
tection technology optimized for embedded system mem-
ory, which maximizes the coverage of security attributes
relative to available memory, and can be applied to various
embedded devices with diferent memory capacities. It
provides a strong detection rate even when memory is
limited. Reference [22] proposes an integrated security
detectionmethod for Internet ofTings (IoT) devices, which
combines multiple classifers to fnd an accurate classifer.
An integrated classifcation model using automatic model
selection is proposed. Te model uses a large number of
classifers with diferent confgurations, and the model is
evaluated and selected by an ensemble metric. Reference
[23] proposes an intrusion detection system based on ma-
chine learning to detect the IoT network attacks. A new
layered intrusion detection system is proposed for the
backbone network of the IoT using a two-layer dimension
reduction engine and a two-layer classifcation engine. After
dimensionality reduction via component analysis and linear
discriminant analysis units, a Naive Bayesian classifer is
used to classify the attack records via the k-nearest algo-
rithm. Experiments show that the proposed method has
excellent detection performance in hard-to-capture attacks.
While these methods have improved the detection methods,
to a certain extent, by making them more suitable for
embedded systems, they have some shortcomings in terms of
detection accuracy and efciency.

3. Method Principle

Embedded networks have always occupied a large pro-
portion of the current industrial Internet applications. As an
essential information forwarding unit in the embedded
networks, embedded gateways are the main equipment to
ensure the embedded network security. However, from the
perspective of cost, most embedded gateways are not
equipped with high computing power, which makes it
difcult for the traditional security detection technology to
obtain a perfect representation of the embedded gateways. It
is of great signifcance for the development of the industrial
Internet to fnd a detection technology that can ensure the
detection efciency and is more conducive to integration
into the embedded gateway. In the traditional detection
technology, the intrusion detection technology based on the
deep neural network has a better detection performance, but
because of the complex structure of the deep network, poor
interpretability of the detection process, and the high
computing requirements, it is difcult to adapt to embedded
gateways. To improve the real-time performance of the
detection technology and to facilitate the transplantation of
embedded gateways, a detection technology based on the
DBN-DNN network rule extraction is proposed. First,
a high-precision detection model is trained by the
DBN-DNN network, and then the idea of the decision trees
is used to extract the detection rules from the DBN-DNN
network to obtain a rule model that is easier to integrate into
the embedded gateway.Te specifc process in the method is
shown in Figure 1.

4. Detection Model Based on DBN-DNN

4.1. DBN-DNN Neural Network. First, we build a deep
neural network training intrusion detection model based on
the DBN-DNN structure. DBN is a kind of restricted
Boltzmann machine (RBM) composed of multiple genera-
tive neural network structures, which is trained by the
contrastive dispersion algorithm (CD) [24]. Te extraction
and dimensionality reduction of the RBM has excellent
learning ability. Te RBM training process is shown in
Figure 2.

In the fgure, h is the value vector of the neurons in the
hidden layer, v is the value vector of the neurons in the
visible layer, c is the paranoid vector of the hidden layer, b is
the bias vector of the visible layer, and W is the weight
matrix, which can connect the function to the given state.
Te probability distributions of v and h are shown in for-
mulas (1) and (2), respectively.

E(v, h) � −c
T
v − b

T
h − h

T
Wv, (1)

P(v, h) �
1
Z

e
− E(v,h)

,

P(v | h) �
P(v, h)

P(v)
.

(2)

In the formula, Z is the normalization coefcient, and
the DNN network layer is added after the last layer of the
RBM. Te DNN layer takes the dimensionality reduction
feature output by the RBM as the input vector, and uses the
backpropagation algorithm (BP) for fne-tuning and for
supervised training entity relationship classifer. Tis net-
work structure is called the DBN-DNN network structure
[25], and the network structure is shown in Figure 3.

4.2. Feature Dimensionality Reduction Based on DBN.
Tere is a training dataset D� ((X1, Y1), (X2, Y2). . . (Xn,
Yn)), where n is the number of samples in the dataset, and if
each sample inputs h features, then Xh

n represents the h-th
feature of the n test data samples. We build an m-layer RBM
network to reduce the dimensionality of the input sample
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Figure 1: Detection model based on DBN-DNN rule extraction.
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features, let the number of features after RBM di-
mensionality reduction be h0, and we use equation (3) to
initialize the number of feature vectors of the RBM output
layer, and then update the output of the (m− 1)-th layer
RBM according to equation (4), that is, the numbers of
features.

h0 �
1
a

× h, (3)

h(m − 1) � h0 + H
h − h0

m
 . (4)

In equation (3), a is the feature dimensionality reduction
ratio, in equation (4), H( ) is the rounding function, and so
on to update the number of output features of each RBM
layer. In order to obtain a better feature dimensionality
reduction efect, the particle swarm algorithm is used to
optimize the RBM layer structure, and a ftness evaluation
function based on the average reconstruction error of the
dimensionality reduction model is constructed to optimize
the number of RBM layers.

4.3. DNN-Based Entity Classifer. After optimization, the
number of output features of the m-th layer RBM is h0, and
the output of the m-layer RBM is used as input to build
a DNN entity classifer. Te input layer of the classifer has h0
neurons, and the output layer is the corresponding detection
type. Using the ReLU function as the activation function, it
adopts the backpropagation algorithm to adjust the weight,
and the activation function is shown in equation (5):

f(x) � max(0, x). (5)

In the formula, when the input is less than 0, the output
is 0, and when the input is greater than 0, the output is the
same as the input. Te loss function is selected as shown in
equation (6):

J(W, b, x, y) �
1
2

a
L

− y
����

����
2
2, (6)

where aL and y are vectors with the same feature dimension
as the output, and ‖aL − y‖2 is the L2 norm of aL − y. After
selecting the loss function, the gradient descent method is
used to iteratively obtain the weights of each layer. Te
structure of the DNN entity classifer is shown in Figure 4.

5. DBN-DNN Network Rule Extraction

Extracting rules from DBN-DNN is divided into three steps.
First, we obtain the neuron output of the hidden layer, then
extract the hidden layer to the output layer to generate a rule
tree between the input layer and each hidden layer. Finally,
since the output of the input rule tree is the input of the
output rule tree, the output of the input rule tree is used as
the input of the output rule tree to construct a complete rule
tree detection model.

5.1. Decision Tree-Based Rule Extraction. Te rule extraction
method is based on the output of each hidden layer neuron.
We assume that the output feature of the RBM layer is X, the
detection result is Y, and the number of hidden layers of the
DNN is j. Each hidden layer contains k neurons, where hk

j

denotes the k-th neuron in the j-th hidden layer. Xi is
a sample of the dataset, and Yi is the detection type cor-
responding to sample Xi. Assuming that Xi has n eigen-
values, the output of the k-th neuron in the j-th hidden layer
is O(hk

j) as shown in equation (7):

O h
k
j  � ReLU 

nj−1

m�1
wmxm − θ⎛⎝ ⎞⎠, (7)

where wm is the connection weight of the m-th neuron and
nj−1 is the number of neurons in the hidden layer of j − 1. xm

is the input of the m-th neuron, and θ is the threshold. We
then calculate the output mean Oj of the j-th hidden layer
neuron as shown in equation (8):
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Figure 3: DBN-DNN network structure.
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Oj �
1
nj



nj

i�1
O h

i
j , (8)

where nj is the number of neurons in the j-th hidden layer.
At this time, the average value of neurons in each hidden
layer corresponding to Xi can be obtained, and these average
values can be used to establish decision rules.

5.2. Input Rule Tree Model. Te function of the input rule
tree is to extract and describe the rules between the input
features and the hidden layer of the neural network. Te
number of input rule trees depends on the output features of
the m-th layer of the RBM and is equal to the number of
hidden layers of the trained DNN. Let Xi be an m-
dimensional feature vector, and the output mean of its
corresponding j-th hidden layer is Oi

j , and the k-th variable
xk

i in Xi is used as the segmentation variable and the seg-
mentation point, and the defned regions R1 and R2 are
shown in equations (9) and (10):

R1 k, x
k
i  � x x

k ≤x
k
i

 , (9)

R2 k, x
k
i  � x x

k >x
k
i

 . (10)

Ten, the optimal segmentation variable and segmen-
tation point are obtained, and the optimal value is calculated
as shown in equation (11):

min
k,xk

i



Xi∈R1 k,xk
i( )

O
i
j − c1  + 

Xi∈R2 k,xk
i( )

O
i
j − c2 

⎡⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎦. (11)

In the formula, c1 and c2 are the output values of the two
regions after division, which are the values with the smallest
square error in the respective regions. Te calculation
process is shown in equations (12) and (13):

c1 �
1

N1


Xi∈R1 k,xk
i( )

O
i
j, (12)

c2 �
1

N2


Xi∈R2 k,xk
i( )

O
i
j. (13)

In the formula, N1 is the number of samples divided into
the region R1(k, xk

i ), and N2 is the number of samples
divided into the region R2(k, xk

i ). After fnding the optimal
segmentation point, the input space is divided into two
regions in turn, and then the abovementioned division is
repeated for each region. Te process is repeated until the
stopping condition is met, and fnally a least squares re-
gression tree is generated.

5.3. Output Rule TreeModel. Te function of the output rule
tree is to extract and describe the rules between the hidden
layer of the neural network and the output of the neural
network. After obtaining the output mean of the hidden
layer neurons, the decision tree is used to establish the rules

between the hidden layer mean and the output detection
type. First, the empirical entropy H(O, Y) of the hidden
layer mean of the sample and the output detection type is
calculated, let the output mean vector of the hidden layer
corresponding to Xi be Oi, Oi is a j-dimensional vector, and j
is the set number of hidden layers. Te calculation process is
shown in equation (14):

H(O, Y) � − 
n

i�1
pi logpi. (14)

In the formula, n represents the total number of types of
detection results, pi represents the proportion of the i-th
type of detection results, and log is the logarithm of base 2
or e. We use the dichotomy method to build a rule tree, set
the total number of samples to be N, divide the output
mean of the j-th hidden layer of all samples into Oj

+ and
Oj

− , set the boundary value to Ot
j, and calculate the Ot

j as
shown in equation (15):

O
t
j �

O
i
j + O

i+1
j

2
| 1≤ i≤N

⎧⎨

⎩

⎫⎬

⎭. (15)

Ten, the information gain of diferent Ot
j for diferent

detection results of the dataset is calculated, respectively, and
fnally, the optimal demarcation point with the largest in-
formation gain is selected to establish the output rule tree
model in turn.

5.4. Whole Rule Tree Model. After obtaining the input rule
tree and the output rule tree through training, the input rule
tree and the output rule tree are combined into a complete
rule tree model. Te input rule tree is used to describe the
learning process between the input layer and the hidden layer
of the neural network, and the output rule tree is used to
describe the rules between the hidden layer and the output of
the neural network. Te detection result of the input rule tree
is used as the input of the output rule tree to build the model.
Te number of input rule trees depends on the number of
hidden layers of the training neural network. Each input rule
tree is a description of the learning process between the input
feature and a hidden layer of the neural network. After
obtaining the description between the input feature and all
hidden layers, the fnal detection result is obtained by out-
putting the rule tree as fresh data, and the input of the output
rule tree is the output of all the input rule trees.

6. Experimental Design

In order to verify the feasibility of the proposed method, the
KDD CUP99 dataset is used to design experiments to analyze
the detection efect of the rule tree detectionmodel.Te original
data of the KDD CUP99 dataset comes from the DARPA
Intrusion Detection Evaluation Project in 1998. Te dataset
contains 500 10,000 training data and two million test data.

6.1. Experimental Environment and Implementation. Te
experimental environment is Windows 10 64 system, CPU
frequency is 3.6MHz, memory is 16G, graphics card is
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GTX1050ti, and graphics card memory is 4G. Te software
environment includes the open-source machine learning
platform TensorFlow and the free machine learning library
scikit-learn. Te experiment uses Python as the pro-
gramming language. In the experiment, the data is frst
processed, and then a deep neural network model is built in
TensorFlow to obtain the training process data. Ten, a rule
tree is built through scikit-learn to extract the rule de-
scriptions of the learning process from the input layer to the
hidden layer and from the hidden layer to the output layer
from the deep neural network process data, and fnally
a complete detection rule tree is established.

6.2. Datasets and Data Preprocessing. Anomaly types in the
KDD CUP99 dataset are subdivided into 4 categories with
a total of 39 attack types [26], of which 22 attack types appear in
the training set, and another 17 unknown attack types appear in
the test set. In the experiment, the character features are
converted into numerical features, and then the feature values
are standardized. First, the average value and average absolute
error of each attribute are obtained. Let the k-th attribute of the
i-th sample be xk

i , then the sample k-th and the mean value xk

of the attribute is calculated as shown in equation (16), and the
mean absolute error Sk is calculated as shown in equation (17):

x
k

�
1
N



N

i�1
x

k
i , (16)

S
k

�
1
N



N

i�1
x

k
i − x

k


 . (17)

In the formula, N is the total number of samples, and the
standard value of xk

i after normalization is set as x′ki . Te
calculation process of x′ki is shown in equation (18).

x
′k
i �

x
k
i − x

k

S
k

. (18)

During the calculation, if any one of xk and Sk is 0, then
the value of x′ki is also 0. After obtaining the standard value
x′ki r, the data is normalized. Let x″ki be the value after x′ki
normalization. Te calculation process of x″ki is as shown in
equation (19):

x
″k
i �

x
′k
i − xmin

xmax − xmin
, (19)

where xmin is the minimum value in x′ki , and xmax is the
maximum value in x′ki . 10% of the data in the KDD CUP99
dataset was selected for the experiment, with a total of
494,021 sample records. Table 1 shows the mean absolute
error (MAE), standard deviation (SD), skewness of the frst 8
sample features in the dataset after the character features are
digitized (SKEW), and kurtosis (KURT).

It can be seen from Table 1 that the distribution interval
of the sample features is large, and the experimental data is
standardized. Table 2 shows the parameters of the frst 8
sample features in the dataset after the dataset is
standardized.

It can be seen from Table 2 that after the sample features
are standardized, the distribution interval is signifcantly
reduced, and the standardized data is used for deep model
training and rule extraction.

6.3. DBN-DNN Network Model. After the data standardi-
zation is completed, the standardized samples are used to
build a DBN-DNN deep network training detection model
for feature extraction.

6.3.1. DBN Structure Design. Diferent RBM layer designs
have a certain infuence on the extraction efect of the sample
features during DBN model training. Te particle swarm
algorithm is used to optimize the number of DBN layers and
the number of neurons in each layer to obtain the optimal
model parameters. Te feature dimensionality reduction
ratio is set to 3 times, and the number of DBN layers is an
integer between 2 and 4 to simplify the model training. Te
number of neurons in each layer is updated as shown in
equation (20):

h(m − 1) � h0 + H
h − ∆h − h0

m
 , (20)

where h is the total number of input sample features, ∆h is
the number of neurons, and the adjustment parameter
ranges from 0 to h/3, m is the number of DBN layers, h0 is
the number of output features after dimensionality re-
duction, and the numerical calculation of h0 is shown in
equation (21):

h0 �
h − ∆h

3
. (21)

Table 1: Characteristic parameter table of samples after
digitization.

FVP MAE SD SKEW KURT
X1 94.7744 707.74 25.865 942.53
X2 0.9308 0.96 −0.385 −1.81
X3 13.1866 15.26 0.960 −0.88
X4 1.7744 2.25 −1.809 2.22
X5 4806.56 988218.10 699.213 490584.34
X6 1535.05 33040.00 136.759 20338.14
X7 0.0001 0.01 149.842 22450.72
X8 0.0128 0.14 21.719 476.09

Table 2: Standardized sample feature parameter table.

FVP MAE SD SKEW KURT
X1 0.002288 0.009955 −9.129 83.168
X2 0.002177 0.002601 −0.815 1.417
X3 0.000271 0.000338 0.582 −0.318
X4 0.001911 0.002787 2.693 6.828
X5 0.004687 0.005974 3.185 28.308
X6 0.009612 0.015493 −2.814 7.048
X7 0.002019 0.151258 149.842 22450.73
X8 0.007068 0.074267 21.726 476.37
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Te ftness update function is designed with the re-
construction error of each layer of the DBN, and the model
parameters with the smallest mean reconstruction error are
obtained by updating when m is set diferently. After many
experiments, when the number of RBM layers is set to 3 and
the neuron adjustment parameter is set to 7, the DBN
network has a better efect. At this time, the number of
neurons in the input layer of the RBM is 34, and the number
of neurons in the output layer is 12. Figure 5 shows the RBM
reconstruction error from the input layer to the hidden layer
and from the hidden layer to the output layer. During
training, the parameters are updated every 300 samples, and
the number of iterations is 100.

In the fgure, h1 is the reconstruction error from the
RBM input layer to the hidden layer, and h2 is the re-
construction error from the RBM hidden layer to the output
layer. It can be seen from the fgure that the reconstruction
error is almost 0.0001 when the iteration reaches 40 times. At
this time, the model has a better feature extraction efect.

6.3.2. DBN-DNN Model Training. In order to reduce the
complexity of the rule extraction process in the experiment,
a DNN network with one hidden layer is designed for the
model training. Table 1 shows the total number of various
attack identifers in KDD CUP99, and the randomly selected
ones from the diferent attack types during model training,
that is, the number of training and testing samples.

As shown in Table 3, there are 18,000 training samples
and 10,000 test samples. Te number of iterations of the
DNNnetwork during training is set to 20. Figure 6 shows the
results after 20 training sessions.

It can be seen from the fgure that the model error is
almost close to 0.001 after 20 sessions of training, and the
trained model is saved for rule extraction.

6.4. Model Rule Extraction. After training the DBN-DNN
model, a decision tree is built to extract the model rules.
First, we calculate the output mean value of each hidden

layer of the neural network, then establish an input rule tree
that describes the characteristics of the input samples and
the rules between the hidden layers of the neural network,
and establish an output rule tree that describes the re-
lationship between the hidden layer and the output of the
neural network, and fnally combine the input rule tree and
the output rule tree to obtain a complete detection rule tree.

6.4.1. Building an Input Rule Tree. Te output result is the
feature of the neural network and the output mean of each
hidden layer, and the output result is the predicted value of
the output mean of each hidden layer corresponding to the
input feature, so the input rule tree is a regression decision
tree. Te number of trees depends on the number of hidden
layers of the deep neural network. Each rule tree uses the
neural network input as the training sample for feature
selection and division. Since the neural network selected in
this experiment to reduce the complexity only contains one
hidden layer, so only one input rule tree needs to be trained.
Te number of training samples is 18,000. Table 3 shows the
sample types in detail. During training, we select the mean
absolute error as the criterion for selecting features and
splits. Te input rules obtained after training the tree model
are shown in Figure 7. It can be seen from the fgure that all
input samples have been divided, and the model selects the
second, third, fourth, and eighth features of the input
samples as the optimal segmentation features to establish
a regression decision tree, and the leaf nodes of the tree are
the hidden layer of the neural network corresponding to the
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Figure 5: RBM layer reconstruction error.

Table 3: DBN-DNN model training data table.

Attack type Number Train Test
Normal 97278 4500 2500
DOS 391458 10500 6455
Probing 4107 2450 800
R2L 1126 500 200
U2R 52 50 45

12 18156 90 3
epoch

0.001

0.002

0.003
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0.005

0.006

lo
ss
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Figure 6: DBN-DNN network training error.
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input sample that outputs the mean predicted value, and the
output of the input rule tree is also used as the input value of
the output rule tree.

6.4.2. Building an Output Rule Tree. Te output rule tree is
used to extract the rules between the hidden layer and the
output layer of the deep neural network. Te input of the
output rule tree is the average output value of each hidden
layer of the neural network corresponding to the sample,
and the number of input values is equal to the number of
hidden layers of the neural network.Te output value of the
output rule tree is the detection result of the deep neural
network, so the output rule tree is a classifcation decision
tree. Since the experiment uses a neural network with

a hidden layer, the output rule tree contains only one input
value. We take the output mean of the neural network
hidden layer of the corresponding sample as the input
sample, and use the neural network output detection type
as the label to build a classifcation decision tree, select the
information entropy as the measurement standard, and use
the sample parameters listed in Table 3 to build the output
rule tree, and the trained output rule tree is shown in
Figure 8.

Te leaf node of the rule tree in the fgure is the fve
detection results of the classifcation, and it is also the output
value of the deep neural network. After the output rule tree is
established, the output of the input rule tree is used as the
input of the output rule tree to establish a detection rule tree
and then to verify the detection results.
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samples = 5
value = 0.35

mae = 0.027
samples = 1094

value = 0.35
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Figure 7: Input rule tree model.
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Figure 8: Output rule tree.
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6.5. ExperimentAnalysis. To verify the detection efect of the
rule tree, the deep neural network is used in the experiment
and the established detection rule tree was used to detect the
sample data. Each time, 18,000 samples were randomly
selected from the experimental dataset according to the
structure of the train in Table 3 as a group. A total of 50
groups were selected for the experiment. Figure 9 shows the
detection results of a group of random data.

As can be seen from the fgure, both the rule treemodel and
the deep neural network can better detect various attack types.
Figure 10 shows the detection accuracy of the two methods.

It can be seen from the fgure that the detection efects of
the two detection methods are almost similar. To compare
the detection efects of the deep neural network and the
detection rule tree more clearly, the precision, recall, and the
F-Measure of the 50 sets of test data were calculated,

respectively. Te mean values are compared, and the cal-
culation results are shown in Table 4.

From the table, it can be further concluded that the
detection result of the rule detection model is almost close to
that of the deep neural network. By combining Figure 10 and
Table 4, it can be seen that the detection accuracy of the rule
model is almost close to the detection accuracy of the neural
network. At the same time, it is afected by the detection
accuracy of the neural network. Te detection efect of the
detection model will vary with the detection efect of the
neural network. Although its detection efect is slightly lower
than that of the neural network, it converts complex
mathematical operations into logical judgments that are
easier to implement in the embedded systems and thus more
conducive to real-time detection.

7. Conclusion

Aiming at the network security problems existing in the
industrial Internet control system of substations, this paper
proposes a security detection method for embedded in-
dustrial IoTgateways based on the deep neural network rule
extraction. By extracting the rules of the DBN-DNN deep
neural network model, as based on the rule tree security
detectionmodel, the model converts the complex calculation
in the neural network into a logical judgment that is easier to
implement in the embedded system, saves the detection cost
while ensuring the detection accuracy, and in addition
improves the detection efciency. By using KDD CUP99 to
verify, the results show that the detection efect of the de-
tection method based on the rule extraction proposed in this
paper is nearly close to the detection efect of the neural
network of the extracted rules, and will improve with the
improvement of the neural network detection efect. Te
extracted detection models are easier to understand and
implement than the deep neural networks, and are more
conducive to integration in the embedded systems. Sub-
sequent work will be carried out to improve the detection
accuracy of the deep neural networks. By comparing dif-
ferent network structures and training methods, a network
model with higher accuracy will be obtained, and the rule
extraction method will be continuously improved.
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Te dataset we used in this paper is available at https://
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.
Readers who are interested in our research can access the
dataset and reproduce our results.
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Table 4: Mean value table of test results of 50 groups of test data.

Method Precision Recall F-measure
Dec-tree 0.9689 0.9814 0.9751
DBN-DNN 0.9691 0.9821 0.9756
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