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With the increase in cyber threats in recent years, there have been more forms of demand for network security protection
measures. Network trafc classifcation technology is used to adapt to the dynamic threat environment. However, network trafc
has a natural unbalanced class distribution problem, and the single model leads to the low accuracy and high false-positive rate of
the traditional detection model. Given the above two problems, this paper proposes a new dataset balancing method named SD
sampling based on the SMOTE algorithm. Diferent from the SMOTE algorithm, this method divides the sample into two types
that are easy and difcult to classify and only balances the difcult-to-classify sample, which not only overcomes the SMOTE’s
overgeneralization but also combines the idea of oversampling and undersampling. In addition, a two-layer structure combined
with XGBoost and the random forest is proposed for multiclassifcation of anomalous trafc, since using a hierarchical structure
can better classify minority abnormal trafc. Tis paper conducts experiments on the CICIDS2017 dataset. Te results show that
the classifcation accuracy of the proposed model is more than 99.70% and that the false-positive rate is less than 0.34%, indicating
that the proposed model is better than traditional models.

1. Introduction

1.1. Background. In recent years, with the rapid populari-
zation of computer network applications in various felds,
network threats have become increasingly serious. Many
mechanisms, such as frewalls, antivirus, antimalware, and
spam flters, are used as tools to protect network security.
Network trafc classifcation is also an efective and powerful
network security technique. However, today’s cyberattacks
are systematic and long-term. In addition, the trafc data in
the network are so large and complex, making them difcult
to analyze and detect. Machine learning (ML) [1] methods
are widely used for network trafc detection.

Machine learning can identify abnormal trafc by
learning features in a large amount of data. It can be divided
into supervised learning and unsupervised learning.

Supervised learning refers to learning labeled training data
to discover relationships between input and output data for
prediction and classifcation, including deep neural network
(DNN) [2], decision tree (DT) [3], support vector machine
(SVM) [4], K nearest neighbor (KNN) [5], and Gaussian
naive Bayes (Gaussian NB) [6]. Unsupervised learning refers
to learning and summarizing patterns and structures of
unlabeled training data for prediction and classifcation,
including principal component analysis (PCA) [7] and K-
means clustering [8].

1.2. Problem Statement. Network trafc has a natural un-
balanced class distribution problem. For example, there is far
more normal trafc than abnormal trafc in the network. To
solve the problem of the unbalanced dataset, the traditional
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method is to sample the dataset. SMOTE [9] is the widely
used method of sampling data based on the spatial distri-
bution of samples, and its process is simple but has many
disadvantages, such as overgeneralization. To deal with these
disadvantages of the SMOTE algorithm, this paper proposes
a new sampling algorithm named SD sampling, which can
obtain a dataset that is easier to classify.

Traditional network intrusion detection based on ma-
chine learning usually uses a single algorithm to classify
trafc, which leads to many problems. First of all, single
machine learning algorithms have some limitations, such as
being easy to overft or underft and difcult to deal with
multiclassifcation problems, which lead to a low detection
rate. In addition, some single algorithms can only guarantee
a high detection rate for the dataset with specifc data dis-
tribution, resulting in poor generalization ability. Terefore,
this paper proposes a new detection structure, which con-
tains two ensemble models, which can ensure a high de-
tection rate and improve the generalization ability of the
model.

1.3.KeyContributions andPaperOrganization. In summary,
the paper’s main contributions are as follows:

(1) We propose a new sampling algorithm named SD
sampling. Te SD sampling algorithm combines
oversampling and undersampling methods and
considers the spatial distribution of samples during
sampling, which overcomes the overgeneralization
problem of the SMOTE algorithm to some extent.

(2) We propose a two-layer structure combined with
XGBoost [10] and the random forest [11] to realize
multiclassifcation of trafc, which improves the
detection rate and generalization ability of the
model.

(3) We evaluate the performance of the SD sampling
algorithm and the proposed classifcation model
using the CICIDS2017 dataset [12]. Compared with
other sampling modes and classifcation models, we
verify the advantages of the proposed method.

Te remainder of the paper is organized as follows:
Section 2 introduces the research of ML-based intrusion
detection and unbalanced datasets. Section 3 introduces the
framework of the proposed model and details each module,
including the workfow of the SD sampling algorithm and
the two-layer structure combined with XGBoost and the
random forest. In Section 4, we evaluate the performance of
the SD sampling algorithm and the proposed detection
model using the CICIDS2017 dataset. Finally, Section 5
summarizes and discusses future directions.

2. Related Work

2.1. Improved Machine Learning Algorithms for Network
Trafc Classifcation. Machine learning is widely used in
network intrusion detection. However, traditional machine
learning models have the problem of low accuracy, which
can be solved by the following methods: ensemble learning,

model optimization, and sample optimization. For the
reader’s convenience, we provide the explanation of acro-
nyms, as shown in Table 1.

In terms of ensemble learning, Gao et al. [13] proposed a
new method of ensemble voting based on classifer reso-
lution. For each base classifer, a classifcation prediction is
made with a base classifer, and the probability of correctly
classifying samples into each class is calculated, which is
recorded as the classifcation weights of the base classifer.
When voting, the weights of the corresponding classes of
base classifers with the same classifcation result are added,
and then, the sum of the weights of each class is compared.
Te class with higher weights is taken as the fnal result. Xia
and Sun [14] proposed an ensemble learning scheme using
isolated forest (IForest) [15], local outlier factor (LOF), and
K-means clustering methods. Te base classifers are IForest
and LOF, making them complementary in detecting global
outliers and local outliers. As for the selection of the k-means
initial clustering center, the normal points detected by the
IForest and LOF can be selected as the initial clustering
center to solve the problem of poor clustering efects if the
initial clustering center contains outliers. Te experimental
results show that the accuracy of the model has improved
signifcantly. Ling et al. [16] proposed a multiclassifer en-
semble algorithm based on probability weighted voting to
improve model accuracy. Xu et al. [17] proposed a weighted
majority algorithm based on the random forest to improve
the performance of the random forest, and the model is
trained on nontrafc datasets, so it has the ability to detect
unknown trafc types. Ren et al. [18] proposed category
detection and a partition technique to improve the detection
accuracy of minority attacks (Probe, U2L, R2L) on the
random forest. Data and Aritsugi [19] proposed an incre-
mental learning framework, which can avoid the problem of
conceptual drift in trafc. Aceto et al. [20] proposed an
encrypted trafc classifcation framework based on hard/soft
combinators, which takes the existing high performance
trafc classifcation model as a base classifer and considers
the training requirements and learning philosophy for im-
proving classifcation performance. Possebon et al. [21] in-
vestigated and evaluated a wide range of metalearning
techniques, including voting, stacking, bagging, and boosting.

In terms of model optimization, Yang and Zhang [22]
proposed the use of a multigranularity cascade algorithm
based on the traditional isolated forest model. Te tradi-
tional isolated forest has some problems, such as unde-
tectable local outliers parallel to the axis and a lack of
sensitivity and stability to high-dimensional data outliers. To
solve these problems, an isolation mechanism based on a
stochastic hyperplane is proposed. Te stochastic hyper-
plane simplifes the isolation boundary of the data model by
using the linear combination of multiple dimensions, and
the isolation boundary of the stochastic linear classifer can
detect more complex data patterns. Experiments show that
the improved isolated forest algorithm has better robustness
to complex anomaly data patterns. Qiu et al. [23] used an
LSTM model with a sliding window to avoid the problem of
concept drift in streaming data. Giuseppe et al. [24] pro-
posed a novel multimodal data allocation framework
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MIMETIC for encrypted trafc classifcation, which can
fully exploit the heterogeneity of trafc data by learning
intramodal and intermodal dependencies and overcome the
performance limitations of single-modal data.

In terms of sample optimization, Gu and Lu [25] pro-
posed the method of feature transformation of data by using
naive Bayes feature embedding. Te dataset and kernel
density estimates are calculated, and then, the marginal
density ratios of each feature of the sample are calculated
using the naive Bayes’ principle. Taking the marginal density
ratio of each feature as a new feature, which makes the

dataset easier to classify, Ren et al. [18] proposed an outlier
detection algorithm based on KNN, which removes some
outliers to help the model classify trafc more easily.

We summarize all of the above work of improved
machine learning algorithms, as shown in Table 2.

2.2. Balanced Dataset. Tere are two approaches to solving
the problem of the unbalanced dataset, the frst is from the
perspective of the data and the second is from the per-
spective of the algorithm.

Table 1: List of the acronyms used in the manuscript.

Acronym Defnition
SD sampling Difcult set sampling
SMOTE Synthetic minority oversampling technique
XGBoost Extreme gradient boosting
ML Machine learning
DNN Deep neural network
DT Decision tree
SVM Support vector machine
KNN K nearest neighbor
GNB Gaussian naive Bayes
PCA Principal component analysis
IForest Isolated forest
LOF Local outlier factor
U2L Unix to Linux
R2L Remote to local
LSTM Long short-term memory
MIMETIC Mobile encrypted trafc classifcation using multimodal deep learning
wGAN-GP Gradient penalty Wasserstein generative adversarial networks
AUC Area under the curve
TGAN Tabular gan
HM-loss A cost-sensitive method for loss calculation

Table 2: Related works of improved machine learning algorithms.

Detailed method Literature Description Dataset Best accuracy
(%)

Ensemble
learning

[13] Ensemble voting based on classifer resolution and a
multitree ensemble model KDDTest+ 85.20

[14] An AdaBoost model combining IForest, LOF, K-means
algorithms

Datasets in UCI machine
learning library 96.29

[16] A multiclassifer ensemble algorithm based on probability
weighted voting NSL-KDD 95.70

[17] A weighted majority algorithm based on the random forest NSL-KDD 90.48

[18] A multilayer random forest model based on category
detection and a partition technique KDD Cup 1999 94.36

[19] An incremental learning framework CICIDS2017 86.70
[20] A framework based on hard/soft combinators Real trafc data 79.20

[21] Investigate and evaluate voting, stacking, bagging,
boosting ensemble frameworks

Datasets in UCI machine
learning library 99.97

Model
optimization

[22] A multidimensional stochastic hyperplane isolation
method Personal real data AUC� 100.00

[23] Te stacked LSTM model combines the idea of sliding
windows Personal real data AUC� 91.55

[24] A multimodal data allocation framework MIMETIC Real trafc data 96.74
Sample
optimization

[25] Naive Bayes feature embedding method UNSW-NB15/CICIDS2017 93.75/98.92
[18] An outlier detection algorithm based on KNN KDD Cup 1999 94.36
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In terms of data, Zhang et al. [26] proposed a method to
generate samples based on the variational autoencoder
generation model to balance the dataset. Te core idea is to
expand only boundary samples, which are most likely to
cause confusion to machine learning when expanding mi-
nority samples. Liu et al. [27] proposed the method of using
wGAN-GP, an improved method of the generative adversity
network, to generate a small number of samples and balance
the dataset. Yan and Han [28] improved the SMOTE al-
gorithm and put forward three-point domains that are di-
vided according to the number of majority samples around
samples to generate samples. Seo and Kim [29] proposed a
support vector machine model to predict the optimal
sampling rate of the SMOTE algorithm and then get an
optimal sampling dataset. Wang and Sun [30] put forward a
new sampling method, which takes into account the
problems of class overlap and data distribution lacking in the
traditional oversampling method. Compared with the tra-
ditional SMOTE algorithm, the AUC for four datasets in-
creases by 1.6% on average. Liu et al. [31] proposed a
technique for sampling samples based on the difculty of
sample classifcation. Park and Hyunhee [32] proposed a
method combining TGAN and slow start to generate
samples and prevent overftting caused by oversampling.
Wang et al. [33] proposed an encrypted trafc generation
method based on GAN to generate minority class samples
and balance this dataset.

In terms of algorithm, Gupta et al. [34] proposed a
method to weight samples and use cost-sensitive DNN for
classifcation, to reduce the impact of the unbalanced
dataset. Sharma et al. [35] proposed a weighted extreme
learning machine to weight each classifer and alleviate
dataset imbalance. Li et al. [36] proposed a method called
HM-loss cost, which pays more attention to the misclassifed
samples in minority classes when calculating the loss. Hu
et al. [37] proposed a method of batch balancing datasets
based on deep learning to ensure that the number of samples
in each class is equal in each batch, so as to achieve the
balance of datasets.

We summarize all of the above work of balanced
datasets, as shown in Table 3.

3. Proposed Model

In this section, we introduce the proposed framework and its
workfow. Te framework runs through the overall process
of network trafc detection and has a high detection rate for
various kinds of trafc. As shown in Figure 1, the framework
consists of four main modules as follows:

(1) Preprocessing module: raw data are preprocessed to
make the processed data easier to understand and
process.

(2) Data sampling module: the number of samples in
each class is counted, and data are balanced using the
proposed SD sampling algorithm.

(3) Feature selection module: high-weight features are
selected from all features using the random forest,
which will facilitate training processing.

(4) Classifcation module: A two-layer structure com-
bined with XGBoost and the random forest is used to
classify trafc.

3.1. Preprocessing Module. Tis module focuses on pre-
processing raw data. First, missing and duplicate values are
deleted from the data. Second, the data are undersampled to
obtain a portion of the data for model training. Ten, the
dataset is divided into the train set and the test set. Finally,
the train set and the test set are normalized and one-hot
encoded.

3.2. Data Sampling Module. Tis module focuses on bal-
ancing classes using the sampling algorithm. Te SMOTE
algorithm is a commonly used class balancing algorithm.
However, the SMOTE algorithm has some limitations, so
this paper proposes a new sampling algorithm SD sampling
based on SMOTE, which can mitigate the defects of the
SMOTE algorithm to some extent and get better results. Te
specifc process of the SMOTE algorithm and SD sampling
algorithm is introduced in the following sections.

3.2.1. SMOTE: Synthetic Minority Oversampling Technique.
SMOTE is an oversampling algorithm, which can auto-
matically calculate the ratio of the majority class sample to
the minority class sample and oversample the samples of the
minority class based on the distance metric. Its sampling
strategy is to choose one sample randomly among k nearest
neighbors of the sample of each minority class and then
select a random point on the line between these two samples
as the newly synthesized minority class sample.

Te specifc process is as follows:

(1) For each sample x in a minority class, we calculate
the Euclidean distance of all samples in that class and
obtain the k nearest samples of that sample by
comparison.

(2) We selecting a sample randomly from k nearest
samples and denote it as xneighbor.

(3) We generate the new sample xnew. Te new sample
xnew is

xnew � x + rand(0, 1)∗ xneighbor − x􏼐 􏼑. (1)

In the formula, rand(a, b) represents generating a
random number between a and b.

Te SMOTE algorithm process is concise and has been
widely used, but it has several disadvantages:

(1) Te algorithm is prone to the problem of overgen-
eralization. Minority classes are sparser than ma-
jority classes, so there is a high chance of class mixing
when sampling a minority class, which will make the
boundary of them more and more blurred and in-
crease the difculty of classifcation.

(2) Te algorithm simply oversamples minority class
samples indiscriminately and does not consider its
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spatial distribution. Terefore, the sampling algo-
rithm will not be targeted.

(3) Te algorithm can only oversample minority class
samples and does not perform any processing on
majority class samples.

3.2.2. SD Sampling. Based on the above limitations of the
SMOTE algorithm, a new sampling algorithm called SD
sampling is proposed in this paper. SD sampling refers to
literature [31] and makes improvements on its basis. Te
standard of the literature’s algorithm for selecting a difcult
classifed dataset is too strict, and the method for sampling
minority classes is too simple. In response to these problems,
we propose the concept of instance hardness (IH), which
makes the selection criteria more fexible, and use the
SMOTE algorithm to oversample minority classes. In ad-
dition, the SD sampling algorithm combines the ideas of
oversampling and undersampling and takes into account the
spatial distribution characteristics of each sample so that it
also mitigates the disadvantages of SMOTE to some extent.

Te SD sampling algorithm starts from the fact that the
SMOTE algorithm cannot deal with the data distribution
problem of the unbalanced dataset. As shown in Figure 2,
samples are frst divided into two parts according to their
spatial distribution, one is an easily classifed dataset,
denoted as SE, and the other is a difcult-to-be classifed
dataset, denoted as SD. We proposed a concept called in-

stance hardness (IH) as a criterion to assess whether the
sample is easy to classify. Te higher the IH, the harder it is
to classify sample x. IH is calculated as

IH �
􏽐

k
neighbor�1 label xneighbor􏼐 􏼑􏼐 􏼑! � label(x)

k
, (2)

where the label(x) represents the label of x, xneighbor rep-
resents the near neighbor sample of x, and k represents the
number of neighbors of the sample x.

Keeping SE constant, for SD, since most samples in the
majority class are redundant, K-means clustering is per-
formed for those majority class samples, and then, cluster
centers are used to replace samples in the cluster. In ad-
dition, SMOTE oversampling is performed for those mi-
nority class samples in SD. Te SDsampling algorithm is
written as Algorithm 1.

3.3. Feature Selection Module. Tis module focuses on
selecting features. It is difcult for machine learning algo-
rithms to learn from high-dimensional data. Feature se-
lection is a useful method to solve these problems, and it
selects features with high weights for training in advance,
which can improve performance and save computational
resources at the same time.

Tis module uses a random forest-based feature selec-
tion method, which can evaluate the weight of each feature

Table 3: Related works of balanced datasets.

Detailed
method Literature Description Dataset Best accuracy (%)

Data

[26] Te variational autoencoder generates
samples UNSW-NB15 96.13

[27] Te wGAN-GP method generates samples NSL-KDD/UNSW-NB15/
CICIDS2017 86.69/94.90/99.84

[28] A three-point domain sample generation
method based on the SMOTE algorithm NSL-KDD 99.00

[29] Te SVR model predicts SMOTE sampling
proportion KDD Cup 1999 98.10

[30] Te SMOTE algorithm combining clustering
and instance hardness

DoHBrw2020/CIC_Bot/CIC_Inf/
DOS2017/UNSW/Botnet2014

AUC� 89.60/90.21/92.09/
75.92/93.19/73.81

[31] A technique for sampling samples based on
the difculty of sample classifcation NSL-KDD/CICIDS2018 82.84/96.99

[32] A method combining TGAN and slow start KDD cCup 1999 93.98

[33] An encrypted trafc generation method
based on GAN ISCX 99.10

Algorithm

[34] A cost-sensitive deep neural network NSL-KDD/CIDDS-001/
CICIDS2017 92.00/99.00/92.00

[35] A method of weighted extreme learning
machine UNSW-NB15/KDD cup 1999 96.12/99.71

[36] Te HM-loss cost method Personal real data F1� 87.00

[37] A method of batch balancing datasets based
on deep learning CHB-MIT/BonnEEG/FAHXJU 95.96/100.00/87.93
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by the Gini index. Te random forest is composed of many
CART trees [38], and its fnal classifcation result is decided
by these CART trees through voting. Te Gini index de-
scribes purity, and the smaller the value, the higher the
purity.Terefore, in CART trees, the Gini index is used as an
assessment of the change in the purity of nodes before and
after using feature splitting nodes, and the smaller the value,
the better the feature. For the sample set D, suppose there are
K classes, the sample size of the kth class is |Ck| and the size

of D is |D|, and then, the Gini index expression for the
sample set D is

Gini(D) � 1 − 􏽘
K

k�1

Ck

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌

|D|
􏼠 􏼡

2

. (3)

For a CART tree, the number of samples in a node q is
Nq, and the number of samples in a node q with a class k is
Nqk. Te Gini index of the node q of the ith tree is
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Giniiq � 1 − 􏽘
K

k�1
p

i
qk􏼐 􏼑

2
, (4)

where pqk is the proportion of the class k in the node q,
calculated as Nqk/Nq.

For the feature X, the importance of the jth feature at the
ith tree node q, that is, the amount of change in the Gini
index before and after splitting the node q, is

ΔGiniijq � Giniiq − Giniil − Giniir, (5)

where Giniil and Giniir denote the Gini index of two new
nodes after branching.

Te set of nodes in which the feature Xj appears in the ith

tree is Q, and then, the importance of the feature Xj in the ith

tree is

Giniij � 􏽘
q∈Q
ΔGiniijq. (6)

Tere are I trees in the random forest, and feature
importance is denoted as FI. Ten, the importance of the
feature Xj is

FIj � 􏽘

I

i

Giniij. (7)

Finally, all the obtained importance scores are nor-
malized and calculated as

FInormalized
j �

FIj
􏽐

J

j′�1 FIj′
, (8)

where J is the number of features.
Finally, top i features with the highest weight are selected

for classifcation.

3.4. Classifcation Module. Tis module focuses on classi-
fying trafc. We propose a two-layer structure combined
with XGBoost and the random forest. Te frst layer uses the
XGBoost model and distinguishes between normal and
abnormal samples in the dataset and the second layer uses
the random forest model to distinguish the type of attack for
each abnormal sample.

XGBoost is a boosted tree model, which is a combination
of many tree models together to form a very powerful in-
tegrated classifer. Te idea of XGBoost is to train K trees,
and the fnal prediction result is the sum of the predicted
values of those K trees. It is an improvement on the gradient
boosting algorithm, which can get a high accuracy rate in a
very short time.

Te random forest is an ensemble model that uses many
decision trees to classify samples for prediction and fnally
votes on the classifcation result. Te randomness of the
random forest is refected in random and unreleased data
sampling and random feature selection, which leads to faster
training speeds and higher accuracy.

Te two-layer structure combined with XGBoost and the
random forest uses a hierarchical approach to multiclassify
trafc, and the hierarchical approach refers to two pieces of

literature [39, 40] on trafc multiclassifcation. However,
diferent from both of them, this structure is mainly used to
identify abnormal trafc types rather than application trafc
types. Its workfow is shown in Figure 3, which mainly
includes three steps as follows:

(1) Dataset construction:Te train set and the test set are
replicated into two copies, and labels are recoded.
For the train set and test set, the frst part, denoted as
trainset1 and testset1, is labeled with all normal
samples as 0 and abnormal samples as 1 using
RecodeMethod1.

trainset1 � RecodeMethod1(trainset),

testset1 � RecodeMethod1(testset).
(9)

Te second part, denoted as trainset2 and testset2, is
labeled with all normal samples as 0 and abnormal
samples sequentially coded as 1, 2, 3, . . . , m accord-
ing to categories using RecodeMethod2, where m is
the number of abnormal categories.

trainset2 � RecodeMethod2(trainset),

testset2 � RecodeMethod2(testset).
(10)

(2) Model training:Te XGBoost model is used to train on
trainset1 to obtain a binary classifer, denoted as clf1,
and the random forest model is used to train on
trainset2 to obtain a multiclass classifer that can dis-
tinguish the types of abnormal trafc, denoted as clf2.

(3) Classifcation: Te trained classifer clf1 is used to
classify testset1, and the samples classifed as normal
are noted as data0 and those classifed as abnormal
are noted as data1.

data0, data1 � clf1 testset1( 􏼁. (11)

We select the data contained in data1 from testset2.Ten,
the trained classifer clf2 is used to classify and predict
testset2, and the samples classifed as normal are noted as
added to data0 and those classifed as abnormal are noted as
data1, data2, . . ., datam by class.

data0, data1, . . . , datam � clf2 testset2( 􏼁. (12)

In this way, the result of multiclassifcation of trafc is
obtained.

4. Experiments

In this section, we evaluate the classifcation performance of
the framework through experiments. First, we introduce the
experimental environment, the CICIDS2017 dataset, and
evaluation metrics in detail. Ten, we adjust some of the
parameters used in the proposed framework and fnally
compare and analyze the classifcation results.

4.1. Experimental Environment. Te details of all experi-
mental implementation confgurations are shown in Table 4.

Security and Communication Networks 7



4.2. Dataset. Te CICIDS2017 dataset is a widely used
dataset collected by the Canadian Institute for Cybersecurity
in 2017. It contains both normal and abnormal trafc, and it
is generated by simulating in a real network environment,
making it closer to the realistic situation and more reliable.

Te CICIDS2017 dataset provides the original pcap
package, and we extracted the statistical features from them.
Since the transmission content is mostly encrypted, semantic
features are difcult to obtain from trafc. However, the
statistical distribution of normal trafc packets and ab-
normal trafc packets in a session is diferent, such as the
number and length of packets. Terefore, we use statistical
features instead of original trafc for classifcation in this
paper. Note that all the packets of fow/bifow need to be
collected at the end of the session, and then, the statistical
features of the fow can be calculated.

At the sample size level, the CICIDS2017 dataset con-
tains a total of 2,830,743 records, including 2,273,097 rec-
ords for normal trafc and 557,646 records for abnormal
trafc, which are extremely unbalanced. Terefore, after
performing regular operations (such as deleting missing
values, normalizing data, and encoding labels), we under-
sample the CICIDS2017 dataset, which not only mitigates
the negative impact of the unbalanced dataset but also re-
duces the training time. Te category distribution of the
processed dataset is shown in Figure 4.

At the feature size level, the CICIDS2017 dataset is a
high-dimensional dataset, which contains 84 feature col-
umns and 1 label column. In order to improve the gener-
alization ability of the model, we remove the “Flow ID,”
“Source IP,” “Source Port,” “Destination IP,” and “Time
stamp” features. As a result, the fnal dataset contains only 79

trainset1
(label 0, 1)

trainset2
(label 0, 1, …, m)

trainset

Recode 
method1

Recode 
method2

clf1

clf2

XGBoost

RandomForest

testset

testset1

data0

data1
(temporary)

testset2

Recode
Method1

clf1
normalnormal

abnormal

data1 ∩ testset2

data1

data2

datam

...

data3

Recode
Method2

clf2

Train process

Test process

Figure 3: Workfow of the two-layer structure combined with XGBoost and the random forest.
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feature columns and 1 label column.Tese features are listed
and classifed in Table 5.

Finally, the dataset is divided into a train set and a test set
in a ratio of 3 :1.

4.3. Evaluation Metrics and Baseline Methods. In order to
accurately evaluate the two-layer structure combined with
XGBoost and the random forest, we use the six evaluation
criteria: accuracy, recall, precision, F1 score, false-negative
rate (FNR), and false-positive rate (FPR).

As shown in Table 6, we frst calculate the confusion
matrix according to real labels and predicted labels. True
positive (TP) refers to the sample with both positive real
values and predicted values, whereas false positive (FP)
refers to the sample with negative real values and positive
predicted values. False negative (FN) refers to the sample
with positive real values and negative predicted values,
whereas true negative (TN) refers to the sample with both
negative true values and predicted values.

Accuracy refers to the percentage of correctly predicted
samples in the total sample, which can represent the overall
predictive ability of the model as follows:

Accuracy �
TP + TN

TP + TN + FP + FN
. (13)

Recall is the ratio of the number of samples that are
predicted to be positive to the number of samples with
positive real values, which can represent the coverage rate of
prediction as follows:

Recall �
TP

TP + FN
. (14)

Input: Imbalanced train set S, scaling factor K, instance hardness threshold IH′, and sample threshold UB
Output: New train set SN

(1) Step1: Distinguish between easy sets and difcult sets for each sample∈ S do
(2) Compute its K nearest neighbors and IH if IH> IH′ then
(3) Put the samples into the difcult set
(4) end
(5) end
(6) Difcult set SD and easy set SE � S − SD

(7) Step2: Compress the majority samples in the difcult set by the cluster centroid
(8) Take all the majority samples from SD and set it as SMaj
(9) Use the K-means algorithm with K cluster
(10) Use the coordinates of K cluster centroids and replace the majority samples in SMaj
(11) Compressed the majority sample set SMaj
(12) Step3: Sample the minority samples in the difcult set using the SMOTE algorithm
(13) Take all the majority samples from SD and set it as SMin
(14) for each sample ∈ SMin do
(15) Using SMOTE sampling, the sampling threshold is set to UB
(16) Putting new samples into SZ

(17) end
(18) Step : Merge sample sets
(19) New train set SN � SE + SMaj + SMin + SZ

ALGORITHM 1: SDsampling Algorithm.
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Figure 4: Undersampled CICIDS2017 dataset.
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Precision is the ratio of the number of samples with
positive real values to the number of samples predicted to be
positive, which can represent the ability of the model to
predict positive samples as follows:

Precision �
TP

TP + FP
. (15)

Te F1 score is the harmonic mean of precision and
recall and can be represented as follows:

F1 − score �
2 · precision · recall
precision + recall

. (16)

FNR is the ratio of the number of samples with positive
predicted values and negative real values to the number of
samples with positive predicted values and can be repre-
sented as follows:

FNR �
FN

TP + FN
� 1 − precision. (17)

FPR is the ratio of the number of samples that are not
predicted to be positive to the number of samples with
positive real values and can be represented as follows:

FPR �
FP

TP + FP
� 1 − recall. (18)

Additionally, we also use four commonly used machine
learning models including the k-nearest neighbor (KNN),
decision tree (DT), support vectormachine (SVM), and deep
neural network (DNN) to conduct comparative experi-
ments, and their parameters are shown in Table 7.

4.4. Parameter Selection. In order to achieve the best clas-
sifcation efect of the model, we select the important pa-
rameters in each module and select the optimal results to
improve model accuracy.

In the feature selectionmodule, we use a feature selection
method based on the random forest. We need to select the
top i features with the highest weight as the fnal result and
set i to 10, 20, 30, 40, 50, 60, and 70 for comparative ex-
periments. Finally, we use the random forest and XGBoost to
classify the processed dataset and use the average value of the
F1 score to select the optimal number of features.

As shown in Figure 5, the average value of the F1 score of
the random forest and XGBoost is obtained by using the
feature selection method based on the random forest, and
the value is the highest when the number of features is 50.
Terefore, the optimal feature number is 50.

In the classifcation module, for the random forest and
XGBoost models used in the two-layer structure, we adjust
the important parameters of the two models, respectively,
and obtain the optimal results, and the selected parameters
are shown in Table 8.

4.5.ClassifcationResults andAnalysis. Our experiment aims
to explore the advantages of the SD sampling algorithm and
two-layer structure combined with XGBoost and the ran-
dom forest in binary and multiclass classifcation.

4.5.1. Infuence of the SD Sampling Algorithm. First, we
sample the CICIDS2017 dataset in four diferent modes: no

Table 5: Te feature set of CICIDS2017.

Category Feature name Count
Flow label Destination port, protocol, fow duration 3

IAT Flow IATmean, fow IATstd, fow IATmax, fow IATmin, fwd IAT total, fwd IATmean, fwd IATstd,
fwd IATmax, fwd IATmin, bwd IAT total, bwd IATmean, bwd IAT std, bwd IATmax, bwd IATmin 14

Forward/backward trafc
packets

Total fwd packets, total backward packets, total length of fwd packets, total length of bwd packets, fwd
packet length max, fwd packet length min, fwd packet length mean, fwd packet length std, bwd packet
length max, bwd packet length min, bwd packet length mean, bwd packet length std, min packet
length, max packet length, packet length mean, packet length std, fwd header length, bwd header
length, packet length variance, average packet size, avg fwd segment size, avg bwd segment size, fwd
header length, subfow fwd packets, subfow fwd bytes, subfow bwd packets, subfow bwd bytes,
Init_Win_bytes_forward, Init_Win_bytes_backward, act_data_pkt_fwd, min_seg_size_forward

31

Flags Fwd PSH fags, bwd PSH fags, fwdURG fags, bwdURG fags, FIN fag count, SYN fag count, RST fag
count, PSH fag count, ACK fag count, URG fag count, CWE fag count, ECE fag count 12

Flow rate Flow bytes/s, fow packets/s, fwd packets/s, bwd packets/s, fwd avg bytes/bulk, fwd avg packets/bulk,
fwd avg bulk rate, bwd avg bytes/bulk, bwd avg packets/bulk, bwd avg bulk rate 10

Other Down/up ratio, active mean, active std, active max, active min, idle mean, idle std, idle max, idle min 9

Table 4: Experimental environment.

Software/hardware Details
OS Windows 10
CPU Intel (R) Core (TM) i7-8750H CPU @2.20GHz
Memory 8.0 GB
Disk 1.0 TB
Python 3.6.9
Framework Sklearn 0.24.2 + torch 1.10.0
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sampling, SMOTE sampling, random sampling, and SD
sampling.Ten, we classify the processed dataset with a two-
layer structure. Finally, we evaluate the results as per the six
evaluation criteria.

As shown in Tables 9–12, it is found that the classif-
cation performance of the above four sampling modes is
roughly the same in the case of binary classifcation.
However, in the case of multiclass classifcation, the clas-
sifcation ability of the model for minority samples in the
dataset sampled by the SD sampling algorithm has signif-
cantly improved, and the identifcation ability of each attack
can reachmore than 99%.Te reason is that the SD sampling
algorithm oversamples minority samples and clusters ma-
jority samples in SD. In this way, the imbalance ratio

between majority samples and minority samples will be
reduced, and the sampled dataset is more conducive to the
model to distinguish the abnormal fow with minority
samples.

4.5.2. Infuence of the Two-Layer Structure. In order to verify
that the two-layer structure is better than other models, we
conduct comparative experiments using six models, in-
cluding the four baseline models mentioned in Section 4.3
and the single-layer XGBoost and random forest model, and
the experimental results are shown in Table 13. It is found
that under the same sampling mode, the six evaluation
metrics of the two-layer structure are signifcantly higher
than those of the other four models.

Table 6: Confusion matrix.

Confusion matrix Predicted
1 0

Real 1 TP FN
0 FP TN

Random Forest
XGBoost
Average
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Figure 5: Feature selection based on the random forest.

Table 7: Model parameters of comparative experiments.

Model Parameters
KNN n_neighbors’: 5

DT
min_samples_leaf’: 3
max_features’� none
criterion’� “entropy”

SVC

C’: 1.0
“kernel”: “rbf”
“degree”: 3

gamma’: “scale”

DNN
Epoch’: 1000

batch_size’: 10000
learning_rate’: 0.01
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Table 8: Model parameters of the two-layer structure.

Model
Parameters

Original SMOTE Random sampling SD sampling

XGBoost

n_estimators’: 90 “n_estimators”: 80 “n_estimators”: 80 “n_estimators”: 80
max_depth’: 8 “max_depth”: 8 “max_depth”: 8 “max_depth”: 8

learning rate’: 0.15 “learning_rate”: 0.2 “learning_rate”: 0.2 “learning_rate”: 0.2
gamma’: 0.01 “gamma”: 0.001 “gamma”: 0.001 “gamma”: 0.001

RF
“n_estimators”: 20 “n_estimators”: 60 “n_estimators”: 60 “n_estimators”: 20

“min_samples_leaf”: 1 “min_samples_leaf”: 1 “min_samples_leaf”: 1 “min_samples_leaf”: 1
“max_features”: none “max_features”: “log2” “max_features”: “log2” “max_features”: none

Table 9: Classifcation performance of original datasets.

Precision Recall F1 score FNR FPR
Original layer 1
Benign 0.9992 0.9980 0.9986 0.0008 0.0020
Abnormal 0.9980 0.9992 0.9986 0.0020 0.0008
Accuracy 0.9986
Macro avg 0.9986 0.9986 0.9986 0.0014 0.0014
Weighted avg 0.9986 0.9986 0.9986 0.0014 0.0014
Original layer2
Benign 0.9992 0.9980 0.9986 0.0008 0.0020
DoS hulk 0.9846 0.9988 0.9917 0.0154 0.0012
DDoS 1.0000 1.0000 1.0000 0.0000 0.0000
PortScan 0.9996 0.9996 0.9996 0.0004 0.0004
DoS goldeneye 1.0000 0.9988 0.9994 0.0000 0.0012
FTP-patator 0.9993 1.0000 0.9997 0.0007 0.0000
DoS slowloris 0.9948 0.9941 0.9944 0.0052 0.0059
DoS slowhttptest 0.9969 0.9969 0.9969 0.0031 0.0031
SSH-patator 1.0000 0.9988 0.9994 0.0000 0.0012
Bot 0.9979 0.9918 0.9949 0.0021 0.0082
Infltration 1.0000 0.5556 0.7143 0.0000 0.4444
Heartbleed 1.0000 0.6667 0.8000 0.0000 0.3333
Web attack 0.9906 0.9813 0.9859 0.0094 0.0187
Accuracy 0.9978
Macro avg 0.9972 0.9369 0.9596 0.0028 0.0631
Weighted avg 0.9978 0.9978 0.9978 0.0022 0.0022

Table 10: Classifcation performance of the sampled dataset with the SMOTE algorithm.

Precision Recall F1 score FNR FPR
SMOTE layer1
Benign 0.9999 0.9977 0.9988 0.0001 0.0023
Other 0.9977 0.9999 0.9988 0.0023 0.0001
Accuracy 0.9988
Macro avg 0.9988 0.9988 0.9988 0.0012 0.0012
Weighted avg 0.9988 0.9988 0.9988 0.0012 0.0012
SMOTE layer2
Benign 0.9999 0.9977 0.9988 0.0001 0.0023
DoS hulk 0.9819 1.0000 0.9909 0.0181 0.0000
DDoS 1.0000 1.0000 1.0000 0.0000 0.0000
PortScan 1.0000 1.0000 1.0000 0.0000 0.0000
DoS goldeneye 0.9988 0.9980 0.9984 0.0012 0.0020
FTP-patator 1.0000 1.0000 1.0000 0.0000 0.0000
DoS slowloris 0.9955 0.9941 0.9948 0.0045 0.0059
DoS slowhttptest 0.9962 0.9946 0.9954 0.0038 0.0054
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Table 10: Continued.

Precision Recall F1 score FNR FPR
SSH-patator 1.0000 0.9975 0.9988 0.0000 0.0025
Bot 1.0000 0.9979 0.9990 0.0000 0.0021
Infltration 1.0000 0.8889 0.9412 0.0000 0.1111
Heartbleed 1.0000 1.0000 1.0000 0.0000 0.0000
Web attack 0.9925 0.9907 0.9916 0.0075 0.0093
Accuracy 0.9979
Macro avg 0.9973 0.9892 0.9930 0.0027 0.0108
Weighted avg 0.9980 0.9979 0.9979 0.0020 0.0021

Table 11: Classifcation performance of the sampled dataset with the random sampling algorithm.

Precision Recall F1 score FNR FPR
Random sampling layer1
Benign 0.9993 0.9981 0.9987 0.0007 0.0019
Abnormal 0.9981 0.9993 0.9987 0.0019 0.0007
Accuracy 0.9987
Macro avg 0.9987 0.9987 0.9987 0.0013 0.0013
Weighted avg 0.9987 0.9987 0.9987 0.0013 0.0013
Random sampling layer2
Benign 0.9993 0.9981 0.9987 0.0007 0.0019
DoS hulk 0.9850 0.9992 0.9921 0.0150 0.0008
DDoS 0.9992 0.9996 0.9994 0.0008 0.0004
PortScan 1.0000 0.9984 0.9992 0.0000 0.0016
DoS goldeneye 0.9980 0.9972 0.9976 0.0020 0.0028
FTP-patator 1.0000 1.0000 1.0000 0.0000 0.0000
DoS slowloris 0.9948 0.9941 0.9944 0.0052 0.0059
DoS slowhttptest 0.9962 0.9946 0.9954 0.0038 0.0054
SSH-patator 1.0000 0.9963 0.9981 0.0000 0.0037
Bot 0.9979 0.9979 0.9979 0.0021 0.0021
Infltration 1.0000 0.7778 0.8750 0.0000 0.2222
Heartbleed 1.0000 1.0000 1.0000 0.0000 0.0000
Web attack 0.9944 0.9869 0.9906 0.0056 0.0131
Accuracy 0.9977
Macro avg 0.9973 0.9800 0.9876 0.0027 0.0200
Weighted avg 0.9978 0.9977 0.9977 0.0022 0.0023

Table 12: Classifcation performance of the sampled dataset with the SD sampling algorithm.

Precision Recall F1 score FNR FPR
SD sampling layer1
Benign 0.9996 0.9972 0.9984 0.0004 0.0028
Abnormal 0.9972 0.9996 0.9984 0.0028 0.0004
Accuracy 0.9984
Macro avg 0.9984 0.9984 0.9984 0.0016 0.0016
Weighted avg 0.9984 0.9984 0.9984 0.0016 0.0016
SD sampling layer2
Benign 0.9996 0.9972 0.9984 0.0004 0.0028
DoS hulk 0.9811 0.9988 0.9899 0.0189 0.0012
DDoS 1.0000 1.0000 1.0000 0.0000 0.0000
PortScan 1.0000 0.9996 0.9998 0.0000 0.0004
DoS goldeneye 0.9980 0.9988 0.9984 0.0020 0.0012
FTP-patator 1.0000 1.0000 1.0000 0.0000 0.0000
DoS slowloris 0.9955 0.9911 0.9933 0.0045 0.0089
DoS slowhttptest 0.9962 0.9908 0.9935 0.0038 0.0092
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Te reason why the two-layer structure is more efective
is that the frst layer can frst detect normal trafc and
remove it from the dataset, and the second layer only detects
the trafc that is judged to be abnormal in the frst layer. In
this way, the proportion of minority samples in the test set
increases, reducing the impact of the unbalanced dataset and
improving the classifcation ability of the model for minority
samples.

5. Conclusions

Tis paper presents a novel network intrusion detection
framework, which consists of four modules, the pre-
processing module, data sampling module, feature selection
module, and classifcation module. In the data sampling

module, we propose a new sampling algorithm named SD
sampling to balance the dataset. Tis algorithm overcomes
the disadvantages of the SMOTE algorithm by considering
the spatial distribution of samples. It also combines the idea
of oversampling and undersampling, and fnally, it obtains a
dataset that is very easy to classify. In the classifcation
module, we propose a two-layer structure combined with
XGBoost and the random forest. Te frst layer is used for
binary classifcation and the second layer is used for mul-
ticlassifcation. Both of them use the ensemble model, which
overcomes the defects of low accuracy and poor general-
ization ability of the single algorithm. Finally, we conduct
comparative experiments on the CICIDS2017 dataset using
three sampling modes to verify the advantages of the SD
sampling algorithm. At the same time, we also use four

Table 12: Continued.

Precision Recall F1 score FNR FPR
SSH-patator 1.0000 1.0000 1.0000 0.0000 0.0000
Bot 1.0000 0.9959 0.9979 0.0000 0.0041
Infltration 1.0000 1.0000 1.0000 0.0000 0.0000
Heartbleed 1.0000 1.0000 1.0000 0.0000 0.0000
Web attack 0.9853 0.9981 0.9917 0.0147 0.0019
Accuracy 0.9975
Macro avg 0.9966 0.9977 0.9971 0.0034 0.0023
Weighted avg 0.9976 0.9975 0.9975 0.0024 0.0025

Table 13: Te classifcation performance of each model in the three sampling modes.

Accuracy Precision Recall F1 score FNR FPR
KNN 0.9909 0.9390 0.8814 0.8953 0.0610 0.1186
DT 0.9971 0.9432 0.9367 0.9369 0.0568 0.0633
SVC 0.9394 0.8678 0.7709 0.7960 0.1322 0.2291
DNN 0.9359 0.8017 0.8523 0.7945 0.1983 0.1477
Random forest 0.9974 0.9953 0.9367 0.9585 0.0047 0.0633
XGBoost 0.9849 0.9906 0.9068 0.9333 0.0094 0.0932
XGBoost + RF 0.9978 0.9972 0.9369 0.9596 0.0028 0.0631
SMOTE+KNN 0.9906 0.9247 0.9004 0.8974 0.0753 0.0996
SMOTE+DT 0.9964 0.9776 0.9532 0.9615 0.0224 0.0468
SMOTE+ SVC 0.9308 0.8759 0.8428 0.8360 0.1241 0.1572
SMOTE+DNN 0.9611 0.8583 0.8489 0.8422 0.1418 0.1511
SMOTE+ random forest 0.9969 0.9494 0.9805 0.9606 0.0506 0.0195
SMOTE+XGBoost 0.9977 0.9952 0.9805 0.9868 0.0048 0.0195
SMOTE+ (XGBoost + RF) 0.9979 0.9973 0.9892 0.9930 0.0027 0.0108
Random sampling +KNN 0.9895 0.9443 0.8980 0.9080 0.0557 0.1020
Random sampling +DT 0.9967 0.9954 0.9702 0.9802 0.0047 0.0298
Random sampling + SVC 0.9174 0.8651 0.8091 0.8049 0.1349 0.1909
Random sampling +DNN 0.9451 0.8502 0.8934 0.8497 0.1498 0.1066
Random sampling + random forest 0.9968 0.9806 0.9269 0.9473 0.0194 0.0731
Random sampling +XGBoost 0.9928 0.9901 0.9901 0.9900 0.0099 0.0099
Random sampling + (XGBoost + RF) 0.9977 0.9973 0.9800 0.9876 0.0027 0.0200
SD sampling +KNN 0.9895 0.9323 0.8979 0.9015 0.0677 0.1021
SD sampling +DT 0.9957 0.9571 0.9703 0.9632 0.0429 0.0297
SD sampling + SVC 0.9509 0.8696 0.8612 0.8320 0.1304 0.1388
SD sampling +DNN 0.9475 0.8559 0.9318 0.8750 0.1441 0.0682
SD sampling + random forest 0.9962 0.9903 0.9620 0.9711 0.0097 0.0380
SD sampling +XGBoost 0.9982 0.9960 0.9978 0.9969 0.0040 0.0022
SD sampling + (XGBoost + RF) 0.9975 0.9966 0.9977 0.9971 0.0034 0.0023
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commonly used machine learning models to conduct
comparative experiments, and the results show that the two-
layer structure proposed in this paper can be used to classify
trafc accurately and that the accuracy rate is up to 99.75%.

In the trafc classifcation task, it is also important to
improve the interpretability of the model to generate some
new domain knowledge. Terefore, in the future, we will
focus on using explainable artifcial intelligence (XAI) [41]
tools to help us understand data information and model
decision methods, such as simplifying models, estimating
the correlation between individual features, visualizing
feature importance, and visualizing the reasoning process of
deep learning models.
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