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We improve the steepest descent algorithm and increase the double threshold parameter, which signifcantly improves the
algorithm’s efciency. And we design a new cost function so that in terms of search, various characteristics of Boolean functions
can be taken into account simultaneously. Applying our algorithm, there are excellent results regarding the 9, 10, 11, and 12
variables. We fnd a Boolean function with a nonlinearity of 242 in 9 variables and the whole search space. Previously, this result
only appeared in the rotational symmetry class. Te best-achieved nonlinearity result for permutation (6, 5, 1, 4, 7, 2, 3, 0, 8) and
(0, 7, 2, 5, 4, 1, 3, 6, 8) class is 238 and 239 introduced by Kavut in Information and Computation (2010). Still, applying our
algorithm, we obtain a balanced Boolean function with a nonlinearity of 240 under the same permutation, indicating that our
method is more general. Among the 11 variables, a Boolean function with a higher nonlinearity and a lower transparency level and
the absolute value spectrum are maintained at a lower level. Te algorithm performs well when considering all aspects of the
property. Tere are similarly promising results in even-numbered variables.

1. Introduction

Boolean functions used in symmetric ciphers should have
good cryptographic properties, such as balancedness, cor-
relation immunity, high nonlinearity, high algebraic degree,
high algebraic immunity, and low transparency order.
However, all such characteristics cannot be optimum si-
multaneously and trade-ofs should be considered. Tere-
fore, constructions of Boolean functions with compromise
criteria always challenge open problems [1, 2]. At the same
time, many heuristic algorithms are applied to the search for
Boolean functions, and many Boolean functions with good
properties are obtained. Many heuristic algorithms mainly
focus on the cryptographic properties of a Boolean function,
and it is not easy to consider other properties
simultaneously.

1.1.RelatedWork. Hill climbing (HC) and genetic algorithm
(GA) were frst applied to search for highly nonlinear
Boolean functions in 1996 [3, 4] by modifying the true table

of a Boolean function. Simultaneously, the literature shows
numerous cryptographically interesting Boolean functions
with more density in RSBFs [5, 6]. It will be helpful for us to
capture the desired Boolean functions in this class. In 2007,
using a steepest-descent-like algorithm, Maity and Maitra
[7] searched Boolean functions in 9 variables with a non-
linearity of 241. In 2010, Kavut and Yücel [8] found
a Boolean function with a 9-variable nonlinearity of 242 in
the rotational and dihedral symmetry classes. Afterwards,
Chakraborty et al. [9] redefned the transparency order in
2017, and Wang and Stănică [10] analyzed theoretically the
transparency order constructed two infnite classes of bal-
anced semibent Boolean functions with provably relatively
good transparency order in 2019. In addition, Kavut et al.
[11] applied the steepest-descent-like iterative search algo-
rithm to build a Boolean function with lower
autocorrelation.

1.2. Our Contribution. In our work, we developed an ef-
cient algorithm based on the steepest-descent-like iterative
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algorithm. We developed a new steepest-descent-like iter-
ative algorithm. When the number of iterations increases,
the cost tends to get stuck in a loop. We have added a double
threshold parameter and reset the operation to deal with this
situation. And a new cost function is designed to obtain
excellent nonlinearity, absolute indicator, and
transparency order.

We have found a 9-variable Boolean function with ex-
cellent properties, which has a short transparency order and
autocorrelation while maintaining a high nonlinearity of 242
in the rotational symmetry class. At the same time, we fnd
the Boolean function with nonlinearity 242 in the whole
search space using the randomization seed. Tis is the frst
time to fnd a 9-variable Boolean function with a non-
linearity of 242 without restricting the search range. We also
found an 11-variable Boolean function with excellent

properties over the results presented in [12]. It has higher
nonlinearity and lower transparency order.Te results of the
article [8] mention that the nonlinearity of the 9-variable
Boolean function satisfes the nonlinearity of (6, 5, 1, 4, 7, 2,
3, 0, 8) and (0, 7, 2, 5, 4, 1, 3, 6, 8) permutation, the best,
respectively, for 238 and 239. In contrast, this article’s
steepest-descent dual reset algorithm improves the result
to 240.

2. Preliminaries

A Boolean function on n variables may be viewed as
a mapping from Vn � 0, 1{ }n to 0, 1{ }. Te truth table of
a Boolean function f(x1, . . . , xn) is a binary string of length
2n.

f � [f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)]. (1)

Te Hamming weight of a binary string S is the number
of 1’s in S denoted by wt (S). An n-variable function f is said
to be balanced if its truth table contains an equal number of
0’s and 1’s, i.e., wt (f) � 2n− 1. Also, the Hamming distance
between equidimensional binary strings S1 and S2 is defned
by d(S1, S2) � wt (S1⊕ S2), where ⊕ denotes the addition
over GF (2).

An n-variable Boolean function f(x1, . . . , xn) can be
considered to be a multivariate polynomial over GF (2). Tis
polynomial can be expressed as a sum of the product rep-
resentation of all particular kth-order products (0≤ k≤ n) of
the variables. More precisely, f(x1, . . . , xn) can be written as

a0⊕ ⊕1≤i≤n aixi⊕ ⊕1≤ i< j≤ n
aijxixj⊕ · · ·⊕a12...nx1x2 . . . xn,

(2)

where the coefcients a0, aij, . . . , a12 . . . n ∈ 0, 1{ }. Tis
representation of f is called the algebraic normal form
(ANF) of f. Te number of variables in the highest order
product term with a nonzero coefcient is called the alge-
braic degree, or the degree of f, denoted by deg(f).

Functions of degree, at most one, are called afne
functions. An afne function with a constant term equal to
zero is called a linear function. Te set of all n-variable afne
(respectively, linear) functions is denoted by A(n)

(respectively, (n)).

Defnition 1. Te nonlinearity of an n-variable function f is

nl(f) � min
g∈A(n)

(d(f, g)), (3)

i.e., the minimum distance from the set of all n-variable
afne functions.

Defnition 2. Let x � (x1, . . . , xn) and ω � (ω1, . . . ,ωn),
both belonging to 0, 1{ }n and x · ω � x1ω1⊕ · · ·⊕xnωn. Let
f(x) be a Boolean function on n variables. Ten, the Walsh
transform of f(x) is a real-valued function over 0, 1{ }n

which is defned as

Wf(ω) � 
x∈ 0,1{ }n

(− 1)
f(x)⊕x·ω

. (4)

Defnition 3. Te autocorrelation function of a Boolean
function f at a point α is defned by

Cf(α) � 
x∈Fn

2

(− 1)
f(x)+f(x+α)

.
(5)

We are interested to fnd out the point(s) α for which the
absolute value of Cf(α) is high.

Defnition 4. Te absolute indicator is defned as

∆f � max
a∈Fn∗

2

Cf(a)


. (6)

For cryptographic purposes, our primary motivation is
to construct Boolean function(s) f with low values of ∆f.

Defnition 5. For an n-variable Boolean function f, the
transparency order in [10] can be viewed as

TO(f) � 1 −
1

2n 2n
− 1( 


α∈Fn∗

2

Cf(α)


. (7)
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2.1.RotationSymmetricBooleanFunctions. Let xi ∈ 0, 1{ } for
1≤ i≤ n. For 1≤ k≤ n [13], we defne

ρk
n xi(  � xi+k, if   i + k≤ n

� xi+k−n, if   i + k> n.
(8)

Let (x1, x2, . . . , xn−1, xn) ∈ Vn. We can extend the def-
inition of ρk

n to n-tuples as

ρk
n x1, x2, . . . , xn(  � ρk

n x1( , ρk
n x2( , . . . , ρk

n xn(  . (9)

Defnition 6. A Boolean function f is called rotation
symmetric if for each input (x1, . . . , xn) ∈ 0, 1{ }n,

f ρk
n x1, . . . , xn(   � f x1, . . . , xn( , 1≤ k≤ n. (10)

Defnition 7. An orbit Gn(Λn,i) is identifed by the repre-
sentative element Λn,i which is the lexicographically frst
element of the i-th orbit and i ∈ 0, 1, . . . , gn − 1  [14].
Accordingly, we can use the simplifed truth table to rep-
resent an RSBF f. Its form as

f Λn,0 , f Λn,1 , . . . , f Λn,gn−1  , (11)

which is called the rotation symmetric truth table (RSTT).
Te length of RSTT is expressed as gn.

Defnition 8. Te class of DSBFs [? ], a subset of the RSBF
class, is invariant under the action of the dihedral group
denoted by Dn. In addition to the (left) i-cyclic shift operator
ρi

n on n-tuples, which is defned previously, the dihedral
group Dn also includes the refection operator
τn(x0, x1, . . . , xn−1) � (xn−1, . . . , x1, x0). Te 2n permuta-
tions of Dn are then defned as

ρ1n, ρ2n, . . . , ρn
n−1, ρ

n
n, τnρ

1
n, τnρ

2
n, . . . , τnρ

n
n−1, τnρ

n
n . (12)

Similar to RSBF, we use dn to represent the truth table
length of DSBF.

2.2. Accelerated Calculation. Furthermore, we introduce an
important matrix A from [7] for analyzing Walsh spectra
and accelerated calculation, which will be applied in our
search. Te matrix is defned as

Ai,j � 

x∈Gn Λn,i( )

(−1)
x·Λn,j .

(13)

Clearly, the size of A is gn × gn or dn × dn, and the
matrix elementAi,0 is the size of the i-th orbit. Note that the
Walsh spectrum of f can be determined by

Wf Λn,j  � 

gn dn( )−1

i�0
(− 1)

f Λn,i( )Ai,j. (14)

3. Search Strategy

Our search strategy uses the improved steepest-descent it-
eration algorithm. Each iteration step has an input Boolean

function f and an output Boolean function fmin. Each it-
eration step calculates a cost function in the predefned
neighborhood, and the Boolean function with the lowest cost
is selected as the iteration output. In the algorithm design,
the Boolean function has many properties, which are usually
challenging to consider. Terefore, we carefully consider the
Boolean function with the best comprehensive properties.

Te 1-neighborhood of f is obtained by fipping indi-
vidual elements of its truth table. For an n-variables Boolean
function, the 1-neighborhood consists of 2n many distinct
Boolean functions, each being at the Hamming distance 1 to
the original Boolean function.

3.1. New Cost Function. We introduced a new cost function
that can obtain the Boolean functions with high non-
linearity, low absolute indicator, and low transparency or-
der. We modifed Cf and the cost functions. Hence, we use
the sum of quartic power errors as the cost function, which is
defned as

cost(f) � 
ω∈Fn

2

W
2
f(ω) − 2n

 
4

− 
α∈Fn∗

2

∆f(α)


. (15)

In the search process, if only 1-bit fipping is adopted and
the cost is minimized as the target for selection, after several
rounds, the cost value will remain unchanged or two ad-
jacent cost values will be repeated. Tis situation is also
called trapped in a locally optimal solution. If no correction
is made, the function becomes stable and no new process is
created. Te same can be said for heuristic algorithms of
other classes. In [6], the authors suggest that the second
smallest cost value before this algorithm can be selected as an
iteration. Te disadvantage of this approach is that it in-
volves backtracking. Te spatial complexity involved in
reversal is challenging to determine in diferent situations,
and the time complexity will also increase. Te algorithm is
optimized using the steepest-descent-like iterative algorithm
based on a greedy algorithm. A novel steepest-descent dual
reset algorithm is proposed, that is, speed up convergence.
At the same time, it dramatically avoids the problem that the
function stays in a suboptimal solution.

3.2.DualTreshold. In the search process, if only 1-neighbor
mode is adopted and the target is selected with the lowest
cost, the cost value remains unchanged after several itera-
tions or the cost value of two adjacent iterations is the same.
Tis is also known as falling into a locally optimal solution. If
no correction is made, the function becomes stable and no
new solution is created. Te same is true for other classes of
heuristic algorithms. In the document [5], the authors
suggest choosing the second smallest generation value before
this algorithm as the iteration. Te downside to this ap-
proach is that it involves backtracking. Te spatial com-
plexity involved in inversion is difcult to determine in
diferent situations and the temporal complexity also in-
creases. We propose a dual threshold parameter and opti-
mize the parameter’s selection size according to many
experiments. At the same time, the problem of the function
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staying in the locally optimal solution is signifcantly
avoided.

3.2.1.Te FirstTreshold. CIVTrepresents the cost-iteration
threshold value. Te CIVT size is defned as ⌈e × n⌉, where
e ≈ 2.71828, and n represents the length of the truth table,
including gn and dn. CIVT is defned as the integer up of its
product. At the same time, we refer to a variable
CITVnumber � 0 to record the degree of
cos t[k] � cos t[k + 2], that is, the number of times that the
cos t of the frst k equals the cos t of the frst k + 2, where k is
an integer. When cos t[k] � cos t[k + 2] is triggered,
CITVnumber + 1. When CITVnumber reaches our preset value
of CIVT, we will trigger the frst threshold, randomly select
the position, and reset m consecutive bits. m is selected as
m � 2× variables. As for the selection of m here, after re-
peated attempts on m, we fnally determined that the se-
lection method was the best.

3.2.2. Te Second Treshold. When the system triggers the
threshold for the frst time, it will undoubtedly reset the
function in the current state, and due to the limitation of m,
the current position will only have a small change. Still, the
evolution of the function will not be far beyond our ex-
pectations. Tis way, the optimal local situation can be ef-
fectively improved, but the change interval ism bits in a row.
So if you think of a signifcant improvement in a property
like nonlinearity, it is impossible.

On top of this, we introduce another counter, CITVcount;
also, giving an initial value of 0 causes CITVcount + 1
whenever the frst double threshold is triggered. When
CITVcount reaches 100 × m, we calculate the probability
p0 � exp(−k/N), where N is the total number of executions,
and k is the current number of executions. When p>p0 is
true for a given probability p, this moving method is ac-
cepted even if the current cost value is not the optimal
solution. Te idea is similar to the simulated annealing al-
gorithm, which takes weak solutions.Te advantage of this is
that when the program is just started, there is a high
probability that the diluted solution will be accepted so that
the function can jump out of the local optimal with a high
chance. When the program is about to end, only the weak
solution is accepted with a small probability and the variable
state of the current function is preserved. And when the
second threshold is triggered, we do not select the contin-
uous bit to reset like the frst threshold but select the discrete
log2 n bit (n is the length of the current truth table) to reset.
Te efect of this is to increase the degree of dispersion of the
current function.

3.3. Algorithmic Process. Our main algorithm fow is shown
in Algorithm 1.

4. Experimental Results

In this section, we apply the steepest-descent dual
reset algorithm and fnd the optimal Boolean functions of

nonlinearity, autocorrelation, and transparency order in 9,
10, 11, and 12 variables, respectively. We give the following
table to compare the experimental results of each variable.

In Table 1, we give three representative results for the
Boolean function of 9 variables. We demonstrate the ex-
cellence of our results and the efectiveness of our algorithm
by comparing the nonlinearity, transparency, and balance.
While maintaining a higher nonlinearity, our results have
a lower transparency order. We fnd that the new 9-variable
Boolean function f1 is the optimal transparency order result
for the Boolean function with a nonlinearity of 240 based on
the dihedral symmetry class. Compared with [15], the al-
gorithm in this paper has good convergence in terms of
nonlinearity. Before this paper, the result of a 9-variable
Boolean function with a nonlinearity of 242 was obtained
only by Kavut. It appeared in [8], published in
Information  and Computation in 2010, and its results were
found in the rotationally symmetric class. Tis paper not
only fnds a new 9-variable Boolean function f2 with
nonlinearity 242 and excellent transparency order in the
rotationally symmetric class but also fnds a new 9-variable
Boolean function f3 with nonlinearity 242 and lower
transparency order in the whole space 22n . No one has ever
published such results.

In [8], the author Kavut found the best nonlinearity of
238 and 239 in two kinds of 9-variable Boolean functions
with the order of (6, 5, 1, 4, 5, 4, 1, 3, 6, 8) and (0, 7, 2, 5, 4, 1,
3, 6, 8). In this paper, f4 and f5 increase the maximum
nonlinearity of these two Boolean functions to 240.

In Table 2, we compare the results in [2, 12, 15, 16], and
we fnd the Boolean functions of high nonlinearity and low
transparency in the class of rotational symmetry, repre-
sented by f6 and f7. Among the equilibrium 10-element
Boolean functions, f7 has the highest nonlinearity among
the known results and maintains a good transparency order.
For the previous 10-variable Boolean function with a non-
linearity of 490, the lowest transparency order is 0.9864
given in [12]. However, the result of f6 presented in this
paper has lower transparency order compared with that
in [12].

Te result of an 11-variable Boolean function is shown in
Table 3. We present two representative results. Compared
with the results given in [12, 15], our search’s nonlinearity of
the Boolean function obtained is higher. In addition, when
the previously known nonlinearity is 990, the lowest
transparency order is 0.9872. Still, our result f8 has a lower
transparency order with the same nonlinearity, which is also
due to the high convergence of our designed algorithm.
According to the conclusion of [10], Boolean functions with
high nonlinearity usually have higher transparency order.
However, after applying our improved search algorithm, this
paper fnds the equilibrium 11-element Boolean function f9,
which has lower transparency order while maintaining
higher nonlinearity, compared with the result in [12]. Te
result f9 is the best among the general equilibrium 11-
variable Boolean functions considering the nonlinearity and
transparency order.

Table 4 compares the results of the 12-variable Boolean
function with [14, 17]. Te result f10 is that we obtain
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a balanced Boolean function with a nonlinearity of 2000 and
an autocorrelation of 136 and the transparency order is the
lowest known.

5. Conclusion

Te space of Boolean functions is vast, and the area of
Boolean functions of n variables is 22n ; so, it is not feasible to
search exhaustively. An excellent approach is searching in
a narrowed space using rotational symmetry classes. Under
this circumstance, designing a workable search method for
colleges and universities is also crucial. With our improved
steepest descent method, good results can be obtained in
rotationally symmetric class Boolean functions and entire
space Boolean functions.

In the 9, 10, 11, and 12 variables, we have obtained
Boolean functions with excellent properties, many of which
are Boolean functions with the best comprehensive prop-
erties, such as the comparison results in Section 4.

We also used the cost function given in the experiment in
[14] and compared it. After the investigation, we found that
the diference in the convergence efect of diferent costs is

Table 1: Results in 9-variable.

nl ac To Balanced
Kavut and Yücel [15] 236 32 — Yes
Xu and Wang [12] 240 — 0.9617 Yes
Kavut and Yücel [8] 242 32 — No
Our result f1 240 72 0.9611 Yes
Our result f2 242 32 0.9832 No
Our result f3 242 48 0.9828 No
Our result f4 240 160 0.9870 Yes
Our result f5 240 128 0.9845 Yes

Require: a random Boolean function
Ensure: excellent character Boolean function

f←finitial
i←0
j, k←0
while k<N do
whilej< length of f do
Flip  the jth  bit  in f
//Use the array A_cost[] to record the cost value of each time

end while
Select the smallest cost value from A_cost[] and record it as cos tnew

fnew←fmin//Update Boolean functions
if A cost[k]min � A cost[k + 2]min, then
CITV−number←CITV−number + 1
//If the cost value of the k times is equal to the k + 2 times, the frst double threshold counter plus 1

end if
if CITV−number �� CITV, then
reset.random()//Te frst threshold reset
CITV−count←CITV−count + 1//Second threshold counter plus 1

end if
if CITV−count � 100 × m, then
if p>p0, then
reset.count()//Te second threshold reset

end if
end if

end while

ALGORITHM 1: Dual threshold algorithm for search excellent character Boolean function.

Table 2: Results in 10-variable.

nl ac To Balanced
Kavut and Yücel [15] 486 56 — Yes
Behera and Gangopadhyay [16] 488 40 — Yes
Sarkar and Maitra [2] 488 40 — Yes
Xu and Wang [12] 490 — 0.9864 Yes
Our result f6 490 80 0.9846 Yes
Our result f7 492 40 0.9886 Yes

Table 3: Results in 11-variable.

nl ac To Balanced
Kavut and Yücel [15] 984 80 — Yes
Xu and Wang [12] 990 — 0.9872 Yes
Our result f8 990 88 0.9869 Yes
Our result f9 992 128 0.9856 Yes

Table 4: Results in 12-variable.

nl ac To Balanced
Clark et al. [17] 1990 140 — Yes
Behera and Gangopadhyay [16] 1996 — — Yes
Our result f10 2000 136 0.9923 Yes
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vast when using our same algorithm. Terefore, designing
a more rational cost function is also an urgent problem to
solve in the heuristic search of Boolean functions. Although
our cost has achieved good results in the application, we still
hope to optimize the cost function further to make its
computational complexity lower and the convergence more
accurate.

Appendix

Some results of our experiment are as follows:

Our result 1: 9-variable, nl(f)� 240, ac(f)� 72, To(f)�

0.9611
427f 4c88 5397 f7f6 4128 b109 9c18 cc0f 1635 2ae7 f934
77f1 e586 65a6 9696 62cd 250a 7d54 3afb ce09 cda1
7c57 1818 cc21 9a54 e70b 1b45 ee0b e41b f10b
0f7b 97d5
Our result 2: 9-variable, nl(f)� 242, ac(f)� 32, To(f)�

0.9832
3340 b6a1 1821 f196 42a8 5e2b 7e2f 3c3c b65f a0d9 5ec9
db1e ab2b db36 6618 5ae0 087f 5fe6 e075 7106 212f c918
754c 40e8 a1bc cbfa 7140 32a8 9614 56e0 66e8 a801
Our result 3: 9-variable, nl(f)� 242, ac(f)� 48, To(f)�

0.9828
6da2 cd1d b0b7 47b7 5b3d 90b8 62fe fa29 368e 5f6
d744 8ec1 7a98 82d0 c40c a201 7acd b4a3 cb61 995e
fabc 92f2 e7cc aa40 fe9d daf0 c64c ba08 935b 22cb
5d09 f1df
Our result 4: 9-variable in the permutation of (6, 5, 1, 4,
7, 2, 3, 0, 8), nl(f)� 240, ac(f)� 160, To(f)� 0.9870
e83d 6d1b 7927 5697 3d17 1b92 2786 97a9 3d17 1b92
2786 97a9 17c2 92e4 86d8 a968 6a16 1a53 2647 56c1
1695 53e5 47d9 c1a9 1695 53e5 47d9 c1a9 95e9 e5ac
d9b8 a93e
Our result 5: 9-variable in the permutation of (0, 7, 2, 5,
4, 1, 3, 6, 8), nl(f)� 240, ac(f)� 128, To(f)� 0.9845
c200 c23c 0b8d 3b8c bcf a995 f031 9556 23b1 2fb0 01d5
c0c3 cc0d 9556 fd14 566a 0216 546b 19a7 623b 5469
abab 621b acf1 259b 4a2f 6b7f bfbc 4a27 b8cd
97bc bd15
Our result 6: 10-variable, nl(f)� 490, ac(f )� 80, To(f)�

0.9846
abfc ddc7 d180 d249 d530 f326 c46b 46b1 d104
2823 9c2d 7e1b d617 1aad 420a bc75 9520 6346 3af6
7b2d e193 2f94 08df 64f9 c04b 2149 24f ae84 462a 76ea
bc96 1845 b451 7a63 5e78 030f 78ab c94f 4de9 2ac5
da30 e479 3f9c a507 23b3 8588 0a42 cce1 c763 46b9
6b31 13a1 6e07 dc99 bf9a a203 130f 3fb 094f deab f9d7
b14b 75f3 5755
Our result 7: 10-variable, nl(f)� 492, ac(f )� 40, To(f)�

0.9886
121d 53f6 365a f38 5b3d 26d8 eaef 4ad0 369f 1be6 4828
e2c5 f8c8 e9ab 21d9 e314 1b6c 96ba 538b a829
3480 4c90 e90d b033 fd1 e085 b893 cc8f 5847 a282 b95f
1274 47de 6cf4 d72c 8b8c 675a 808b c891 1d96 5a64

d101 60a4 9345 fd83 45a3 cb00 5f4e beae f212 bc01 8576
cad1 825b f1b1 90fa 62c4 613e 8d0d d54c 8a96 33fa
065c 2e20
Our result 8: 11-variable, nl(f )� 990, ac(f)� 88, To(f)�

0.9869
aaee cadf 93ab c58c b52c fba8 c601 a2d3 fc05 3bd7 c9f8
aef6 c25b 6675 ef7b c479 d883 3755 3ce8 d00c 93e5
9da3 bb9a c91a 866a 54ec 4e1b 4811 cf99 5cbc
9743 48b4 91a7 f268 790d 0544 2dc3 9ea2 c562 67c3
b03 d ce44 b5d4 fe78 adbc a4ba c6a4 31ea b20b 1ff
1007 8fd3 028a 65f8 13b7 2030 96c8 e5a0 1183 fcc2 f10d
427d 16a3 b803 a025 fb18 d87a 0ba7 49f5 3684 2705
1707 6bd5 c268 f1db fe3e 8240 0f2f 1f4c d32c f962
7990 93ca 1213 ed00 d446 9c8e 08f2 ebd5 e997 aa16
fdae c21a fb42 7925 cbeb a97e 66b9 35c8 99d9
3522 774c a299 d078 727e f2ef 1a40 c8a6 353d ac58
2e72 7933 b40f d2f7 da50 af66 6461 e228 dd86 867f
c965 6690 032a 5885 310e ba69 f8e3 633c
Our result 9: 11-variable, nl(f)� 992, ac(f)� 128,
To(f )� 0.9856
eda2 9d5c c7f3 37f4 e02b bf1e 0e3e af61 a854 59cb 9fbf
57a8 05fd 5ea8 9cee 3c43 9d81 7265 3287 e19e d7ab
9aaa 326e c9d4 5477 eeb3 32a8 99c5 c6a0 a9fc 5ee1 701b
c7e7 8556 3a5c 7c76 4b19 c03b fc03 c3e8 f73f 88ca d29d
cc8c 5e08 6ca8 e183 e720 3734 6e6a a9a9 da1b 1f58
cc80 c3c3 f032 f578 9914 c983 aae4 66e9 bd57 2a41 128b
b07e bd7e 8176 2639 0ed9 77f0 3fe0 6a69 71cb 4396
f140 4a9e efa5 405b a01e e9c5 bb3e 4eee 9585 e198 f708
c7a2 e0a0 91b0 76a8 11c5 7ca0 99c4 fc56 910a a97f
0941 4e7e 1e25 2dfc 7889 d996 d886 b38 d 069b 56aa
7394 f0b0 8054 e05b e05a ee50 1f19 ae63 3ec1 d6c2
5325 e0d6 c40e 8d8c ac75 2969 e8d3 8ea2 322f 198d
2043 5309 d1de
Our result 10: 12-variable, nl(f)� 2000, ac(f)� 136,
To(f )� 0.9923
2ede 819e a331 b5de 00d7 92db 06ee 2a65 99d9 7bb6
1b80 2a56 221f 9e8a 2baf 1f44 a5e5 81b4 5da8 bc4e 8b12
5c88 8044 aaa4 95d4 8a77 1b34 5c14 2ea9 bbd9 31d9
4352 eb00 cb54 e371 f842 ea7e 114d 1769 bc34
0953 8f85 af6d 0c18 f676 4307 bbef ee43 b140 9113 b2af
491c da56 97a8 af29 cae8 d474 440b 5602 3b5e
7920 81f5 426d 552f dbad 6726 83a9 4142 2492 a69b
2648 e880 2100 e630 8fde ac6b 754c 1ee0 a996
2917 37a0 113d a6dc a344 1426 f17f cd2d 9e1c 73b4
f3b1 bcd6 d8a2 a9fd 8e99 dbdf 0779 fd25 5337 b035
7568 43c1 1462 ec4a 9e38 2a05 bef0 1ee6 5408 eb89
6fb4 d6fe 9ee7 d546 4d02 4343 73b8 aaf1 8c91 8256
ab64 f21a c4c8 598a 73fb 437b 4f85 5514 2adc 84bc bfd4
5a18 7f5e 0883 055b adca b9d0 91bc 5ac0 41b5 5f57
2b5a 03b3 8bf7 f736 3a34 3762 db0e 2c33 4866 6e71
4439 f103 f2f e93c 9b25 64dd bbf4 b50b 7ab5 2159 7918
bb32 7170 7dd5 45f1 6b7c 50c2 bcbd dafd 84b0 378a
e633 8380 3b95 b58f 7597 597d ed52 cc3d fd31
5639 3fb5 3b1c 44c1 501a 337e 5870 5b4f 91fd
8588 3719 5ca4 8cd4 6e54 5468 6d09 039d c2aa b6bf
b55c ecd2 788f df8 f084 9ac3 06fa f4db 6db7 7efe 7655
e8cb 9d32 9a71 25f0 bafd d95d 7516 0d5f b022 03fc
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910b 998e f59a df48 8404 421b 42d5 322b f996 a997
e386 471d 4445 23de 1869 1a8a a36a 154b fbf8 5e52
882f 25eb 8342 c7e2 fe4b 1c15 b2d3 7646 a993 b212
bc32 18bf 4011 3112 2fe 94c2.
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