
Research Article
ImageDroid: Using Deep Learning to Efficiently Detect Android
Malware and Automatically Mark Malicious Features

Pengfei Liu ,1 Weiping Wang ,1 Shigeng Zhang ,1,2 and Hong Song 1

1School of Computer Science and Engineering, Central South University, Changsha, Hunan, China
2Te State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing, China

Correspondence should be addressed to Hong Song; songhong@csu.edu.cn

Received 1 July 2022; Accepted 13 September 2022; Published 7 April 2023

Academic Editor: Shudong Li

Copyright © 2023 Pengfei Liu et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Te popularity of the Android platform has led to an explosion in malware. Te current research on Android malware mainly
focuses on malware detection or malware family classifcation. Tese studies need to extract a large number of features, which
consumes a lot of manpower and material resources. Moreover, some malware use obfuscation to evade decompiler tools
extracting features. To address these problems, we propose ImageDroid, a method based on the image format of Android
applications that can not only detect and classify malware without prior knowledge but also detect the obfuscated malware.
Furthermore, we utilize the Grad-CAM interpretable mechanism of the deep learning model to automatically label the image that
play a key role in determining maliciousness in a visual way. We evaluate ImageDroid over 10,000 Android applications.
Experimental results show that the accuracy of malicious detection and multifamily classifcation achieve 97.2% and 95.1%,
respectively, and the detection accuracy of obfuscated malware achieves 94.6%.

1. Introduction

With the rapid development and popularization of 5G
networks, smartphones are recognized as an integral part of
our lives, such as chatting, taking photos, electronic pay-
ment, and so on.

According to the Counter Point statistical report [1], the
number of smartphones sold in 2021 has reached 1.35 bil-
lion. Te Android system is the most widely used operating
system within smartphones. Te Android system is con-
sidered to be the biggest target of malware attacks, making
the Android system very vulnerable to network attacks due
to its openness.

When a malware variant owns evasion detection tech-
nology, even if the malware function of the new variant does
not change, the malware cannot be detected. Terefore, to
adapt to the variety of malicious applications, many re-
searches on malware detection methods rely on feature
extraction [2–5]. Feature extraction usually requires a lot of
manual work and material resources, which relies heavily on

prior knowledge. At present, there are two methods for
malware detection: static method and dynamic method
[6, 7]. In the static method, if the code is encrypted, the
detection efciency will be reduced or even the detection
model will be invalid. Although the dynamic method can
solve this problem, it must be confgured with a specifc
running environment, which means higher requirements for
hardware and detection time. Moreover, the dynamic
method has the weakness of incomplete trigger path cov-
erage [8]. If the malicious execution action is not triggered,
the detection efciency will be reduced. Given the rapid
development of current deep learning models in image-
based recognition [9–11], some deep learning models have
achieved good results in windows malware detection [12].

In this paper, we propose ImageDroid, an Android
malware classifcation method based on image, which di-
rectly classifes the maliciousness of Dex fle without
decompilation. Diferent from othermethods, on the basis of
analyzing the structure of the Dex fle, we only retain the
Data Area that plays an important role in the semantic logic

Hindawi
Security and Communication Networks
Volume 2023, Article ID 5393890, 11 pages
https://doi.org/10.1155/2023/5393890

mailto:songhong@csu.edu.cn
https://orcid.org/0000-0002-5154-3123
https://orcid.org/0000-0001-5255-5639
https://orcid.org/0000-0001-5351-7239
https://orcid.org/0000-0002-1677-425X
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5393890


of the code, then convert it into image, and then apply the
deep learning model (Inception-ResNet-v2) for classifca-
tion. Te experimental results verify the efectiveness of the
method. After extracting the Data Area of the Dex, the
classifcation performance is improved regardless of whether
the target Dex fle is obfuscated or not. On this basis, we use
the interpretable mechanism of the deep learning model to
mark the image part that plays a key role in determining the
maliciousness.

Te remainder of the paper is structured as follows.
Section 2 gives the detailed design and implementation of
ImageDroid. Section 3 evaluates the efectiveness of
ImageDroid. We conclude the paper in Section 4. Section 5
reviews the related work.

2. ImageDroid Design and Implementation

As obfuscation and other mechanisms are increasingly used
for code protection, it makes code reverse and static analysis
more difcult, and many malicious Android applications
also use this mechanism to evade malicious detection. Te
purpose of ImageDroid is to determine code maliciousness
without decompilation. Te main idea is to directly extract
the part of the Dex fle that represents the semantics of the
code and then convert it into an image. Finally, the image is
fed into a deep learning model for classifcation.

Te specifc implementation of ImageDroid is shown in
Figure 1, which mainly includes the following two stages. (1)
Malicious Classifcation. We convert the Data Area into
image and put it into the Inception-ResNet-v2 for malicious
classifcation. (2) Marking Key Parts of the Image. Te
malicious weights extracted from the model are saved based
on the Grad-CAM mechanism, and fnally the important
part of the image is calculated by the weight and the image
blocks obtained from the deep learning model. In the rest of
this section, we will describe each stage in detail.

2.1. Observation and Analysis of the Dex File. Since the ex-
traction of Data Areas in Dex fles is the key to realizing
ImageDroid, in this section, we mainly analyze the Dex
structure and describe the reasons why Data Areas are
chosen to represent Dex fles.

After unzipping the APK fle, we can directly obtain the
Dex fle. Te Dex fle format is a compressed format
designed for Dalvik that stores data in bytecode. Te
structure of Dex fle is shown in Figure 2. It is composed of
three parts: Dex Header, Index Area, and Data Area. Finally,
we extracted only the Data Area from the Dex fle as a
representation of the APK. Specifc observations and ana-
lyses are shown below.

Te Header of Dex describes the information of the Dex
fle and the index (ofset address) of each area. For example,
it describes the length feld of the Dex fle, the version
number, the ofset address of the area corresponding to the
string, and the statistics of the number of strings is included.
Te size of the whole fle header is fxed at 112 bytes. Te
header length of the Dex fle of diferent Android applica-
tions does not change, but the value of the corresponding

feld changes. However, these changes in numbers have little
to do with the maliciousness of Android applications.
Terefore, we choose to remove the Dex Header.

Te Index Area describes the ofset address of each area’s
specifc content in the Dex fle. For example, in Figure 3,
String_Ids record the ofset addresses of all strings, but it is
not real data, just an index, and the data are indexed by this
value. Tese index values do not represent real data, so we
remove the Index Area. Te Data Area retains not only the
structure of the entire APK fle but also the real data, that is
to say, all the real data used in the entire Android application
are in this area, so we keep Data Area.

For the obfuscation of Android application code, there
are usually the following three situations: substitution ob-
fuscation, hidden obfuscation, and repeated function def-
nitions. Tese obfuscations are implemented through the
HackPoint confguration fle to realize the obfuscation of the
Dex fle. Te modifed HackPoint is saved to the end of the
Dex fle, and there is no change in the Data Area area during
the Dex obfuscation process. Terefore, using the Data Area
of the Dex fle can avoid the obfuscation technology to detect
Android applications.

Trough the above analysis, we fnd that diferent parts
of Dex fle are not efective for Android detection and
classifcation. Finally, we choose Data Area extracted from
Dex fle as the research object. Because the Data Area not
only contains all the structure information and real data of
APK, it can also ensure that the data will not be afected
during the confusion of Android applications.

2.2. Malicious Classifcation. Diferent from the existing
studies, we do not need prior knowledge and feature ex-
traction and only extracts the Data Area in the Dex fle of the
APK to realize the classifcation.

Te implementation of classifcation consists of the
following three steps, as depicted in Figure 3: (1) Extracting
the Data Area of APK (corresponding to ① and ② in
Figure 3); (2) converting Data Area to the RGB image
(corresponding to③ and④ in Figure 3); (3) implementing
classifcation of Android applications (corresponding to ⑤
and⑥ in Figure 3). Te specifc implementation is shown in
Figure 3.

(1) Extrating the Data Area of APK. We use the unzip tool to
directly obtain the Dex fle of the APK, as shown in ① in
Figure 3. Te Dex fle is an executable fle of the Android
virtual machine, which is composed of three parts, as shown
in Figure 2. Inspired by the observation of the Dex fle
structure in Section 2.1, we extract the most efective Data
Area part for classifcation from the Dex fle as the next
operation object, as shown in ② in Figure 3.

(2) Converting Data Area to the RGB Image. Te Data Area is
in the form of bytecode, and it is much longer than the image
format.Terefore, we need to process the Data Area to make
it more consistent with the input of the deep learning model.
We convert the bytecode into a multidimensional array by
replacing the bytecode with a decimal number. We choose a

2 Security and Communication Networks



three-dimensional array of 900× 900× 3. Tis makes it
possible to accommodate the length of most Android ap-
plications. Tis array can be converted into the RGB image.
Each pixel in the image is the three consecutive bytecodes in
the original bytecode. If the single channel is used, the length
of gray image is too large. In order to reduce the size of the
image, we use three channel color image. Due to the diferent
lengths of bytecode, we discard the code segments larger
than 900× 900× 3 and add 0 after the code segments smaller
than 900× 900× 3. Our approach retains most of the
bytecode sequence, but the original spatial structure may be
changed during the period of transformation.Tis is also the
shortcoming of our method. Te bytecode of Data Area is
shown in Figure 4. A square (two hexadecimal values)
represents one pixel, for example, 64 represents a pixel.

To convert the bytecode to the RGB image, the RGB
image corresponds to a three-dimensional array. Figure 5

shows that the bytecode corresponding to Figure 4 is
converted into a three-dimensional array. For example, the
frst three-dimensional array shown in Figure 5 is [64,65,78],
where 64, 65, and 78 are set to R: 64, G: 65, and B: 78,
respectively.

Because the malicious application of the same family has
the same malicious behavior, and the code similarity is
extremely high, some malicious applications of the same
family have great similarities in images. As shown in Fig-
ure 6, we show four malicious application images of the
AnserverBot family.

(3) Implement Classifcation of Android applications. In order
to realize the classifcation of Android applications, in this
section, we complete the selection of the deep learning model
and the implement detection or classifcation. Te specifc
implementation details are given in the following sections.

Part1: Malicious Classifcation based on image

Part2: Marking of key parts of image

APK
unzip Dex

File
extract Data

Area
convert Image

save model

input

Grad-Cam
Mechanism

Heatmap

CNN
Model

Mark images that play an important role
in the determination of maliciousness

classify

Benign

Malicious

Figure 1: Te framework of ImageDroid.

File header

Index of String
Index of Type
Index of Proto
Index of Field
Index of Method
Defnition Area of Class

Te true data

Dex Header

Index Area

DateArea
Data

Class_Defs

Header

String_Ids
Type_Ids

Method_Ids
Field_Ids
Proto_Ids

Figure 2: Te structure of the Dex fle.

Malicious Detection

APK

UNZIP classes.dex

Extract Data Area

Hexdump

Convert
Input Inception-

ResNet-v2
Model

Classify

Malicious

Benign

11010010100
10110111011
01110011010

……
10100010101

①

②

③

④
⑥⑤

Figure 3: Te framework of malicious detection.

Security and Communication Networks 3



64
57
78
00
42
12
D6
04
1A
35
61
87
B9
EF
12
98

65
E0
4F
00
04
09
02
5A
5A
5A
5A
5A
5A
5A
5B
5B

78
2F
08
00
00
00
00
06
06
06
06
06
06
06
06
06

0A
47
00
00
00
00
00
00
00
00
00
00
00
00
00
00

00
1D
00
00
00
00
00
00
00
00
00
00
00
00
00
00

30
73
70
B4
9C
4C
3C
06
23
3B
66
9F
C2
F6
38
A1

33
50
00
4E
41
8F
79
5A
5A
5A
5A
5A
5A
5A
5B
5B

35
ED
00
08
00
00
01
06
06
06
06
06
06
06
06
06

C1
12
56
10
05
14
7B
5A
5A
5A
5A
5A
5A
5A
5B
5B

B8
DB
12
00
00
00
00
00
00
00
00
00
00
00
00
00

29
27
34
00
00
00
06
06
06
06
06
06
06
06
06
06

46
BD
00
00
00
00
01
06
06
06
06
06
06
06
06
06

64
DC
78
4B
0E
2C
7C
09
2E
3F
7E
B0
D1
FB
59
BA

43
A0
00
70
A4
DC
FC
0D
32
4C
83
B4
DE
FE
8B
EA

12
78
00
00
50
D7
D3
5A
5A
5A
5A
5A
5A
5A
5B
5B

0000h :
0010h :
0020h :
0030h :
0040h :

0060h :
0050h :

0070h :
0080h :
0090h :
00A0h :
00B0h :
00C0h :
00D0h :
00E0h :
00F0h :

0 1 2 3 4 5 6 7 8 9 A B C D E
8C
1A
00
00
00
00
00
00
00
00
00
00
00
00
00
00

F

Figure 4: Bytecode of Data area.

[64,65,78]

[A1,5B,06]

[4F,08,00]

[2F,47,73]

[5B,06,00]

[BD,1A,78]

[8C,57,E0]

[0A,30,33]

[50,ED,1D]

[00,BA,5B]

[70,00,00]

[35,00,64]

[06,00,EA]

[00,78,56]

[DC,12,27]

[C1,29,B8]

[5B,06,00]

[34,12,00]

[DB,A0,78]

[43,12,46]

… … … … …

Figure 5: Bytecode of Dalvik.

Figure 6: Four malicious applications of the AnserverBot family.

4 Security and Communication Networks



2.2.1. Selecting the Deep Learning Model. When designing
the deep learning model, we need to consider the adaptive of
diferent models. According to the needs of our method, we
put forward the following three requirements for the deep
learning model. (1) Te model should be able to handle a
large length of input, corresponding to our high pixel image
of malicious applications. (2) Since the local and global
features are considered in the deep learning model, the
model can still achieve high detection accuracy although the
malicious code is separated or discontinuous in the un-
derlying bytecode. (3) We also want to obtain the important
features learned from the network structure through the
model, which can help the analysis of Android malicious
applications in the next step.

In order to get the best structure of deep learning, we
selectd the model based on the above three requirements.
We tried several classic image classifcation models, such as
VGGNet [13], GoogleNet [14], and ResNet [15]. After
several years of development, these models have been proven
to have a good generalization ability. Tese models are
described in detail below.

VGGNet uses a smaller convolution kernel as a whole.
Te frst several layers of the model are a stack of convo-
lution layers, and the last several layers are full connection
layer (FCL) and softmax layer. Te activation function of all
hidden layers uses the ReLU function. It uses several smaller
convolution kernels instead of large convolution kernels to
reduce the parameters and introduce more nonlinear factors
to increase the ftting expression capability of the network.

GoogLeNet is derived from LeNet. At present, there are
mainly four versions of Inception-(v1–v4). Each version is a
little bit better than before and gets a better image classi-
fcation efect. In this series of network structures, convo-
lution kernels of diferent sizes are used to obtain receptive
felds of diferent sizes. Finally, these features of diferent
sizes are fused to extract better features. In addition, In-
ception-v [16] proposes batch normalization to reduce the
variation of internal neuron data distribution. Tis setting
normalizes the output of each layer to N(0,1) distribution,
thus increasing the robustness of the model. It can also use
larger learning rate training, faster convergence, and less
infuence of weight initialization. In addition, the model uses
two 3× 3 convolution kernels instead of one 3× 3 convo-
lution kernel to make the network deeper. After that, the
Inception-v4 and Inception-ResNet use residual network to
improve the previous network structure.

In consideration of the experimental comparative
analysis of the above models (as shown in 3.2), and com-
bined them with our needs, we fnally chose the Inception-
ResNet-v2.

2.2.2. Te Implement of Classifcation or Detection. To im-
plement detection or classifcation of Android apps using
images, we frst convert each APK into a 900× 900× 3 RGB
image. For example, if there is a dataset of N samples, an
image input of N×900× 900× 3 is generated. We directly
input these data into the Inception-ResNet-v2 model for
training, as shown in Figure 3 ⑤. Te trained model is to

realize the detection and classifcation of Android
applications.

2.3. Marking of Key Parts of the Image. To explain the neural
network features, we used the Grad-CAM method [17],
which achieves good results in the interpretation of image
classifcation. Te specifc Grad-CAM method imple-
mentation framework is shown in Figure 7.

(1) Te Mechanism of Grad-CAM.
Grad-CAM is an extended version of CAM and is
commonly used in image classifcation. Te goal of
Grad-CAM is to obtain the heatmap for the images.
In particular, the heatmap is the contribution score
for every single pixel of the image. Grad-CAM be-
lieves that the last feature maps generated by the
convolutional layer have the valuable information of
the input data, and the fnal decision of the model is
performed on it. Yet the infuence of each feature
map on the decision of the model is diferent. To
refect the diference, Grad-CAM computes the
important scores of the feature maps by multiplying
each feature map with its corresponding importance
weight. Ten, Grad-CAM takes the sum of the im-
portance scores to summarize the scores of the
feature maps contributing to the classifcation re-
sults. More specifcally, we denote the one of the
feature map from the last convolutional layer as Am

and the classifcation results as LC. We can calculate
the importance weight of Am as

αc
m �

1
Z


zL

c

zA
m
i

, (1)

where αc
m is a constant that represents the impor-

tance score, and Z is the number of elements in Am.
Assuming that we have M feature maps, the con-
tribution scores of the input data can be calculated
using a weighted combination of each feature map:

Cscore � ReLU
M

m

αc
mA

m
, (2)

where the ReLU is applied to preserve the features
that only have a positive infuence on the classif-
cation result of C. Note that the size of the Cscore
should be smaller than the input data.

(2) Te Implementation of Marking Malicious Image.
To implement the Grad-CAM, we use the AGP
(average global pooling) technique to calculate the
weighted class activation map.

As shown in Figure 7, since we only do maliciousness
detection in the model, we only need two forms of labeling:
normal and malicious. From the output of the model, we get
the weights of all features judged as malicious (the red square
in Figure 7 is maliciousness). Ten the feature and its
corresponding weight are multiplied to form a heatmap.Te

Security and Communication Networks 5



brighter the heatmap, the more important that part is judged
malicious. Te malicious part of the image is explained by
the heatmap.

3. Evaluation

In this section, we frst introduce the dataset and experi-
mental environment we use in the verifcation process. Ten
the feasibility of ImageDroid and its efectiveness in clas-
sifying malicious applications are verifed. Te specifc de-
tailed description is as follows.

3.1. Experimental Datasets and Environment. During the
experiment, we evaluate ImageDroid using six datasets. Te
samples in all these datasets are not only labeled as normal or
malicious but also contain family labels. Te details of these
datasets are shown in Table 1. Our experiment is based on
the Tensorfow framework, and our model is trained on 4
Nividia Titan XP. In this experiment, we use four indicators
to evaluate the performance of the model, and they are
accuracy, precision, recall, F1-score.

3.2. Verify the Performance of Deep LearningModel. In order
to realize the marking of important parts of images in
malicious detection, we must have a good deep neural
network model for image classifcation. Terefore, we verify
the efect of diferent models in using images for malicious
detection based on dataset 1. As shown in Figure 8, we use
four typical neural network structures for validation. As can
be seen from the evaluation metrics, Inception-ResNet-v2
performs the best. Terefore, the deep learning model se-
lected by image is Inception-ResNet-v2.

To verify whether the Inception-ResNet-v2 model
converges or not during the training process, we present the
ROC curve of the Inception-ResNet-v2 model after multiple
iterations, as shown in Figure 9. As the number of iterations
increases, the closer it is to the upper left, and the AUC (area
under curve) value also increases. Tese data indicate that
the model converges with the iterative growth.

3.3.Verify theValidity of theExtractedDataArea. In order to
verify the efectiveness of the ImageDroid for extracting Dex
fles, we use Dataset 1 and Dataset 4 based on the Inception-

ResNet-v2 model to verify the efect on classifcation. We
name the method as AllImageDroid that uses the entire Dex
fle to convert to images for classifcation. Te efectiveness
of Dex fle extraction is verifed by comparing the classif-
cation results of AllImageDroid and ImageDroid. After we
input the data extracted by these two methods into the deep
learning model for training, the diferent evaluation indi-
cators obtained are shown in Table 2.

Trough the classifcation evaluation indicators in Ta-
ble 2, we fnd that the extraction of Dex fles can have a
certain efect on improving the classifcation efect.

3.4. Verifcation of the Efect ofMalware Family Classifcation.
Because of the great similarity after converting to images by
analyzing the Android malicious applications in the same
family, we classify Android malicious app families based on
the Data Area which is converted to images. Next, we
perform malware family classifcation validation on the
dataset 1.

During the process of malware family classifcation, we
fnd that the diference in the number of samples in diferent
families is too large to bias the detection results. For ex-
ample, the number of samples in somemalicious application
families is only 2. To address this issue, we select the top 20
families from the Drebin dataset for validation. Each family
name and the corresponding sample number are shown in
Table 3. Te classifcation of ImageDroid for each family is
shown in Table 4.

As can be seen from Table 4, the ImageDroid can classify
the families in the dataset well, with an average recall rate of
96.7%. Among them, ten families are classifed perfectly, and
the recall rate achieve 99%. Because the training process of
the deep learning model is related to the number of samples,
the above experimental data show that our method is also
efective in malware family classifcation.

Grad-CAM Technology

Grad-CAM Mechanism

TestSet2
APK

Preprocessing
Input

Images
Datasets

Inception-
ResNet-v2

AGP

1

2

3

W1

W2
W3

Wn

n

Malicious

Benign

Generating HeatMap

Extract the weight of the features identifed as malicious

W1 * W2 * W3 * Wn *+++ + =…

Figure 7: Use Grad-CAM to achieve interpretation.

Table 1: Datasets used in our experiment.

Name Source #Benign #Malicious
Dataset 1 Drebin [4] – 5500
Dataset 2 MalGenome [18] – 1250
Dataset 3 Android PRAGuard [19] – 1250
Dataset 4 Google play store 5500 –

6 Security and Communication Networks



0.
88

3
0.

90
8

0.
89

2 0.
90

0

0.
89

4
0.

88
1

0.
87

6
0.

87
8

0.
91

3
0.

91
4

0.
90

9
0.

91
2

0.
94

9
0.

98
5

0.
92

4
0.

95
3

Vgg-16 InceptionResnet-v1 InceptionResnet-v2Inception-v3
 4 Types of deeplearning models

Accuracy
Precision

Recall
F1-score

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

Pe
rc

en
t

Figure 8: Classifcation and comparison of diferent models based on Drebin.

malware detection

ROC (area = 0.866994)

ROC (area = 0.841391)

ROC (area = 0.726914)

ROC (area = 0.86329)

Luck

Luck

Luck

Luck

ROC (area = 0.898203)

ROC (area = 0.91155)

ROC (area = 0.937723)

Luck

Luck

Luck

0.2 0.4 0.6 0.8 1.00.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

Figure 9: ROC Curve of InceptionResNet-v2.

Security and Communication Networks 7



3.5. Validation of Detection Validity for Obfuscated
Applications. In this section of experimental validation, we
evaluate the robustness of ImageDroid in detecting obfus-
cated malicious applications. Te current obfuscation
technology on the Android platform is very mature, and
there are many obfuscation frameworks available. We
choose the dataset 3 of Android PRAGuard [19] for vali-
dation. Five obfuscation techniques are used in the dataset
3(the details are shown in Table 5).

We use ImageDroid for detection on the obfuscated
dataset. We use all Dex fles and ImageDroid method (using
partial Dex fles) for comparison and verifcation,
respectively.

From the detection results in Table 5, it can be seen that
the ImageDroid method still has a good detection rate on
diferent obfuscated malware. Tis is exactly the beneft of
the ImageDroid method using partial Dex fles instead of
decompilation to obtain features. In this way, we solve the
problem of low detection of obfuscated malicious applica-
tions by static features. Tis makes it possible to detect
obfuscated malicious applications without the need to dy-
namically run malicious applications.

3.6. An Example of Image-Based Feature Marking. We use
Grad-CAM technology to visualize the parts of the image
that are important for maliciousness determination. In this
section, we demonstrate two APKs from the Geinimi family
of GenoneProject. Te two MD5 values are
f3736147f7d46c5d96f8ae9f89bfd1f694b-b871a and
bc3790cdc8ae0ee7da7d6e3fd397d2a720e00e67. Tese two
APKs are used to generate a malicious heatmap based on
Grad-CAM technology.

As shown in the heatmap in Figure 10, diferent colors
indicate diferent importance in determining maliciousness.
Te orange color indicates the most malicious part and the
blue color indicates the least malicious part. Te two images
of the malware are marked in orange around the positions of
400, which corresponds to an important part of the image to
judge maliciousness.

4. Related Work

Malicious detection of Android has always been the focus of
Android research. In view of the diferent current research
methods, we divide the research methods into two cate-
gories: decompilation and unable for decompilation.

Detection that can be decompilation. Tis type detection
method needs to decompile the Android application and
then extracts diferent features from the decompiled fles for
malicious detection. Te disadvantage of this type is that
Android applications must be decompiled. Liu et al. [20]
proposed a malicious application detection method for
Android based on the multilevel signature matching algo-
rithm.Trough this method, API, method, class, and APK of
each APK are signed separately. Finally, the same signature
is founded by the matching algorithm to detect malicious
application. Arp et al. [4] proposed Drebin, which performs
extensive static analysis and collects as many application
features as possible, such as permissions, API calls, and
strings in the Dalvik code.Ten these features are embedded
into a joint vector space for Android malware analysis.
Zhang et al. [21] proposed DroidSIFT, which constructs a
weighted context API dependency graph database and
generates graph-based feature vectors through graph simi-
larity query. Fan et al. [22] proposed the faldroid method,
which constructs frequent subgraph database through the
call relationship of function call graph and classifes mali-
cious applications by frequent subgraph to characterize the
maliciousness of malicious applications. Liu et al. [8] pro-
posed to use neighbor signature to classify Android mali-
cious families. Based on neighborhood signature to acquire

Table 2: Comparison of classifcation efects using diferent regions
of Dex.

Method Accuracy Precision Recall F-value
AllImageDroid 0.931 0.952 0.919 0.934
ImageDroid 0.949 0.985 0.929 0.953

Table 3: Top malware family used in Debin.

No. Family name Num No. Family name Num
1 FakeInstaller 925 11 Adrd 91
2 DroidKungFu 667 12 DroidDream 81
3 Plankton 625 13 LinuxLotoor 70
4 OpFake 613 14 GoldDream 69
5 GingerMaster 339 15 MobileTx 69
6 BaseBridge 330 16 FakeRun 61
7 IconoSys 152 17 SendPay 59
8 Kmin 147 18 Gappusin 58
9 FakeDoc 132 19 Imlog 43
10 Geinimi 92 20 SMSreg 41

Table 4: Evaluation indicator of multifamily classifcation.

Family TPR FPR Precision Recall F-value
FakeInstaller 0.994 0.001 0.998 0.994 0.996
DroidKungFu 0.992 0 0.996 0.992 0.994
Plankton 1 0 1 1 1
OpFake 0.989 0.001 0.957 0.903 0.927
GingerMaster 1 0 1 1 1
BaseBridge 0.892 0.005 0.947 0.892 0.918
IconoSys 1 0 1 1 1
Kmin 0.935 0.001 0.977 0.935 0.956
FakeDoc 0.989 0 1 0.989 0.995
Geinimi 0.909 0.001 0.909 0.909 0.909
Adrd 0.914 0.001 0.981 0.914 0.946
DroidDream 0.909 0 1 0.909 0.952
LinuxLotoor 0.989 0 1 0.989 0.995
GoldDream 1 0 1 1 1
MobileTx 1 0.004 0.936 1 0.958
FakeRun 1 0 1 1 1
SendPay 0.833 0 1 0.833 0.909
Gappusin 0.818 0 1 0.818 0.9
Imlog 0.894 0 1 0.894 0.944
SMSreg 0.889 0 1 0.889 0.941
Avg 0.967 0.001 0.979 0.967 0.968

8 Security and Communication Networks



the similarity of diferent applications’ FCGs, which was
signifcantly faster than traditional approaches based on
subgraph isomorphism.

Detection that cannot be decompilation. With the de-
velopment of encryption technology, some Android appli-
cations cannot be decompiled. In this case, there are some
methods that can detect malice without decompilation
technology. Tese types of methods are to use DEX fles
directly for malicious detection. Ni et al. [23] transformed
the operation code in the disassembled malware code into
gray image, and then recognized the classifcation of

malicious multifamily in the Windows system through the
convolutional neural network. Han et al. [24] proposed to
convert DEX into an image and then extract the entropy
graph from the image as a feature for malicious detection.
Bakour et al. [9] extracted local and global features from
DEX converted images. Ten, multiple local feature de-
scriptions are extracted from each image to form a feature
vector, which is used for malicious detection. Mercaldo et al.
[25] used the GISTmethod to generate a set of features from
the image corresponding to each application to detect
malicious applications and classify malware families.

Table 5: Classifcation result of per malware family.

ID Obfuscated method Malicious detection using Dex (recall) Malicious detection using Data Area (%) (recall)
1 String Encrption 91.3 94.8
2 Class Encrption 90.2 93.2
3 Method Encrption 92.8 95.0
4 Combined 1 and 3 91.9 94.9
5 Combined 1, 2, and 3 90.6 95.4
6 No obfuscation 96. 97.9

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

0

200

400

600

800

malware

malware
0 250 500 750

0 250 500 750 0 250 500 750

12

10

8

6

4

2

0

12.5

10.0

15.0

5.0

7.5

2.5

0.0

-2.5

Figure 10: Two malicious applications generate HeatMap through Grad-CAM.

Security and Communication Networks 9



5. Conclusion

In this paper, we propose a method for malicious detection
and multifamily classifcation without decompiling appli-
cations and prior knowledge. Te results show that our
method can not only efectively detect malicious of android
Application but also classify multiple families. Based on the
method, we annotate the classifcation results with the in-
terpretable mechanism of deep learningmodel.Tis not only
provides a good solution for malicious detection of Android
applications that cannot be decompiled but also enables
further fne-grained analysis by locating the part of the
image that is important for determining maliciousness.

Data Availability

So far, we have obtained public datasets such as (1) https://
www.malgenomeproject.org/, (2) https://pralab.diee.unica.
it/en/AndroidPRAGuardDataset, and (3) https://www.sec.
cs.tu-bs.de/∼danarp/drebin/. We have already crawled a lot
of Android apps across the other web.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Natural Science
Foundation of China under Grant No. 61672543 and the
Fundamental Research Funds for the Central Universities of
Central South University under Grant no. 2018zzts175. Te
authors also appreciate the eforts from the reviewers.

References

[1] C. reports, “AMobile malicious application statistics
website,” 2022, https://www.counterpointresearch.com/
global-smartwatch-shipments-market-share/.

[2] Y. Ye, T. Li, D. Adjeroh, and S. S. Iyengar, “A survey on
malware detection using data mining techniques,” ACM
Computing Surveys, vol. 50, no. 3, pp. 1–40, 2018.

[3] Y. Xue, G. Meng, Y. Liu et al., “Auditing anti-malware tools by
evolving android malware and dynamic loading technique,”
IEEE Transactions on Information Forensics and Security,
vol. 12, no. 7, pp. 1529–1544, 2017.

[4] D. Arp, M. Spreitzenbarth, M. Hübner, H. Gascon, and
K. Rieck, Drebin: Efective and Explainable Detection of An-
droid Malware in Your Pocket, NDSS’2014, California, CL,
USA, 2014.

[5] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu, “Hindroid:
An Intelligent Android Malware Detection System Based
on Structured Heterogeneous Information network,” in
Proceedings of the 23rd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
pp. 1507–1515, Halifax, NS, Canada, June 2017.

[6] M. Y. Wong and D. Lie, “IntelliDroid: a targeted input
generator for the dynamic analysis of android malware,” in
Proceedings of the Network and Distributed System Security
Symposium, pp. 21–24, February 2016.

[7] C. Wang, Z. Li, X. Mo, H. Yang, and Y. Zhao, “An android
malware dynamic detection method based on service call co-

occurrence matrices,” Annals of Telecommunications, vol. 72,
no. 9–10, pp. 607–615, 2017.

[8] P. Liu, W. Wang, X. Luo, H. Wang, and C. Liu, “NSDroid:
efcient multi-classifcation of android malware using
neighborhood signature in local function call graphs,” In-
ternational Journal of Information Security, vol. 20, pp. 59–71,
2021.

[9] K. Bakour and H. M. Ünver, “DeepVisDroid: android mal-
ware detection by hybridizing image-based features with deep
learning techniques,” JCR1_Neural Comput. Appl.vol. 16,
2021.

[10] A. Cvpr and P. Id, “Iterative visual reasoning beyond con-
volutions,” in Proceedings of the 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, Salt Lake City,
UT, USA, June 2018.

[11] Y. Ding, X. Zhang, J. Hu, and W. Xu, “Android malware
detection method based on bytecode image,” Journal of
Ambient Intelligence and Humanized Computing, vol. 32,
pp. 1–10, 2020.

[12] S. D. Sl and J. Cd, “Windows malware detector using con-
volutional neural network based on visualization images,”
IEEE Transactions on Emerging Topics in Computing, vol. 9,
no. 2, pp. 1057–1069, 2021.

[13] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Torralba,
“Learning deep features for discriminative localization,” Proc.
IEEE Conf. Comput. Vis. pattern Recognit., pp. 2921–2929,
2016.

[14] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” in Proceedings
of the 2015 3rd IAPR Asian Conference on Pattern Recog-
nition (ACPR), pp. 1–14, Kuala Lumpur, Malaysia, No-
vember 2015.

[15] G. Zeng, Y. He, Z. Yu, X. Yang, R. Yang, and L. Zhang, “Going
deeper with convolutions,” in Proceedings of the 2015 IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1–9, Boston, MA, June 2015.

[16] V. Sangeetha and K. J. R. Prasad, “Deep residual learning for
image recognition,” Proc. IEEE Conf. Comput. Vis. pattern
Recognit.vol. 45, pp. 1951–1954, 2006.

[17] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,
D. Parikh, and D. Batra, “Grad-cam: visual explanations
from deep networks via gradient-based localization,”
Rev. do Hosp. das Classifcations, vol. 17, pp. 331–336,
2016.

[18] MalgenomeProject_Dataset, “come fromNorth Carolina state
university,” 2021, http://www.malgenomeproject.org/.

[19] PraguardDataset, “An Android Dataset Using seven diferent
obfuscation,” 2022, http://pralab.diee.unica.it/en/
AndroidPRAGuardDataset.

[20] X. Y. Liu, J. Weng, Y. Zhang, B. W. Feng, and J. S. Weng,
“Android malware detection based on APK signature infor-
mation feedback,” Journal on Communications, vol. 38,
pp. 190–198, 2017.

[21] M. Zhang, Y. Duan, H. Yin, and Z. Zhao, “DroidSIFT:
Semantics-Aware Android Malware Classifcation Using
Weighted Contextual API Dependency Graphs,” Cate-
gories and Subject Descriptors, vol. 13, pp. 1105–1116,
2014.

[22] M. Fan, L. Jun, L. Xiapu, and K. Chen, “Frequent subgraph
based familial classifcation of android malware,” in Pro-
ceedings of the 2016 IEEE 27th International Symposium on
Software Reliability Engineering (ISSRE), IEEE, Ottawa, ON,
Canada, December 2016.

10 Security and Communication Networks

https://www.malgenomeproject.org/
https://www.malgenomeproject.org/
https://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://pralab.diee.unica.it/en/AndroidPRAGuardDataset
https://www.sec.cs.tu-bs.de/%7Edanarp/drebin/
https://www.sec.cs.tu-bs.de/%7Edanarp/drebin/
https://www.counterpointresearch.com/global-smartwatch-shipments-market-share/
https://www.counterpointresearch.com/global-smartwatch-shipments-market-share/
http://www.malgenomeproject.org/
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset
http://pralab.diee.unica.it/en/AndroidPRAGuardDataset


[23] S. Ni, Q. Qian, and R. Zhang, “Malware identifcation using
visualization images and deep learning,” Computers & Se-
curity, vol. 77, pp. 871–885, 2018.

[24] K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware
analysis using visualized images and entropy graphs,”
International Journal of Information Security, vol. 14,
pp. 1–14, 2015.

[25] F. Mercaldo and A. Santone, “Deep learning for image-based
mobile malware detection,” Journal of Computer Virology and
Hacking Techniques, vol. 16, no. 2, pp. 157–171, 2020.

Security and Communication Networks 11




