
Research Article
A Low-Overhead Auditing Protocol for Dynamic Cloud Storage
Based on Algebra

Fudong Ding ,1,2,3 Libing Wu ,1,2,3 Zhuangzhuang Zhang ,1,2,3 Xianfeng Wu,4

Chao Ma ,1,3 and Qin Liu1,3

1School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
2Guangdong Laboratory of Artifcial Intelligence and Digital Economy (SZ), Guangzhou 510000, China
3Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, Wuhan 430072, China
4Institute for Interdisciplinary Research, Jianghan University, Wuhan 430056, China

Correspondence should be addressed to Libing Wu; wu@whu.edu.cn and Zhuangzhuang Zhang; zhzhuangzhuang@whu.edu.cn

Received 10 December 2022; Revised 28 March 2023; Accepted 13 May 2023; Published 3 June 2023

Academic Editor: Wenxiu Ding

Copyright © 2023 Fudong Ding et al. Tis is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

With the widespread adoption of cloud storage, ensuring the integrity of outsourced data has become increasingly important.
Various cloud storage auditing protocols based on public key cryptography have been proposed. However, all of them require
complex cryptographic operations and incur signifcant storage and communication costs. To address the issues of signifcant
storage overhead for data tags, high computational complexity of cryptographic algorithms, and limited efciency of dynamic data
algorithms in signature algorithm-based cloud storage outsourcing data integrity verifcation protocols, we propose a dynamic
auditing protocol called AB-DPDP, which is based on algebra. Our protocol reduces the computational complexity of tag
generation by utilizing basic algebraic operations instead of the traditional cryptographic method used in most current auditing
protocols. To reduce storage overhead and protect private data, our protocol stores only tags, allowing for data to be restored
through these tags, as opposed to storing both tags and data on the cloud server. To accommodate for more frequent and efcient
data dynamics, we propose the dynamic index skip table data structure. Furthermore, the security of our proposed protocol is
thoroughly proven based on the security defnition of secure cloud storage. Finally, through theoretical analysis and experimental
evaluation, we demonstrate the advantages of our scheme in terms of data privacy, storage overhead, communication overhead,
computation overhead, and data dynamic efciency.

1. Introduction

With the advancement of cloud computing technology,
cloud storage services have become increasingly popular
among both enterprise and individual users [1]. Te reasons
for storing data in cloud servers vary; while enterprises may
choose to outsource their data to reduce the cost of pur-
chasing hard drives, personal users prefer cloud storage for
the convenience of accessing their data from multiple de-
vices, as well as to save local storage space, such as on their
mobile phones where audio and video data can consume
a lot of space. However, data outsourcing also presents
numerous security challenges. Although cloud service
providers (CSPs) ofer secure hosting environments and

robust security mechanisms, outsourced data still face
threats such as cyberattacks, hardware failures, and software
vulnerabilities [2, 3]. Furthermore, in an efort to reclaim
storage space, CSPs may discard or compress rarely accessed
data, and in some cases, even deceive users by claiming that
the outsourced data are intact following a data breach event,
in order to maintain their reputation. As a result, it becomes
critical for cloud storage users to have the ability to verify the
integrity of their outsourced data.

Current research eforts have suggested several key
metrics for secure cloud storage: (1) Efciency: the entire
auditing protocol should have a low time complexity. (2)
Support for third-party auditing: a trusted third party can
reduce the computational overhead of the user by

Hindawi
Security and Communication Networks
Volume 2023, Article ID 5477738, 21 pages
https://doi.org/10.1155/2023/5477738

https://orcid.org/0000-0002-9007-7030
https://orcid.org/0000-0001-9897-1953
https://orcid.org/0000-0001-7749-2718
https://orcid.org/0000-0002-7443-6267
mailto:wu@whu.edu.cn
mailto:zhzhuangzhuang@whu.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/5477738

performing the auditing tasks on their platform. Addi-
tionally, in case of data loss, the audit results from a trusted
third party are more impartial and objective compared to
those from both CSPs and users. (3) Data dynamics: since
users often update the data stored in the cloud, a secure
cloud storage protocol should be able to support data dy-
namics. In conclusion, a secure cloud storage protocol that is
computationally efcient, can support dynamic data, and
allows for third-party public auditing is needed.

Typically, the data owner must generate tags for the fle
blocks before outsourcing the data for subsequent verif-
cation of their integrity. Both the data blocks and their tags
are uploaded to the cloud service provider (CSP). Te
outsourced data consist of both data and tags. Although we
can adjust the size of tags by changing the size of the data
blocks, the communication and storage overheads of the
protocol are still greatly afected by them. For example, in the
RSA-based scheme [4], if the bit length of each data block
and tag is set to 1024, the size of the outsourced data will be
twice the size of the data block. Furthermore, as shown in
Table 1, the majority of existing protocols utilize RSA or BLS
signature algorithms [14] for tag generation, resulting in
high computational complexity, and none of these protocols
can adequately safeguard users’ private data from being
accessed by CSPs. Additionally, to resist replacement attack,
the block index is embedded in the tag of each data block. In
general, the dynamic operation of data changes the block
index, requiring the tags of all subsequent data blocks to be
recalculated during integrity verifcation. Tis results in
a signifcant computational overhead. To address this issue,
a mapping must be established between the tag index and
block index, where the tag index is used for tag calculation
and the block index represents the storage location of the
block.Tis dynamic approach avoids tag recalculation and is
therefore highly efcient. However, current solutions for
index mapping have several drawbacks: (1) linked list [15],
where index conversions are done by traversing backward
from the head of the linked list; (2) index array [16], where all
subsequent entries in the index array need to bemoved when
a data block is inserted; and (3) dynamic operation array
[17], where the complexity of the index conversion algo-
rithm is high when data dynamics are too frequent. Te
disadvantages mentioned previously pose signifcant chal-
lenges to deploying cloud storage auditing protocols in real-
world scenarios.

To address these challenges, it is essential to introduce
a more efcient auditing scheme for cloud storage. An ideal
solution would be to store only tags, not data blocks, in the
CSP to minimize communication and storage overhead
while protecting users’ data privacy. To improve tag com-
putation, integrity proof computation, and proof verifcation
efciency, we aim to reduce the time-consuming expo-
nentiation and bilinear pair operations in existing schemes.
Additionally, to support frequent data dynamic operations,
we must reduce the time complexity of index conversion
data structures. Te Goldreich–Goldwasser–Halevi (GGH)
cryptosystem [18] is a lattice-based public key encryption
algorithm, where both the private and public keys are

metrics. Tis system is capable of encrypting data matrices
using the private key and recovering the original data using
the public key. We propose an algebraic equation that draws
inspiration from the GGH cryptosystem. By replacing the
public and private keys in GGH encryption with big integers,
we can easily verify the integrity of an input big integer and
recover it through the encrypted data. However, verifying
one data block at a time is not efcient enough for verif-
cation. Terefore, we improve the proposed algebraic
equation to support the verifcation of multiple data blocks
by accumulating the encrypted data blocks. To improve data
dynamic efciency, we must reduce the time complexity of
dynamic operations of data structures. We achieve this by
improving the skip table, a data structure that supports
binary search, to dynamically adjust the update strategy
based on the amount of data to achieve data dynamic op-
erations in logarithmic time complexity.

We have developed a novel auditing protocol for cloud
storage that uses basic algebraic operations for tag calcu-
lation, data integrity verifcation, and data restoration. Our
approach minimizes storage overhead and enhances users’
data privacy by adopting a tag-only storage approach in the
CSP. To improve data dynamic efciency, we propose
a dynamic index skip table (DIST) that supports index
transformation and reduces the time complexity of the data
dynamic algorithm. We start by proposing an algebraic
equation and improving it to support aggregated verifcation
of multiple data blocks. We then introduce the architectures
of cloud storage private and public auditing protocols and
discuss the design goals of a secure auditing protocol. We
construct the AB-DPDP private auditing protocol based on
the proposed algebraic equation and enhance it to support
public auditing by introducing a TPA and a PKG. Finally, we
propose a new technique to support data dynamics such as
insertion, deletion, or modifcation of data blocks. Our data
structure dynamically adjusts the update cost of data block
insertion based on the size of the data volume and enables
index conversion in logarithmic time complexity.

Te main contributions of this paper are as follows:

(i) We make the frst attempt to propose a basic al-
gebraic equation and, based on it, a novel secure
cloud storage protocol, AB-DPDP (algebra-based
provable data possession). Compared to existing
schemes, this protocol involves only basic algebraic
operations, reducing the computational complexity
for tag computation and integrity verifcation.
Additionally, it requires only the storage of tags on
the cloud server, signifcantly reducing storage and
communication overhead and enhancing privacy
protection.

(ii) We propose a new data structure, the dynamic
index skip table, to enhance the AB-DPDP protocol,
resulting in a cloud storage auditing scheme that
supports efcient data dynamic operations. Tis
improvement enhances the efciency of data block
search, insertion, deletion, and updating compared
to existing data dynamic schemes.

2 Security and Communication Networks

Ta
bl

e
1:

Li
m
ita

tio
ns

of
va
ri
ou

s
ty
pi
ca
li
nt
eg
ri
ty

ve
ri
fc
at
io
n
pr
ot
oc
ol
s.

Pr
ot
oc
ol
s

Pu
bl
ic

au
di
tin

g
D
at
a
dy
na
m
ic

op
er
at
io
ns

C
ry
pt
og
ra
ph

ic
al
go
ri
th
m

C
or
ru
pt

da
ta

re
co
ve
ry

Pr
iv
ac
y
pr
ot
ec
tio

n

A
te
ni
es
e
et

al
.[
4]

7
7

RS
A

7
7

Sh
ac
ha
m

an
d
W
at
er
s
[5
]
an
d
Li
u
et

al
.[
6]

7
7

PR
F/
BL

S
✓

7

A
te
ni
es
e
et

al
.[
7]

7
Li
m
ite
d

PR
F,

H
A
SH

7
7

W
an
g
et

al
.[
8]

✓
✓

(M
H
T)

RS
A

7
7

Sh
en

et
al
.[
9]

✓
✓

(L
in
ke
d
lis
t)

BL
S

7
7

Ra
ba
ni
ne
ja
d
et

al
.[
10
]

✓
✓

(M
H
T)

Pr
ox
y
re
sig

na
tu
re

7
7

Zh
an
g
et

al
.[
11
]

✓
7

Bl
oc
kc
ha
in
,B

LS
7

7

Ra
m
ai
ah

an
d
K
um

ar
i[
12
]

✓
✓

(L
in
ke
d
lis
t)

H
om

om
or
ph

ic
en
cr
yp
tio

n
7

7

H
ah
n
et

al
.[
13
]

✓
✓

(in
de
x
co
nv

er
sio

n)
H
om

om
or
ph

ic
en
cr
yp
tio

n
7

7

Security and Communication Networks 3

(iii) We formalize the system framework of private and
public auditing protocols and the security model of
AB-DPDP. We theoretically analyze the protocol in
terms of its correctness, privacy, and efciency and
demonstrate its ability to prevent forgery, replay,
and replacement attacks. Furthermore, we conduct
extensive experiments to evaluate the performance
of the protocol and show that it signifcantly reduces
storage and communication costs during data
outsourcing and greatly improves the efciency of
dynamic data handling.

2. Related Work

In this section, we show works related to cloud storage
integrity auditing protocols, focusing on public auditability
and data dynamics.

2.1. No Support for Data Dynamics. Ateniese et al. [4]
proposed a provable data possession protocol (PDP) where
a public verifer can disclose the abnormal data incidents of
CSPs with no user data. PDP utilizes an aggregable ho-
momorphic linear authenticator (HLA) based on RSA to
calculate tags of outsourced data. Users are able to verify
a linear combination of individual data blocks through the
aggregated HLAs. Using a sampling strategy, the verifer can
quickly check the integrity of the outsourced data with
a certain probability. Juels and Kaliski [19] proposed proofs
of retrievability (POR). POR not only supports data integrity
verifcation but also allows recovering corrupted data by
erasure codes. However, POR introduces a special block
called sentinel that is randomly embedded in the data,
limiting the operation of data updates. To address these
issues, Shacham and Waters [5] proposed two improved
POR schemes that overcome the limitations of POR and
provide security proof. Te frst private verifcation scheme
is built on pseudo-random function (PRF), and the second
public verifcation scheme is constructed based on the BLS
signature algorithm [14]. Liu et al. [6] proposed a scheme
based on regenerated codes where users are able to audit
a random subset of the outsourced data. However, none of
the above schemes supports the dynamic operation of data.

2.2. Support for Data Dynamics. To support dynamic op-
erations, Ateniese et al. [7] designed an extensible PDP,
which supports limited data dynamic operations. Erway
et al. [20] studied the dynamic PDP scheme and refned the
proposed scheme in a subsequent work [21]. Tey designed
a dynamic provable data possession (DPDP) scheme, which
supports data updates by introducing a rank-based au-
thenticated skip table. Esiner et al. [22] improved this work
by using variable lists to support variable block size updates.
Wang et al. [8] proposed a public auditing protocol for
dynamic cloud storage that combines HLAwithMerkle hash
tree (MHT) to support data dynamics. To reduce the burden
of frequent auditing for users, a trusted third-party auditor
(TPA) is introduced to support public auditing, and TPA is
also extended by many subsequent schemes. However, in

this scheme, once the data are updated, the MHTneeds to be
rebuilt. To support fne-grained updates, Liu et al. [23]
proposed a dynamic public auditing scheme based on
Merkle trees which are used to support variable-sized block
updates. Zhu et al. [24] proposed a dynamic auditing scheme
based on fragment structure and index hash table. Un-
fortunately, in this scheme, the time complexity of data
structure updating is high when data are updated.

Other research lines aiming to improve the efciency of
data dynamics are batch updates [25], index transformations
[26], and dynamic hash tables [9, 27]. Te repetitive com-
putations associated with data dynamics can be avoided by
batch updates, but the update delay is unacceptable in ap-
plications requiring real-time performance. Index trans-
formation methods provide a way to convert the block index
to a tag index, while dynamic-hash-table-based methods aim
to decouple indexes from tags. However, the computational
overhead of data dynamics for all these schemes increases
linearly with the number of challenged blocks.

2.3. Limitations of Recent Research. Recent research has
focused on enhancing protocol security and improving other
features such as protocol scalability on top of supporting
public auditable basis. Wang et al. [28] proposed an auditing
scheme for outsourced database. Te scheme uses Embed-
dedMerkle B tree and Bloom flter to authenticate and verify
the search results with correctness and completeness
properties. However, the scheme does not consider data
dynamics. Some studies focus on resilience to key leakage
[29], public auditing of shared data [10], and blockchain-
based auditing [11, 30, 31]. In order to strengthen the
protection of users’ private data against untrusted TPA,
random masking [32], homomorphic hash function [33],
and homomorphic encryption [12] were adopted. Although
these solutions enhanced security and scalability in terms of
multiple users, they have not yet achieved efcient data
dynamics.

To reduce the cost of certifcate management, some
protocols [34–36] adopted identity-based encryption and
signature schemes. Erway et al. [21] improved a dynamic
PDP scheme that supports data dynamics, but the data
owner is also involved in the authentication computation,
and Guo et al. [25] improved this scheme by introducing
TPA. Hahn et al. [13] proposed a more efcient cloud
auditing scheme by introducing precomputation in the TPA
validation phase shifting part of the validation computation
from CSP to TPA, and the two computations are performed
independently and concurrently to improve the efciency of
validation, but the scheme does not reduce the actual
communication and computation overhead. Yang et al. [17]
proposed a dynamic cloud auditing scheme based on a dy-
namic operation array. Tis scheme uses a dynamic oper-
ation array to implement index transformation, which is
more efcient when dynamic operations are less frequent.
However, as dynamic operations tend to be more frequent,
the computational complexity of its index transformation
increases linearly. Javadpour et al. [37] proposed a more
efcient task scheduling method, which optimized energy

4 Security and Communication Networks

consumption by 12% and power consumption by 20%.
Sangaiah et al. [38] proposed a feature selectionmethod used
for classifying the malicious and legitimate activities in cloud
computing environments with higher accuracy, which en-
hanced security for cloud storage environments.

To more clearly demonstrate the limitations of various
integrity verifcation protocols, we have summarized the
comparison results in Table 1.

3. Protocol Design

Te cloud storage integrity auditing protocol proposed in
this paper is based on the algebraic identity in Teorem 1
and supports tag generation, data integrity verifcation, data
restoration, and dynamic data handling. In this section, we
will focus on Teorem 1 and design a private auditing
protocol based on Corollary 2 and the secure cloud storage
model. Finally, the private auditing protocol is improved to
support public auditing and dynamic data handling.

3.1. Teorem 1. To reduce the storage overhead of cloud
storage auditing protocols, an ideal solution is to perform
integrity verifcation only through data tags, without the
help of raw data blocks. To achieve this, we introduce
Teorem 1, which serves as the basis of the proposed in-
tegrity auditing protocol. Te theorem does not require
complex cryptographic operations, only simple algebraic
operations, to detect changes in input large integers.

Theorem 1. let σ � wd + r, where d is the input big integer,
w is the private key, and r is the disturbance variable.

Introduce e ∈ ZN
∗, let P � eσ, if w> 2er, then

P � round(P/w) · w + er, d � round(P/w)/e.

Proof

P � eσ � e(wd + r) � ewd + er, (1)

for w> 2er, then

round
P

w
 � round ed +

er

w
 � ed. (2)

According to equations (1) and (2),

round
P

w
 · w + er � ewd + er

� e(wd + r) � P,

round(P/w)

e
� d.

(3)

Te proof is completed. □

According to Teorem 1, we can derive

Corollary 2. For l linearly related large integers

σi � wdi + ri, 1⩽ i⩽ l, (4)

let

Σ �
l

i�1
eiσi, ei ∈ ZN

∗
, (5)

if w> 2
l
i�1eiri, then

Σ � round
Σ
w

 · w +
l

i�1
eiri. (6)

Proof

Σ �
l

i�1
eiσi �

l

i�1
ei wdi + ri(

� w
l

i�1
eidi +

l

i�1
eiri,

(7)

round
Σ
w

 � round
l

i�1
eidi +

l
i�1 eiri

w
⎛⎝ ⎞⎠

�
l

i�1
eidi + round

l
i�1 eiri

w
 ,

(8)

for w> 2
l
i�1eiri, then

round

l
i�1 eiri

w
 � 0. (9)

According to equations (8) and (9),

round
Σ
w

 �
l

i�1
eidi. (10)

According to equations (7) and (10),

Σ � round
Σ
w

 · w +
l

i�1
eiri. (11)

Te proof is completed. □

3.2. Secure Cloud Storage Model. In cloud storage envi-
ronments, the integrity of user data in CSPs is exposed to
various threats, and to maintain their reputation and in-
terests, CSPs may conceal data corruption events from users.
Terefore, data owners must be able to check the integrity of
their data in a timely manner. To provide more impartial
proof to CSPs and users, audit tasks are often delegated to
TPAs. Introducing a trusted private key generator (PKG) to
distribute keys based on the identity of users can help reduce
the burden of certifcate management. Terefore, after the
user outsources their data to the CSP, TPA is responsible for
auditing the data integrity in the CSP according to a certain
frequency and returning the results to the user.

Based on these requirements, we present the classic
models for AB-DPDP private and public auditing protocols.
Te private auditing protocol involves two entities: user and
CSP. Te user calculates data tags, uploads data tags to the
CSP, challenges the CSP, and verifes the proofs returned by

Security and Communication Networks 5

the CSP. Te CSP receives and stores data tags, accepts
challenges, and generates proofs. Te public auditing pro-
tocol involves four entities: PKG, user, CSP, and TPA. Te
PKG is responsible for user key generation and manage-
ment.Te user calculates data tags and uploads data and tags
to the CSP. Te CSP receives and stores user data and tags,
accepts challenges from the TPA, and generates proofs. Te
TPA receives the user’s audit request, challenges the CSP,
verifes the proofs returned by the CSP, and returns the
verifcation result to the user.

As depicted in Figures 1 and 2, the AB-DPDP private and
public auditing protocols are encompass seven stages,
namely setup, key generation, data outsourcing, challenge
initiation, proof calculation, proof verifcation, and data
recovery, collectively represented as AB-DPDP� (Setup,
KeyGen, Outsource, Challenge, Proof, Verify, Recovery).

(i) Setup(1λ)⇒ (PK, SK): Tis algorithm is run by
PKG, which takes security parameters λ as input
and generates public key PK and private key SK.

(ii) KeyGen(SK,UID)⇒ SKUID: In public auditing
protocol, this algorithm is run by PKG, which
utilizes the private key SK and user identity UID to
generate the user private key SKUID. In private
auditing protocol, this algorithm is run by user,
which chooses a private key SK.

(iii) Outsource(d∗, SKUID,PK)⇒ σ: Tis algorithm is
run by user, which takes user fle d∗, public key, and
user private key as input and output the outsourced
data and then uploads it to CSP.

(iv) Challenge(1λ)⇒ c∗: Tis algorithm is run by user
or TPA, which generates a challenge sequence
based on the input security parameters and sends
the sequence to CSP.

(v) Proof(σ, c∗, PK)⇒P:Tis algorithm is run by CSP,
which generates integrity proof based on the
challenge sequence from TPA, outsourced data,
and public key and then sends the proof to TPA.

(vi) Verify(c∗, P, PK, SKUID)⇒]: Tis algorithm is run
by user or TPA, which verifes the integrity proof
with the challenge sequence and outputs the veri-
fcation result (complete/corrupt) which will be
sent to user.

(vii) Recovery(i, SK)⇒ ti⇒ di: Tis algorithm is run by
user, which restores the original data blocks based
on the tags.

A secure integrity auditing protocol should aim to meet
the following six design goals:

(1) Correctness: the protocol should ensure that CSPs
with no data loss will always pass the integrity audit

(2) Efciency: the protocol should have low time and
spatial complexity to minimize the overhead of
storage, communication, and computing

(3) Antispoofng: the protocol should be able to detect
data corruption even if CSPs attempt to deceive
users, with a high probability

(4) Privacy protection: the protocol should ensure that
neither the CSP nor the TPA can obtain the raw data
from the outsourced data

(5) Data accessibility: users should be able to obtain their
raw data at any time

(6) Data dynamics: the protocol should allow users to
modify, add, or delete outsourced data and still be
able to audit the updated data

3.3. AB-DPDP Private Auditing Protocol. Te most impor-
tant aspect of designing an auditing protocol is generating an
integrity proof that can be verifed. In most current schemes,
users must attach additional verifcation information (tags)
to each data block in order to calculate the proof. However,
this means that the CSP must store both the data and the
tags, leading to heavy storage and communication overhead.
To alleviate this issue, we propose a secure cloud storage
private auditing protocol called AB-DPDP. Tis protocol is
based on Teorem 1 and its corollary and meets the re-
quirements of secure cloud storage. Unlike other protocols,
AB-DPDP only stores tags in the CSP and uses simple al-
gebraic operations to calculate both the tags and the integrity
proofs.

As shown in Figure 1, the AB-DPDP private auditing
protocol involves only two participants: the user and the
CSP. Te protocol consists of six algorithms: KeyGen,
Outsource, Challenge, Proof, Verify, and Recovery. Te
main steps of the protocol are as follows:

(1) KeyGen(1λ)⇒ SK: Based on the security parameters
λ, the user selects a random large integer sk ∈ Zp

∗

and a hash function H1: 0, 1{ }∗ ⟶ Zq, where
p> 2q. Te private key is SK � (sk, H1).

(2) Outsource(d∗, SK)⇒ σ: Te user frst divides the fle
into blocks di ∈ ZN

∗, 0⩽ i⩽ n according to a fxed
size, where n is the number of data blocks. Ten, the
tags are calculated for each data block ti � skdi + ri,
where ri � H1(i), 0⩽ i⩽ n; fnally, the user uploads
the tag collection σ � ti

∗ to the CSP and deletes
local data and tags.

(3) Challenge(1λ)⇒ c∗: Te user selects l data blocks by
random sampling to initiate a challenge and generate
a corresponding random number for each sampling
block ei < λ, 1⩽ i⩽ l, where 2

l
j�1eij

rij
<w and form

a challenge sequence c∗ � (il, i2, . . . , il; e1, e2, . . . , el)

to challenge CSP.
(4) Proof(σ, c∗)⇒P: Te CSP retrieves the corre-

sponding tags according to the challenge sequence,
calculates the integrity proof P �

l
i�1eiti, and then

returns the proof to user for verifcation.
(5) Verify(P, SK)⇒]: Te user verifes the integrity

proof P received by judging whether the equation
round(P/sk) · sk +

l
i�1eiri � P holds or not. If it

holds, then output] � true, that is, the data are
complete. Otherwise, output] � false.

(6) Recovery(i, SK)⇒ ti⇒ di: Te user enters the block
index i, and the CSP returns the corresponding tag ti.

6 Security and Communication Networks

Te user then restores the raw data block di through
the tag and private key SK, di � round(ti/sk).

3.4. AB-DPDP Public Auditing Protocol. Te participants of
the AB-DPDP private auditing protocol are limited to the
user and CSP, which results in the user being required to
participate in the calculation of the challenge initiation and
integrity proof verifcation. Tis imposes a heavy compu-
tational overhead on the user. Additionally, since the audit
results are issued by the user, the CSP may question the
accuracy of the results, even if the data are corrupt. To reduce
the computational overhead on the user and provide more
impartial audit results, we improved the AB-DPDP private
auditing protocol to the public auditing protocol in Figure 2
by introducing the TPA and PKG.

Te AB-DPDP public auditing protocol consists of four
entities: the user, PKG, TPA, and CSP and includes seven
algorithms: setup, key generation, data outsourcing, chal-
lenge initiation, proof generation, proof verifcation, and
data recovery. In the public auditing protocol, the setup and
key generation are executed by the PKG, and the calculation
of challenge initiation and proof verifcation is transferred to
the TPA, which provides fair and credible audit results. With

the introduction of PKG and TPA, the protocol must also
accommodate the conversion from a single-user scenario to
a multiuser scenario. Te main algorithms of the public
auditing protocol are as follows:

(1) Setup(1λ)⇒ (PK, SK): PKG selects three security
hash functions H1, H2: 0, 1{ }∗ ⟶ Zp, H3: 0, 1{ }∗

⟶ Zq, based on the security parameters λ, where
p> 2q. Let private key SK � H1, public key
PK � (H2, H3), and send the public key to user
and TPA.

(2) KeyGen(SK, uid)⇒ SKuid: PKG runs this algorithm
to generate user private key. Te user sends identity
information uid to the PKG, which uses the private
key hash function to generate the user’s private key
SKuid � H1(uid), and then returns it to the user.

(3) Outsource(d∗, SKuid, PK)⇒ σ: Te user frst divides
the fle into blocks di ∈ ZN

∗, 0⩽ i⩽ n according to
a fxed size, where n is the number of data blocks.
Ten, the user generates a random large integer Ruid,
and the tags are calculated for each data block
ti � pk · (H1(SKuid|i) · di) + ri, where
pk � H2(Ruid), ri � H3(i), 0⩽ i⩽ n. Finally, the user

CSPUser

① KeyGen

③ Challenge

④ Proof⑤ Verify

② Outsource

⑥ Recovery

Figure 1: AB-DPDP private auditing protocol.

CSP

TPA
PKG

User

② KeyGen

① Setup

④ Challenge

③ Outsource

④ Challenge ⑤ Proof

⑥ Verify

Result

Figure 2: AB-DPDP public auditing protocol.

Security and Communication Networks 7

uploads the tag collection σ � ti
∗ and Ruid to the

CSP and deletes local data and tags.
(4) Challenge(1λ)⇒ c∗: Sampling the data blocks and

challenging the CSP. Tis algorithm is consistent
with the algorithm in private auditing protocol.

(5) Proof(σ, c∗)⇒P: Te integrity proof is calculated
according to the challenge sequence and the corre-
sponding tags. Tis algorithm is consistent with the
algorithm in private auditing protocol.

(6) Verify(P, PK, Ruid)⇒]: Te user verifes the in-
tegrity proof P received by judging whether the
equation round(P/pk) · pk +

l
i�1eiri � P, where

pk � H2 (Ruid), ri � H1(i), holds or not. If it holds,
then output] � true, that is, the data are complete.
Otherwise, output] � false.

(7) Recovery(i, SK)⇒ ti⇒ di: Te user enters the block
index i, and the CSP returns the corresponding tag ti.
Te user then restores the raw data block di through
the tag and private key SK, di � (round(ti/
pk))/(H1(SKuid|i)).

3.5. Data Dynamics. Both the AB-DPDP private and public
auditing protocols support the verifcation of static data, but
in a real cloud storage environment, dynamic data opera-
tions are frequent. Since dynamic operations afect the
mapping relationship between block index and tag index,
a data structure is needed to record this mapping to support
dynamic auditing. Index conversion schemes such as arrays,
linked lists, hash tables, and dynamic operation arrays have
been proposed, but they have high data structure update
complexity when the amount of data and the frequency of
dynamic operations are high. In this paper, we introduce the
dynamic index skip table (DIST) to dynamically adjust the
data structure update strategy based on the number of data
blocks, resulting in more efcient data dynamics.

As shown in Figure 3(a), a node in the DIST consists of
a block index, a tag index, and multilayer pointers.Te block
index is the actual storage index of the tag in the CSP, while
the tag index is used to calculate the tag before data out-
sourcing. Te nodes are linked by multilayer pointers, and
the lowest layer must have two pointers pointing to the
previous and next nodes, while other layers generate
a pointer to the next node with a certain probability (the
upper layer has a smaller probability) to reduce the com-
plexity of node search time. If a node has only one level, the
block index of that node is set to −1 and will not be updated
during dynamic data operations to reduce the time com-
plexity of data dynamics. Te generation probability P of the
upper-layer pointers is not fxed but dynamically decreases
or increases as the number of nodes increases or decreases.
For example, when the number of nodes is 1000, 2-layer
pointers are generated with a probability of 1/4, and 3-layer
pointers with a probability of 1/16. When the number of
nodes is 2000, 2-layer nodes are generated with a probability
of 1/8, and 3-layer pointers with a probability of 1/64. By
dynamically adjusting the upper-layer pointer generation
probability, the number of nodes with upper-layer pointers

does not increase linearly with the increase in data volume.
To improve node search efciency, if the absolute diference
between the found node’s block index and the target node’s
block index is less than 1/P, the bottom bidirectional pointer
is used to fnd it forward or sequentially.

Te AB-DPDP protocol uses the dynamic index skip
table (DIST) to support dynamic data operations, including
updates, additions, and deletions of data blocks. Algorithm 1
outlines how the AB-DPDP protocol uses DIST to achieve
this, and Algorithm 2 outlines the update strategy for the
DIST data structure during dynamic data operations.

Figure 3 shows the process of updating DIST when the
data are dynamic. Figure 3(a) shows the initial state of DIST,
and Figure 3(b) shows the state after the insertion of node 3,
with the red node being the newly inserted node and its tag
index being equal to the number of data blocks plus one.
Since there is no upper-level pointer, the block index of the
newly inserted node is set to −1. Figure 3(c) shows the state
after the deletion of node 4. It can be seen that during
insertion and deletion operations, only the nodes that come
after the current node and have upper-level pointers will
update their block indexes. If we were to query the node with
block index 5 in Figure 3(c), according to Algorithm 1, we
would frst search the top layer, but not fnd a near node. We
would then search the next layer, fnd node 6, and see that
the distance between node 6 and the target node is less than
2. We would only need to search one node forward from
node 6 to fnd the target node 5.

Te integrity auditing process has the following changes
with the introduction of DIST:

(i) Te tag index used by the Outsource algorithm to
calculate the tag must be consistent with the index
used in update and insert operations of Algorithm 1

(ii) Before the Verify algorithm calculates
l

i�1eiri, ri � H3(i), it should convert the sampled
block index collection c∗ � i1, . . . , il into the cor-
responding tag index collection c∗

′
� i1′, . . . , il′

through the DIST di st � ij: ij′
∗
, j ∈ (1, n)

4. Security Analysis

Cloud storage data integrity is frequently exposed to mul-
tiple security threats, among which attacks against integrity
verifcation protocols are also common. Terefore, the
proposed protocols must be designed to be resistant to these
attacks. In this section, we formalize the security model of
the protocol into two security defnitions and then the
correctness of the protocols, and their resistance to forgery
attacks, replacement attacks, and replay attacks are analyzed,
respectively, in accordance with security Defnition 3.
Furthermore, the protection of user data by the proposed
protocols from the perspective of data security is analyzed
based on security Defnition 4.

4.1. Security Model. Based on the design goals of secure
cloud storage, the security model of the cloud storage in-
tegrity verifcation protocol can be formalized using the
following two security defnitions.

8 Security and Communication Networks

-1 1 2 2 -1 3 4 4 -1 5 6 6

head node tail nodenode 1 node 2 node 3 node 4 node 5 node 6

0 7

... ...

(a)

-1 1 2 2 -1 3 5 4 -1 5 7 6
head node tail nodenode 1 node 2 node 4 node 5 node 6 node 7

0 8

... ...

-1 7
node 3

(b)

-1 1 2 2 4 4 -1 5 6 6

head node tail nodenode 1 node 2 node 4 node 5 node 6

0 7

... ...

-1 7

node 3

(c)

Figure 3: Dynamic operations of DIST: (a) initial DIST, (b) insert node 3, and (c) delete node 4.

Input: index i and data dynamic operation
op(insert/ delete/modify).
Output: data dynamic results.

(1) Initial next idx � n + 1, collection of available indexes idx set � ∅, initial dynamic index skip table DIST;
(2) if op �� modify then
(3) Te user sends instruction (modify, i) to TPA and CSP, then CSP returns the tag ti;
(4) Te user uses the recovery algorithm to restore the original data block di, modifes the data block, and generates a new tag.Te

calculation rules of the new tag are as follows:
(5) if idx set≠∅ then
(6) choose one element i′ from idx set;
(7) else
(8) i′ � next idx, next idx � next idx + 1;
(9) end if
(10) ti

′ � pk · (H1(SKuid|i′) · di) + ri, where ri � H3(i′);
(11) Te user sends the new tag to CSP to replace the old tag and sends the new tag index i′ to TPA;
(12) TPA take (modify, i, i′) as the input of Algorithm 2 to update the DIST;
(13) end if
(14) if op �� delete then
(15) Te user sends instruction (delete, i) to TPA and CSP;
(16) CSP deletes the tag corresponding to the specifed block index i;
(17) TPA take (delete, i) as the input of Algorithm 2 to update the DIST;
(18) end if
(19) if op �� insert then
(20) Te user calculates the tag ti for the inserting data block;
(21) if idx set≠∅ then
(22) choose one element i′ from idx set;
(23) else
(24) i′ � next idx, next idx � next idx + 1;
(25) end if
(26) ti � pk · (H1(SKuid|i) · di) + ri, where ri � H3(i′);
(27) Te user sends instruction (insert, i, i′) to TPA and sends tag and block index to the CSP;
(28) TPA takes (insert, i, i′) as the input of Algorithm 2 to update the DIST;
(29) end if

ALGORITHM 1: AB-DPDP data dynamic algorithm.

Security and Communication Networks 9

Defnition 3. Antispoofng. If the probability of adversary
A1 defeating challenger C1 in the security game G1 is
negligible under the security parameter λ, i.e.,
P(G1) � negl(λ), then the cloud storage integrity verifca-
tion protocol is considered to have antispoofng.

4.1.1. Game G1. As shown in Figure 4, Game G1 involves an
adversary A1 and a challenger C1.

(i) Setup: C1 runs the setup algorithm to generate the
master private key and public key and sends the
public key to A1.

(ii) Query phase: A1 is allowed to make two types of
queries to C1 multiple times. (1) KeyGen Query: A1
queries the private key of identity ID fromC1. C1 runs
the KeyGen algorithm to generate the user’s private
key based on ID and returns it to A1. (2) Outsource
query: A1 can query the encrypted fle block corre-
sponding to a random fle F. C1 runs the outsource
algorithm to generate the encrypted fle block based
on the input fle F from A1 and returns it to A1.

(iii) Challenge: C1 runs the challenge algorithm to
generate a challenge sequence and sends it to A1.

(iv) Forge: A1 forges a proof P and returns it to C1.
(v) Output: If A1’s forged proof passes C1’s verifcation,

A1 is considered to have won game G1.

Defnition 4. Privacy protection. If the probability of ad-
versary A2 defeating challenger C2 in the security gameG2 is
negligible under the security parameter λ, then the cloud
storage integrity verifcation protocol is considered to have
the ability to protect user privacy.

4.1.2. Game G2. As shown in Figure 5, Game G2 involves an
adversary A2 and a challenger C2.

(i) Setup: C2 runs the setup algorithm to generate the
master private key and public key and sends the
public key to A2.

(ii) Query Phase: A2 is allowed to make two types of
queries to C2 multiple times, similar to Game G1.

Input:Operation op(search/insert/ delete/modify), target block index ib, tag index it. DIST head node phead, and tail node ptail.
Te second-layer pointer threshold PN and the upper-layer pointer maximum generation probability Pmax.
Output: Target node/DIST update results.

(1) Initial node � phead;
(2) if op �� search then
(3) Let next be the top pointer;
(4) while node.next.block idx< ib do
(5) node � node.next

(6) if |node.block idx − ib|

< � 1/min(PN/n + 1, Pmax)
then

(7) near node � node;
(8) end while;
(9) end if
(10) end while
(11) if near node �� NULL then
(12) Let next be the next layer pointer, repeat 4–10;
(13) end if
(14) Search |near node.block idx − ib| nodes forward or backward by the bidirectional pointer to locate the target node

target node;
(15) return target node
(16) end if
(17) if op �� insert then
(18) op(search(ib)) � > target node, insert the new node inode(ib, it) before target node;
(19) Generate a k-layer pointer with the probability of P � min(PN/n + 1, Pmax)

k and link the new node to DIST. let ib � −1 if
kmax �� 1;

(20) Update the block index of node with second-layer pointer backward by increasing the block index by 1;
(21) end if
(22) if op �� delete then
(23) op(search(ib)) � > target node, delete(target node). Relink the pointer of each layer. idx set.push(target node.tag idx);
(24) Update the block index of node with second-layer pointer backward by decreasing the block index by 1;
(25) end if
(26) if op �� modify then
(27) op(search(ib)) � > target node, and modify target node.tag idx � it;
(28) end if

ALGORITHM 2: DIST update algorithm.

10 Security and Communication Networks

(iii) Challenge: C2 randomly selects data blocks and
generates encoded data blocks using the Outsource
algorithm. Tese data blocks are then sent to A2.

(iv) Regenerate: A2 generates the original data blocks based
on the encoded data blocks and sends them to C2.

(v) Output: If the data blocks generated by A2 match
the data blocks selected by C2, A2 is considered to
have won Game G2.

4.2. Correctness. Correctness refers to the fact that a cloud
service provider (CSP) with complete data always passes
an integrity verifcation when both the user and the
trusted third-party auditor (TPA) act as trusted partici-
pants. Te AB-DPDP protocol determines data integrity
by verifying that the equation round(P/w) · w +

l
i�1eiri �

P holds, and according to Teorem 1 and its corollary, it
always makes the equation hold if the tag in the CSP is
complete.

Adversary A1 Challenger C1

Setup

KeyGen Query

Outsource Query Outsource

Output

public key

KeyGen

Forge

UID
SKUID

Outsourced data
file F

Challenge

forged proof

challenge sequence

query
phase

challenge
phase

Figure 4: Security game G1: antispoofng.

Adversary A2 Challenger C2

Setup

KeyGen Query

Outsource Query Outsource

Output

public key

KeyGen

Regenerate

UID
SKUID

Outsourced data
file F

Challenge

decoded data blocks

random encoded data blocks

query
phase

challenge
phase

Figure 5: Security game G2: privacy protection.

Security and Communication Networks 11

4.3. Forgery Attacks. According to security Defnition 3, the
security model for forgery attacks can be defned as Game A:

(1) Te TPA challenges the CSP after sampling data
blocks

(2) Te CSP uses forged block index tags to calculate the
integrity proof Pforge

(3) Te TPA uses Verify algorithm to verify the integrity
proof Pforge

If Pforge passes the Verify algorithm, the CSP will be
considered the winner of Game A.

In order to achieve a secure integrity verifcation pro-
tocol, the probability of the CSP winning game A should be
negligible, i.e., P(A) � negl(λ).

From Teorem 1, when σ � wd + r, P � eσ, if w> 2er,
then

P � round
P

w
 · w + er. (12)

Does equation (12) still hold when σ is tampered with?
Suppose σ is tampered with as σ � wd + r + diff, then

P � eσ � e(wd + r + di ff), (13)

round
P

w
 · w + er � ewd + ew · round

diff
w

 + er. (14)

From equations (13) and (14), if equation (12) holds, it is
only necessary to ensure that round(diff/w) � diff/w, i.e.,
di ff is an integer multiple of w.

From the above analysis, it is clear that to achieve a forgery
attack, the CSPmust know w, and w is secured by the security
parameter λ. Terefore, the probability of the CSP forging
a tag that can pass integrity verifcation is negligible.

4.4. Replacement Attacks. Te diference between the se-
curity model of the replacement attack and the forgery attack
lies in step (2), where in a forgery attack, the CSP uses
a forged tag, while in a replacement attack, the CSP tries to
use a tag from another location to compute the integrity
proof. If the replacement attack succeeds, the CSP only needs
to save a copy of the correct tag to pass the integrity
verifcation.

To resist the replacement attack, the AB-DPDP protocol
inserts index information into the tag. Tag
ti � pk · (H1(SKuid|i) · di) + ri, ri � H3(i). Suppose the
challenge block index is i and the CSP performs a re-
placement attack using a tag with index j. Ten,

Pj � etj � epk · H1 SKuid|j(· di(+ eH3(j). (15)

Te integrity proof verifcation formula is

Pj � round
Pj

pk

 · pk + eH3(i). (16)

From equations (15) and (16), if equation (16) holds, it
must satisfy H3(j) � H3(i). Obviously, the replacement
attack cannot succeed.

4.5. Replay Attacks. Te diference between the security
model of the replay attack and the other two attacks lies in
that it does not attempt to construct a tag that can pass
verifcation. Instead, after a successful verifcation, the CSP
saves the calculated integrity proof and directly uses the
saved proof for future verifcations. If the replay attack
succeeds, the CSP can still pass verifcation even after de-
leting all the sampled blocks.

In order to resist replay attacks, the AB-DPDP protocol
generates random numbers during each verifcation and
ensures the uniqueness of each generated proof through the
use of these random numbers.

Assuming that the TPA initiates two rounds of verif-
cation and the verifed data blocks are the same, the CSP
performs a replay attack in the second round by directly
returning the frst proof. Te frst proof is

Pi � eati � eapk · H1 SKuid|i(· di(+ eaH3(i). (17)

If the second verifcation directly returns Pi, the TPAwill
verify it according to the following equation:

Pi � round
Pi

pk

 · pk + ebH3(i). (18)

According to equation (17), if equation (18) holds, ea �

eb must be satisfed. Since both ea and eb are large integers
generated randomly under the security parameter, the
probability of a successful replay attack is negligible.

4.6. Data Security. According to security Defnition 4, data
security refers to the fact that the probability of TPA and
CSP obtaining the user’s original data without the user’s
involvement should be negligible. In the AB-DPDP protocol,
TPA samples l data blocks for integrity verifcation and
obtains l tags, i.e., ti � pk · (H1(SKuid|i) · di) + H3
(i), 0≤ i≤ l. Although TPA knows the public key pk, it is
almost impossible for TPA to recover the original data block
as the private key SKuid and the original data block di are
unknown.

5. Performance Analysis and Experiment

In this section, we aim to demonstrate the superiority of the
AB-DPDP protocol through both theoretical analysis and
experiments. We will focus on evaluating its performance in
terms of storage overhead, computing overhead, commu-
nication overhead, and data dynamic efciency. Addition-
ally, we will compare the proposed protocol with existing
schemes to further highlight its advantages.

5.1. Performance Analysis. Te performance of the
AB-DPDP protocol is mainly evaluated by the accuracy of its
verifcation results, the computational complexity, the
communication overhead between the various entities in-
volved in the protocol, and the storage overhead incurred by
TPA and CSP.

12 Security and Communication Networks

5.1.1. Sampling Algorithm. In order to reduce the heavy time
overhead associated with overall-data auditing for large
amounts of user data, the AB-DPDP protocol adopts
a block-sampling auditing strategy similar to that in the
existing scheme [29]. However, sampling auditing does not
guarantee the accuracy of auditing results. For example, even
if 990 data blocks are sampled from a total of 1000 data
blocks, it is still possible to pass the verifcation if 10 blocks
are corrupt. To ensure a high probability of detecting data
corruption, our sampling algorithm must be designed
carefully. Te probability of successful auditing can be
expressed using the following formula:

Pr � 1 −
n − t

n
·
n − t − 1

n − 1
· · ·

n − l + 1 − t

n − l + 1
, (19)

where n is the total number of data blocks, t is the number of
corrupt data blocks, l is the number of sampling data blocks,
and Pr is the probability of detecting the corrupt data.

As illustrated in Figure 6, the probability of successful
auditing can be calculated using the formula (19) where n is
the number of data blocks and c is the number of sample
blocks included in a challenge. As can be seen from the
fgure, when the data corruption rate is 1/100, by sampling
460 blocks out of 1,000,000 data blocks, it is possible to
detect the corrupted block with a probability of 99%. If the
data corruption rate is 1/1000, then 4600 data blocks need to
be sampled to achieve a 99% error detection rate. To improve
the fne-grained and higher probability verifcation of the
AB-DPDP protocol, either the number of sample blocks can
be increased or the size of each data block can be enlarged to
include more data within the same number of blocks.

5.1.2. Overall Performance. In order to evaluate the overall
performance of the proposed AB-DPDP protocol, we
compare it with three other schemes: Scheme 1 (RSA-based
PDP protocol) [4], Scheme 2 (Pseudo-random function
(PRF) based POR protocol), and Scheme 3 (BLS-based POR
protocol) [5]. Te parameters for comparison are the safety
parameter (m), the total number of raw data blocks (m), and
the number of sampling data blocks in a challenge (L). Te
results of this analysis are presented in Tables 2 and 3.

(i) Storage overhead: Te proposed protocol reduces
the storage overhead compared to other schemes as
it only stores tags in the CSP, saving the storage of
raw data. However, the introduction of DIST to
TPA increases the storage overhead of the data
structure compared to the other three schemes, but
it is still low compared to the size of raw data.
Terefore, the proposed scheme can signifcantly
reduce the storage overhead of the integrity auditing
protocol.

(ii) Communication overhead: Te communication
overhead of the proposed protocol is infuenced by
the amount of data that needs to be transferred over
the network during verifcation. As both the pro-
posed protocol and the other three schemes adopt
sampling verifcation, the communication overhead

is mainly afected by the data uploaded by the user
to the CSP. Our protocol, therefore, saves both
storage and communication overhead compared to
other schemes.

(iii) Computational complexity: Te computational
complexity of a protocol refers to the time it takes to
perform various operations within the protocol. In
terms of computational complexity, our proposed
protocol has the following advantages. (1) Our
protocol requires only three algebraic operations
and two hash operations to calculate the tag of each
data block, while schemes 1 and 3 require multiple
exponentiation operations, leading to higher com-
putational complexity. Scheme 2 requires one ex-
ponentiation operation and multiple algebraic
operations, resulting in a computational complexity
that is comparable to that of our proposed protocol.
(2) Te challenge sequences of these four schemes
are all generated by sampling, so the time com-
plexity of challenge initiation is proportional to the
number of data blocks and is the same for all
schemes. (3) Te time complexity of proof calcu-
lation is similar to tag calculation, but the proof
calculation is only performed for L sampling data
blocks, while tag calculation is performed for all
data blocks. (4) Scheme 1 requires three hash op-
erations and one exponentiation operation for proof
verifcation, while scheme 3 requires one bilinear
pair operation, resulting in a very high computa-
tional complexity. In comparison, our proposed
scheme only requires multiple algebraic operations,
which requires fewer hash operations than scheme
2, making it the scheme with the lowest compu-
tational overhead in proof verifcation.

5.1.3. Data Dynamics. Te performance of data dynamics
refers to the performance of data structures that are in-
troduced to support data dynamics, including the time
complexity of operations such as insertion, deletion, mod-
ifcation, and search.

In this analysis, we compare the time complexity of
various dynamic operations for linked lists, arrays, dynamic
operation arrays from previous schemes [15–17], and the
DIST introduced in our proposed scheme. Table 4 sum-
marizes the time complexity of data dynamic operations in
these four data structures. Assuming that n represents the
number of original data blocks and d represents the number
of data blocks resulting from data dynamic operations, we
assume that the number of new data blocks is proportional
to the frequency of data dynamic operations. As shown in
the table, the time complexity of all operations on the linked
list in the scheme [15] and insertion and deletion operations
on the index array in the scheme [16] is proportional to the
current total number of data blocks. Te time complexity of
search and update operations for the index array is O (1).
Although the dynamic operation array in [17] only records
dynamic operations, its time complexity is proportional to
the frequency of dynamic data operations, rather than the

Security and Communication Networks 13

total number of data blocks. In contrast, our proposed DIST
has an advantage in that it can complete all data dynamic
operations under logarithmic complexity even when the data
dynamic operations are frequent. Terefore, our proposed
protocol is suitable for dynamic integrity verifcation sce-
narios in which the total amount of data is large and dy-
namic operations are frequent.

5.2. Experiment. In this section, we evaluate the perfor-
mance of the AB-DPDP protocol through several experi-
ments. We implemented the AB-DPDP protocol using C
and deployed it on an Ubuntu 16.04 virtual machine
equipped with a 4-core 3.3GHz CPU and 8GB RAM. Te
tests are conducted for storage overhead, communication
overhead, and computational overhead. To prove the su-
periority of our protocol, we also conducted comparative
experiments on Scheme 1 (RSA-based PDP protocol) [4],
Scheme 2 (PRF-based POR protocol), and Scheme 3 (BLS-
based POR protocol) [5]. Tese three protocols serve as the
basis for many existing cloud storage integrity auditing
protocols. Te test dataset consists of random fles with sizes
ranging from 128KB to 1GB, which were generated using
the Linux fle generation tool. Te security parameter, data
block size, and maximum number of sampling data blocks
were set to 128, 4 KB, and 460, respectively. Meanwhile, the
safety parameters of the AB-DPDP protocol’s disturbance
vector were set to 64. Considering the security requirements
of the RSA algorithm, the security parameter of Scheme 1
was set to 1024. At the same time, in order to verify the
performance of the proposed DIST data structure, we
compared it with arrays and linked lists in terms of data
insertion and deletion.

5.2.1. Storage Overhead. Te lower the storage overhead, the
lower the additional cost for users to use our protocol. In
order to save storage overhead, the AB-DPDP protocol
adopts a strategy of storing only tags. As depicted in Fig-
ure 7(a), the storage overhead of Schemes 1 and 3 is sub-
stantial, whereas the storage overhead of Scheme 2 and the
proposed AB-DPDP protocol are relatively similar. Our
scheme only stores tags in CSP, which results in a lower
storage overhead compared to the other three schemes, and
the savings in storage overhead increase linearly with the
growth of data size.

5.2.2. Communication Overhead. Lower communication
overhead means less time for users to upload fles and
perform integrity verifcation. As the integrity verifcation is
performed through sampling challenge and the integrity
proof is constant, the storage overhead remains the most
decisive factor in determining the communication overhead.
As shown in Figure 7(b), the communication overhead only
increases by the amount of inquiry information and data for
integrity proof compared to storage overhead.

5.2.3. Computational Overhead. Te computational over-
head focuses on the time required to complete an integrity
audit, which is mainly comprised of four stages: tag cal-
culation, challenge initiation (sampling), proof calculation,
and proof verifcation. Te lower the computational over-
head, the shorter the protocol runtime. Computational
overhead has a signifcant impact on the speed of data
outsourcing and the timely acquisition of data status by
users. In order to reduce the computational overhead of the

100

Damage rate=1/100

80

60

40

20

0 100 200 300 400 500 600

Sampling blocks (c)

A
ud

iti
ng

 p
ro

ba
bi

lit
y

(P
v)

 (%
)

n=1000000

n=8000

n=4000

n=2000

Damage rate=1/1000

0 1000 2000 3000 4000 5000 6000

Sampling blocks (c)

100

80

60

40

20

0

A
ud

iti
ng

 p
ro

ba
bi

lit
y

(P
v)

 (%
)

n=1000000

n=8000

n=4000

n=2000

Figure 6: Probability of successful sampling auditing.

14 Security and Communication Networks

Ta
bl

e
2:

C
om

pu
ta
tio

n
ov
er
he
ad

co
m
pa
ri
so
n
of

in
te
gr
ity

au
di
tin

g
pr
ot
oc
ol
.

Pr
ot
oc
ol
s

C
om

pu
ta
tio

n
ov
er
he
ad

Ta
g
ca
lc
ul
at
io
n

C
ha
lle
ng

e
in
iti
at
io
n

Pr
oo

fc
al
cu
la
tio

n
Pr
oo

fv
er
if
ca
tio

n
Sc
he
m
e
1
(R
SA

-P
D
P)

m
(
2E

x
p

+
1H

a
sh

+
1M

u
lt

i)
O

(
m

)
L

H
a

sh
+

(
L

+
2)

E
x

p
+

L
A

d
d

+
1M

u
lt

i
3H

a
sh

+
1E

x
p

+
1D

iv

Sc
he
m
e
2
(P
RF

-P
O
R)

m
(
1H

a
sh

+
sM

u
lt

+
+
1A

d
d

)
O

(
m

)
(

s
+

L
)M

u
lt

+
L

A
d

d
L

H
a

sh
+

(
s

+
1)

L
M

u
lt

+
2L

A
d

d

Sc
he
m
e
3
(B
LS

-P
O
R)

m
(
1H

a
sh

+
(

s
+
1)

M
u

lt
+

(
s

+
1)

E
x

p
)

O
(

m
)

s(
L

+
1)

M
u

lt
i
+

sL
A

d
d

+
sE

x
p

1P
a

ir
+

L
H

a
sh

+
(
2L

+
1)

M
u

lt
+
2L

E
x

p

A
B-
D
PD

P
m

(
2H

a
sh

+
2M

u
lt

i
+
1A

d
d

)
O

(
m

)
L

M
u

lt
i
+

L
A

d
d

(
L

+
1)

M
u

tl
i
+

L
A

d
d

+
1D

iv

Security and Communication Networks 15

Table 3: Storage and communication overhead comparison of integrity auditing protocol.

Protocols Storage overhead Communication overhead
Scheme 1 (RSA-PDP) 2mλ 2mλ + Lλ + λ
Scheme 2 (PRF-POR) 2mλ 2mλ + Lλ + λ
Scheme 3 (BLS-POR) 2mλ 2mλ + Lλ + λ
AB-DPDP mλ + n log(n) mλ + Lλ + λ + n log(n)

Table 4: Time complexity of data dynamic operations for diferent data structures.

Scheme (data structure)
Operation

Insertion Deletion Update Search
Scheme [15] (linked list) O(n + d) O(n + d) O(n + d) O(n + d)

Scheme [16] (array) O(n + d) O(n + d) O(1) O(1)

Scheme [17] (dynamic operations array) O(d) O(d) O(d) O(d)

AB-DPDP (DIST) O(lg(n + d)) O(lg(n + d)) O(lg(n + d)) O(lg(n + d))

0

200

400

600

800

1000

1200

64 MB 128 MB 256 MB 500 MB 1 GB

St
or

ag
e c

os
t (

M
B)

File size

Scheme 1 (RSA-PDP) Scheme 2 (PRF-POR)

Scheme 3 (BLS-POR) AB-DPDP proposed

(a)

0

200

400

600

800

1000

1200

Co
m

m
un

ic
at

io
n

co
st

(M
B)

64 MB 128 MB 256 MB 500 MB 1 GB

File size

Scheme 1 (RSA-PDP) Scheme 2 (PRF-POR)

Scheme 3 (BLS-POR) AB-DPDP proposed

(b)

Figure 7: Storage and communication of four schemes: (a) storage overhead and (b) communication overhead.

16 Security and Communication Networks

0
20
40
60
80

100
120
140

64 MB 128 MB 256 MB 500 MB 1 GBTa
g

ca
lc

ul
at

io
n

tim
e (

s)

File size

Scheme 1 (RSA-PDP)

Scheme 2 (PRF-POR)

AB-DPDP proposed

0
5

10
15
20
25
30

128 KB 256 KB 512 KB 1 MB 4 MB

Ta
g

ca
lc

ul
at

io
n

tim
e (

s)

File size

Scheme 3 (BLS-POR)

(a)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

64 MB 128 MB 256 MB 500 MB 1 GB

Ch
al

le
ng

e i
ni

tia
tio

n
tim

e (
m

s)

File size

Scheme 1 (PDP) Scheme 2 (PRF-POR)

Scheme 3 (BLS-POR) AB-DPDP proposed

(b)
Figure 8: Continued.

Security and Communication Networks 17

Scheme 3 (BLS-POR)

128 KB 256 KB 512 KB 1 MB 4 MB

File size

0
1
2
3
4
5
6
7

Pr
oo

f c
al

cu
la

tio
n

tim
e (

s)
0
2
4
6
8

10
12
14

64 MB 128 MB 256 MB 500 MB 1 GB

File size

Pr
oo

f c
al

cu
la

tio
n

tim
e (

s)

Scheme 1 (PDP)

Scheme 2 (PRF-POR)

AB-DPDP proposed

(c)

0
5

10
15
20
25
30
35

Pr
oo

f v
er

if
ca

tio
n

tim
e (

m
s)

64 MB 128 MB 256 MB 500 MB 1 GB

File size

Scheme 1 (PDP)

Scheme 2 (PRF-POR)

AB-DPDP proposed

0
2
4
6
8

10
12
14

Pr
oo

f v
er

if
ca

tio
n

tim
e (

s)

Scheme 3 (BLS-POR)

128 KB 256 KB 512 KB 1 MB 4 MB

File size

(d)

Figure 8: Time cost of four algorithms: (a) time consumption of tag calculation, (b) time consumption of challenge initiation, (c) time
consumption of proof calculation, and (d) time consumption of proof verifcation.

18 Security and Communication Networks

protocol, the AB-DPDP protocol adopts a tag generation
scheme based on basic algebraic operations, eliminating
complex exponentiation operations and bilinear pair op-
erations. Te calculation overheads of the AB-DPDP pro-
tocol are as follows:

(i) Tag Calculation. Figure 8(a) demonstrates that
compared to the other three schemes, the proposed
AB-DPDP protocol has the shortest tag calculation
time. Scheme 1 takes longer due to the usage of the
RSA signature algorithm, while Scheme 3 takes the
longest due to its usage of the BLS signature al-
gorithm. Scheme 2, which only involves hash op-
erations, has a similar calculation time as the
proposed protocol. As the fle size increases, the
diference in calculation time between the four
schemes also becomes larger. When the data size
reaches 1GB, the tag calculation time of the
AB-DPDP protocol is reduced by nearly 80%
compared to the signature algorithm-based
protocols.

(ii) Challenge Initiation. Figure 8(b) indicates that all
four schemes have similar consumption time for
challenge initiation, as they all generate challenge
information through sampling. Tis consumption
time is less than 1ms for all schemes. However, as
the number of data blocks increases, the sampling
time also increases. When the number of blocks
becomes too massive, exceeding the limit of 460 in
this study, it may result in a longer sampling time
for higher auditing accuracy.

(iii) Proof Calculation. As shown in Figure 8(c), the trend
of time consumption for proof calculation is similar to
that of tag generation. Scheme 1 and Scheme 3
consume more time in proof generation, especially
Scheme 3, which takes signifcantly more time than
the other schemes. Te proposed scheme shows sig-
nifcant improvement compared to Scheme 1 and
Scheme 3, with only a slight increase in time con-
sumption compared to Scheme 2. When the data size
reaches 1GB, the proof calculation time of the
AB-DPDP protocol is reduced by nearly 70% com-
pared to the signature algorithm-based protocols.

(iv) Proof Verifcation. As shown in Figure 8(d), Scheme
1, Scheme 2, and the proposed scheme have a short

verifcation time, all taking less than 100ms. Scheme
3 has a longer verifcation time due to the bilinear
pair operation. Both the proposed scheme and
Scheme 2 have the lowest time complexity for proof
validation.

5.2.4. Performance of DIST. According to our performance
analysis, DIST can achieve data insertion, deletion, and
modifcation with logarithmic time complexity. To validate
our analysis, we implemented DIST in C++ and compared
its performance with array and linked list. Te performance
of a dynamic operation array is consistent with that of an
array after frequent data dynamics. We set the maximum
number of DIST’s two-layer pointer to 1000 and the
maximum layer of DIST to 6 and conducted experiments
involving 100 insertion, deletion, update, and search op-
erations of diferent numbers of data blocks. Te results of
these experiments are presented in Table 5. From the table,
we observed that the time required for inserting and deleting
data using an array and the linked list has a small diference
when the data volume is 106. Te reason for this is that when
performing insertion and deletion operations, an array re-
quires subsequent data to be moved, whereas a linked list
requires searching from the head node. However, DIST
supports binary search and partial update, which allows for
more efcient dynamic data operations. Te time cost of
DIST is approximately 1/500 of both. Furthermore, unlike an
array and a linked list, where the time cost is proportional to
the number of data blocks, the time cost of DIST increases
logarithmically with the number of data blocks.

In summary, the proposed scheme in this paper out-
performs the other three comparison schemes in terms of
storage, communication overhead, and data dynamic ef-
ciency. Te overall time consumption of the proposed
protocol is signifcantly lower than that of Schemes 1 and 3
and slightly better than Scheme 2. Te key factors afecting
the calculation time are the tag calculation and proof gen-
eration. Schemes 1 and 3 use the RSA and BLS signature
algorithms, respectively, which involve exponentiation and
bilinear pair operations, thus leading to higher computa-
tional complexity. Te proposed scheme, however, is based
on basic algebraic operations, and the most complex cal-
culations only involve hash operations, making its perfor-
mance similar to Scheme 2 (PRF-based PDP protocol). Our
proposed DIST data structure provides nearly 500 times

Table 5: Time cost of dynamic operations for the data structures: (a) insertion and deletion time cost and (b) update and search time cost.

Operation Time consumption of 100 insertions (ms) Time consumption of 100 deletions (ms)
Number of data blocks (×106) 1 2 3 4 5 1 2 3 4 5
(a)
Array 740 1504 2211 3032 3722 681 1373 2094 2746 3423
Linked list 723 1485 2141 2877 3703 673 1274 2033 2731 3378
DIST 2.235 3.713 4.996 6.473 8.147 2.147 3.564 5.121 6.387 8.023
Operation Time consumption of 100 updates (ms) Time consumption of 100 searches (ms)
Number of data blocks (×106) 1 2 3 4 5 1 2 3 4 5
(b)
Linked list 651 1257 2097 2724 3416 591 1256 1941 2597 3313
DIST 2.251 3.658 5.142 6.653 8.312 1.775 2.482 3.328 4.083 5.552

Security and Communication Networks 19

faster data dynamic operations compared to array and linked
list, resulting in a signifcant improvement in data dynamic
efciency.

 . Conclusion

In this paper, we frst present a novel cloud storage auditing
protocol named AB-DPDP, which is based on an algebraic
equation introduced inTeorem 1. We construct two secure
cloud storage frameworks for this protocol, namely private
verifcation and public verifcation. Ten, to support dy-
namic data auditing, we present a dynamic index skip table
data structure to support more efcient data dynamic op-
erations. Next, we have proven the correctness and security
of the protocol according to the security model. Finally,
through a comprehensive evaluation, including theoretical
analysis and experimental simulations, we verify the supe-
riority of the AB-DPDP protocol and DIST. Compared to
schemes based on signature algorithms, the AB-DPDP
protocol ofers not only the lowest storage and communi-
cation overheads but also reduces the time of tag compu-
tation by over 80% and the time of integrity verifcation by
70% for large fles above 1GB. Furthermore, when dealing
with data volumes in the millions, the data dynamic ef-
ciency of DIST improves by over 500 times compared to
traditional index-transforming data structures. Te
AB-DPDP protocol is a highly suitable choice for cloud
storage environments that require frequent data dynamic
operations and strong data verifcation. In future research,
we aim to explore the integration of identity-based cryp-
tography to further reduce the overhead associated with key
management.

Data Availability

Te data used to support the fndings of this study are in-
cluded within the article.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported by the National Key Research and
Development Program of China (No. 2021YFB3101100),
National Natural Science Foundation of China (No.
U20A20177, 62272348, U22B2022), Key R&D Plan of Hubei
Province (No. 2021BAA025), Industry-University-Research
Innovation Fund for Chinese Universities (No.
2021FNA04004), and Open Research Fund from Guang-
dong Laboratory of Artifcial Intelligence and Digital
Economy (SZ)(No. GML-KF-22-07).

References

[1] I. Gupta, A. K. Singh, C. Lee, and R. Buyya, “Secure data
storage and sharing techniques for data protection in cloud
environments: a systematic review, analysis, and future di-
rections,” IEEE Access, vol. 10, pp. 71247–71277, 2022.

[2] B. Grobauer, T. Walloschek, and E. Stöcker, “Understanding
cloud computing vulnerabilities,” IEEE Security & privacy,
vol. 9, pp. 50–57, 2011.

[3] T. Wu, G. Yang, Y. Mu, R. Chen, and S. Xu, “Privacy-
enhanced remote data integrity checking with updatable
timestamp,” Information Sciences, vol. 527, pp. 210–226, 2020.

[4] G. Ateniese, R. C. Burns, R. Curtmola et al., “Provable data
possession at untrusted stores,” in Proceedings of the 2007
ACM Conference on Computer and Communications Security,
CCS 2007, P. Ning, S. D. C. di Vimercati, and P. F. Syverson,
Eds., ACM, Alexandria, Virginia, USA, pp. 598–609, 2007.

[5] H. Shacham and B. Waters, “Compact proofs of retriev-
ability,” Journal of Cryptology, vol. 26, pp. 442–483, 2013.

[6] J. Liu, K. Huang, H. Rong, H. Wang, and M. Xian, “Privacy-
preserving public auditing for regenerating-code-based cloud
storage,” IEEE Transactions on Information Forensics and
Security, vol. 10, pp. 1513–1528, 2015.

[7] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik,
“Scalable and efcient provable data possession,” in 4th In-
ternational ICST Conference on Security and Privacy in
Communication Networks, SECURECOMM 2008, A. Levi,
P. Liu, and R. Molva, Eds., p. 9, ACM, Istanbul, Turkey, 2008.

[8] Q. Wang, C. Wang, K. Ren, W. Lou, and J. Li, “Enabling
public auditability and data dynamics for storage security in
cloud computing,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 22, pp. 847–859, 2011.

[9] J. Shen, J. Shen, X. Chen, X. Huang, and W. Susilo, “An
efcient public auditing protocol with novel dynamic struc-
ture for cloud data,” IEEE Transactions on Information Fo-
rensics and Security, vol. 12, pp. 2402–2415, 2017.

[10] R. Rabaninejad, M. Ahmadian-Attari, M. R. Asaar, and
M. R. Aref, “A lightweight auditing service for shared data
with secure user revocation in cloud storage,” IEEE Trans-
actions on Services Computing, vol. 15, pp. 1–15, 2022.

[11] Y. Zhang, C. Xu, X. Lin, and X. Shen, “Blockchain-based
public integrity verifcation for cloud storage against pro-
crastinating auditors,” IEEE Transactions on Cloud Com-
puting, vol. 9, pp. 923–937, 2021.

[12] Y. G. Ramaiah and G. V. Kumari, “Complete privacy pre-
serving auditing for data integrity in cloud computing,” in
Proceedings of the 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communica-
tions, TrustCom 2013/11th IEEE International Symposium on
Parallel and Distributed Processing with Applications, ISPA-
13/12th IEEE International Conference on Ubiquitous Com-
puting and Communications, pp. 1559–1566, IEEE Computer
Society, Melbourne, Australia, July 2013.

[13] C. Hahn, H. Kwon, D. Kim, and J. Hur, “Enabling fast public
auditing and data dynamics in cloud services,” IEEE Trans-
actions on Services Computing, vol. 15, pp. 2047–2059, 2022.

[14] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from
the weil pairing,” Journal of Cryptology, vol. 17, pp. 297–319,
2004.

[15] H. Yan, J. Li, J. Han, and Y. Zhang, “A novel efcient remote
data possession checking protocol in cloud storage,” IEEE
Transactions on Information Forensics and Security, vol. 12,
pp. 78–88, 2017.

[16] J. Zhang, Y. Yang, Y. Chen, and F. Chen, “A secure cloud
storage system based on discrete logarithm problem,” in
Proceedings of the 25th IEEE/ACM International Symposium
on Quality of Service, IWQoS 2017, pp. 1–10, IEEE, Vilanova i
la Geltrú, Spain, June 2017.

20 Security and Communication Networks

[17] Y. Yang, Y. Chen, and F. Chen, “A compressive integrity
auditing protocol for secure cloud storage,” IEEE/ACM
Transactions on Networking, vol. 29, pp. 1197–1209, 2021.

[18] O. Goldreich, S. Goldwasser, and S. Halevi, “Public-key
cryptosystems from lattice reduction problems,” in Ad-
vances in Cryptology - CRYPTO ’97, 17th Annual International
Cryptology Conference, B. S. K. Jr., Ed., Springer, Santa Bar-
bara, California, USA, pp. 112–131, 1997.

[19] A. Juels and S. K. Burton Jr., “Pors: proofs of retrievability for
large fles,” in Proceedings of the 2007 ACM Conference on
Computer and Communications Security, CCS 2007, P. Ning,
S. D. C. di Vimercati, and P. F. Syverson, Eds., ACM,
Alexandria, Virginia, USA, pp. 584–597, 2007.

[20] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” in Proceedings of the
2009 ACM Conference on Computer and Communications
Security, CCS 2009, E. Al-Shaer, S. Jha, and A. D. Keromytis,
Eds., ACM, Chicago, Illinois, USA, pp. 213–222, 2009.

[21] C. C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic provable data possession,” ACM Transactions on
Information and System Security, vol. 17, pp. 1–29, 2015.

[22] E. Esiner, A. Kachkeev, S. Braunfeld, A. Küpçü, and
Ö. Özkasap, “Flexdpdp: fexlist-based optimized dynamic
provable data possession,” ACM Transactions on Storage,
vol. 12, 2016.

[23] C. Liu, J. Chen, L. T. Yang et al., “Authorized public auditing
of dynamic big data storage on cloud with efcient verifable
fne-grained updates,” IEEE Transactions on Parallel and
Distributed Systems, vol. 25, pp. 2234–2244, 2014.

[24] Y. Zhu, H. Wang, Z. Hu, G. Ahn, H. Hu, and S. S. Yau,
“Dynamic audit services for integrity verifcation of out-
sourced storages in clouds,” in Proceedings of the 2011 ACM
Symposium on Applied Computing (SAC), W. C. Chu,
W. E. Wong, M. J. Palakal, and C. Hung, Eds., ACM, Tai-
Chung, Taiwan, pp. 1550–1557, 2011.

[25] W. Guo, H. Zhang, S. Qin et al., “Outsourced dynamic
provable data possession with batch update for secure cloud
storage,” Future Generation Computer Systems, vol. 95,
pp. 309–322, 2019.

[26] H. Jin, H. Jiang, and K. Zhou, “Dynamic and public auditing
with fair arbitration for cloud data,” IEEE Trans. Cloud
Comput, vol. 6, pp. 680–693, 2018.

[27] H. Tian, Y. Chen, C. Chang et al., “Dynamic-hash-table based
public auditing for secure cloud storage,” IEEE Trans. Serv.
Comput, vol. 10, pp. 701–714, 2017.

[28] J. Wang, X. Chen, X. Huang, I. You, and Y. Xiang, “Verifable
auditing for outsourced database in cloud computing,” IEEE
Transactions on Computers, vol. 64, pp. 3293–3303, 2015.

[29] X. Zhang, H. Wang, and C. Xu, “Identity-based key-exposure
resilient cloud storage public auditing scheme from lattices,”
Information Sciences, vol. 472, pp. 223–234, 2019.

[30] K. Fan, Z. Bao, M. Liu, A. V. Vasilakos, and W. Shi, “Dredas:
decentralized, reliable and efcient remote outsourced data
auditing scheme with blockchain smart contract for industrial
iot,” Future Generation Computer Systems, vol. 110,
pp. 665–674, 2020.

[31] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, and W. Susilo,
“Blockchain-based fair payment smart contract for public
cloud storage auditing,” Information Sciences, vol. 519,
pp. 348–362, 2020.

[32] C. Wang, Q. Wang, K. Ren, and W. Lou, “Privacy-preserving
public auditing for data storage security in cloud computing,”
in Proceedings of the INFOCOM 2010. 29th IEEE International
Conference on Computer Communications, Joint Conference of

the IEEE Computer and Communications Societies, pp. 525–
533, IEEE, San Diego, CA, USA, March 2010.

[33] H. Liu, P. Zhang, and J. Liu, “Public data integrity verifcation
for secure cloud storage,” Journal of Networks, vol. 8,
pp. 373–380, 2013.

[34] H. Wang, Q. Wu, B. Qin, and J. Domingo-Ferrer, “Identity-
based remote data possession checking in public clouds,” IET
Information Security, vol. 8, pp. 114–121, 2014.

[35] Y. Zhang, J. Yu, R. Hao, C. Wang, and K. Ren, “Enabling
efcient user revocation in identity-based cloud storage
auditing for shared big data,” IEEE Transactions on De-
pendable and Secure Computing, vol. 17, pp. 608–619, 2020.

[36] Y. Li, Y. Yu, G. Min, W. Susilo, J. Ni, and K. R. Choo, “Fuzzy
identity-based data integrity auditing for reliable cloud
storage systems,” IEEE Transactions on Dependable and Se-
cure Computing, vol. 16, pp. 72–83, 2019.

[37] A. Javadpour, A. K. Sangaiah, P. Pinto et al., “An energy-
optimized embedded load balancing using DVFS computing
in cloud data centers,” Computer Communications, vol. 197,
pp. 255–266, 2023.

[38] A. K. Sangaiah, A. Javadpour, F. Ja’fari, P. Pinto, W. Zhang,
and S. Balasubramanian, “A hybrid heuristics artifcial in-
telligence feature selection for intrusion detection classifers in
cloud of things,” Cluster Computing, vol. 26, pp. 599–612,
2023.

Security and Communication Networks 21

