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The application of reinforcement learning (RL) methods of artificial intelligence for penetration testing (PT) provides a solution to
the current problems of high labour costs and high reliance on expert knowledge for manual PT. In order to improve the efficiency
of RL algorithms for PT, existing research has considered bringing in the knowledge of PT experts and combining it with the use of
imitative learning methods to guide the agent in its decision-making. However, the disadvantage of using imitation learning is also
obvious; that is, the performance of the strategies learned by the agent hardly exceeds the demonstrated behaviour of the expert
and it can also cause expert knowledge overfitting. At the same time, the expert knowledge in the currently proposed method is
poorly interpretable and highly scenario-dependent. The expert knowledge used in these methods is not universal. To address
these issues, we propose an intelligent PT framework named DQfD-AIPT. The framework encompasses the process of collecting
and using expert knowledge and provides a rational definition of the structure of expert knowledge. To solve the overfitting
problem, we perform PT path planning based on the deep Q-learning from demonstrations (DQfD) algorithm. DQfD combines
the benefits of RL and imitation learning to effectively improve the PT strategy and performance of agents while avoiding
overfitting. Finally, we conducted experiments in a simulated network scenario containing honeypots. The experimental results
proved the effectiveness of expert knowledge incorporation. In addition, the DQfD algorithm can improve the efficiency of
penetration testing more effectively than that by the classical deep reinforcement learning (DRL) method and can obtain a higher
cumulative reward. Not only that, due to the incorporation of expert knowledge, in scenarios with honeypots, the DQfD method

can effectively reduce the probability of interacting with honeypots compared to the classical DRL method.

1. Introduction

With the development of the Internet, the network envi-
ronment is increasingly complex, and cyber security threats
that we face are increasing day by day. Globally, protecting
modern systems and infrastructure is becoming a challenge
in the field of computer security. The traditional approach to
system security assessment takes a defender’s perspective by
solidifying and enhancing system security against attackers
[1]. Penetration testing is used as a positive method to attack
and test a target system against authorised networks from
the attacker’s point of view. We can conduct vulnerability
detection and security assessment through potential threat

paths [2]. However, with the increase in network size and
system complexity, the number of hosts in the network, and
the complexity of configuration information, the efficiency
of performing penetration testing will be affected by the Aol
(age of information) [3, 4]. Performing PT manually involves
a lot of repetitive actions and procedures [5]. As a result,
automated and intelligent penetration testing was born out
of this need.

Early research included automated penetration testing
tools and related theoretical studies. Automated penetration
testing tools integrate modules for scanning, penetration
attacks, and payload selection, such as Metasploit [6].
However, human intervention is still required for the critical
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target identification and load selection in this tool. In terms
of theoretical research, attack trees, attack graphs, and
planning domain programming languages (PDDLs) are
representative. Methods such as attack graphs plan attack
paths through formal representation of the target network
configuration information and state transfer analysis [6, 7].
However, all these methods require in-depth knowledge of
the target network’s information in advance and cannot
model the uncertainty in the penetration testing process.
Recent advances in artificial intelligence have provided
a new approach to the current research on automated and
intelligent penetration testing. In particular, RL methods are
proving to be a general and effective approach. RL can be
used to solve the problem of optimal performance of an
agent in a given environment. A model-free approach to RL,
for example, allows an agent to learn a strategy by interacting
with the environment, with little reliance on prior knowl-
edge of the environment. The method is analogous to
a human player interacting with a game in order to complete
the game objectives and learn relevant solution strategies [8].
The Markov decision process (MDP) is a paradigm of
RL. Schwartz and Hanna [9] and Zhou et al. [10] trained the
agent for path planning by formalising PT as MDP and using
the DRL algorithm in a constructed penetration test sim-
ulation environment. The problem is that the training
process takes a long time to converge and that the simulation
environment is poorly simulated. Zennaro et al. [11]
combine RL and imitation learning approaches and classify
PT problems according to scenarios. They provide a priori
knowledge to the agent for a specific network scenario
structure, which better guides the agent to explore their
problem space and thus obtain a better solution. On the
downside, its expert knowledge is limited by the constructed
penetration test scenarios and is less interpretable and
generalisable. Chen [12] proposed an intelligent PT
framework named GAIL-PT. GAIL-PT collects expert
knowledge via Metasploit and uses GAIL (generative
adversarial imitation learning) in imitation learning for path
planning. However, the complexity of the A3C-GAIL and
DPPO-GAIL algorithms used in the experiments is still high.
The above research takes full account of the characteristics of
the penetration testing problem and uses imitative learning
methods for intelligent penetration testing while in-
corporating expert knowledge. The use of expert knowledge
with decision aids as inputs can go some way to improving
the PT strategy of the agent, allowing it to be trained in
a direction close to the behaviour of the expert [13].
However, the aim of imitation learning methods for training
models is to fit the trajectory distribution of model-
generated strategies to the trajectory distribution of the
input. Therefore, using imitation learning in combination
with RL makes it difficult to make policy enhancements to
that part of the environment that has not been explored. In
conclusion, the following challenges need to be stressed:

(i) Challenge 1: the penetration testing expert knowl-
edge provided to the agent is poorly interpretable,
usually dependent on specific network scenarios, and
not universally applicable.
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(ii) Challenge 2: the use of imitation learning is tending
to produce an overfitting of expert knowledge,
making it difficult to balance exploration and ex-
ploitation of the environment. The higher com-
plexity of the algorithms used for intelligent
penetration testing leads to slower convergence and
lower efficiency.

To address these challenges, we first propose an in-
telligent PT framework called DQfD-AIPT that incorporates
expert knowledge. DQfD-AIPT contains mainly the col-
lection and exploitation of expert knowledge and the
training of agents. At the same time, we have rationalised
expert knowledge. Second, we use the DQfD algorithm
based on the reinforcement learning with expert demon-
strations (RLED) framework, combining both supervised
and unsupervised methods to construct the loss function.
The algorithm also uses prioritized experience replay (PER)
for experience sampling to balance expert data and in-
teraction data to prevent overfitting. Ultimately, experi-
ments were conducted in a simulated network scenario
containing honeypots to verify the effectiveness of expert
knowledge incorporation and to test the performance of the
DQfD algorithm. The experiments show that the DQfD
algorithm has better penetration testing performance than
the classical DRL method. For the experimental platform, we
selected the CyberBattleSim (CBS) platform developed by
Microsoft, which features high simulation and support for
RL algorithms and is currently a more well accepted in-
telligent PT simulation platform.

The main contributions of this paper are as follows:

(i) To address the problems of poor interpretability of
expert knowledge and dependence on specific sce-
narios, we propose an intelligent PT framework
named DQfD-AIPT that incorporates expert
knowledge. The construction of an expert knowledge
base is carried out through two methods: the
transformation of abstract expert knowledge and the
collection of PT traces in different network scenarios.
At the same time, we also define the form and
structure of expert knowledge.

(ii) To address the problem of overfitting of expert
behaviour due to imitation learning, we use the
DQID algorithm incorporating expert demonstra-
tion data, together with a PER mechanism for
sampling of expert data and interaction data. With
the guidance of the expert demonstration data and
interaction data, the efficiency and overall perfor-
mance of the training process of the agent are ef-
fectively improved.

The organization of this paper is as follows: In Section 2,
we provide an overview of research advances in PT, in-
telligent PT, and use of expert knowledge. In Section 3, we
explain and outline the RL covered in this paper. In Section
4, we describe the method that we used and the specific
implementation details of the method. In Section 5, we
describe the procedure and hyperparameter settings of the
experiments, while the results are analysed and evaluated.
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Finally, in Section 6, we summarise our work and further
articulate future research directions.

2. Related Work

In this section, we mainly introduce the basic concepts of PT,
the research progress of intelligent PT, and the importance
of expert knowledge in the PT process. In the end, we
conclude with a summary of the problems in the
current study.

2.1. PTand Its Automation. PTisa method of simulating real
attacks with the aim of assessing the security of computer
systems and networks. PT assesses information security from
the attacker’s perspective. Through PT of companies, or-
ganisations, or departments, we understand their in-
formation security policies and network vulnerabilities and
give possible solutions and remedies to improve network
security [14]. As network equipment and defence detection
systems continue to upgrade, the complexity of performing
the PT process has increased dramatically. The entire testing
process involves skilled cyber security experts generating
attack plans to discover and exploit vulnerabilities in net-
works and applications. A team of highly experienced testers
is therefore essential, who must control all tasks manually. In
addition to this, there are a large number of repetitive actions
and deterministic steps in the PT process, which will lead to
the problem of the high time cost of conducting PT man-
ually. In summary, PT currently appears to be a costly means
of assessing the vulnerability of network systems [15, 16].

To address the high cost and reliance on manual PT,
methods and tools to implement automated PT have been
proposed. In terms of theoretical research, early studies such
as attack trees, attack graphs, and PDDL are representative.
These methods plan attack paths through formal repre-
sentations of target network configuration information and
state transfer analysis [3, 4]. On the one hand, these
abovementioned methods require full knowledge of the
network topology and the configuration of each machine,
which is unrealistic from the attacker’s point of view. On the
other hand, these methods focus on a regular representation
of known information and then find the path of attack by
means of planning. The uncertainty of a real PT process is
not well modeled. That is, the uncertainty of system
knowledge must be obtained using remote tools before
a planned attack can be executed.

In terms of the development of automated PT tools,
mature automated PT tools include APT2 PT suite,
Autosploit PT tool, and Awesome-Hacking tools [2]. These
PT tools have significantly improved the efficiency of PT and
simplified the process of conducting PT manually. However,
there is still the problem of not being able to intelligently
select the attack payload and of targeting only a single host.
There is still a need to base the correct choice of attack
methods and means on the decisions of PT experts. The use
of intelligent planning techniques to improve the automa-
tion of attack path discovery is still the key to achieving
automated PT [17].

2.2. Intelligent PT Using RL Methods. With the development
of algorithms in the field of artificial intelligence, there have
been new advances in the study of automated PT. Artificial
intelligence-driven PT methods are able to intelligently select
attack targets and attack payloads based on the current state
of the target network. The RL approach learns how to map
the current state to an action and provides an idea how to do
so. The agent learns the PT strategy by interacting with the
environment composed of the target network and based on
the feedback from the interaction. The process by which we
build a simulated environment for PT to train an agent is
similar to how a player interacts with a game to discover its
solution [9].

A precondition for applying RL for intelligent PT is the
need to formalise the PT process into the RL paradigm.
Sarraute et al. [18], Schwartz et al. [19], Hu et al. [20], and
Zennaro [11] et al. formalised the penetration testing process
as a partially observable Markov decision process (POMDP).
They incorporated the attacker’s observations of the envi-
ronment into the attack process. However, as the size of the
network scenario expands, the computational complexity
increases and is still not applicable to large-scale networks.
Durkota and Lisy [21] proposed the model penetration test
as an MDP, in which the action space consists of specific
vulnerabilities and the state space consists of the results of
attack actions. The goal of the whole model is to minimize
the expected loss value. Hoffmann [22], based on Durkota,
ignores the structure of the target network and relies instead
on expressing the uncertainty of PT in the form of possible
action outcomes. This is essentially a model-free approach
[9] that requires minimal prior knowledge of the environ-
ment. However, POMDP is more realistic in most cases.
However, considering the computational complexity and the
efficiency of the reinforcement learning algorithm, the MDP
model is still a better scheme to balance the computational
efficiency and modeling rationality.

In recent years, a variety of RL algorithms have been used
extensively in addressing intelligent PT. Schwartz and
Hanna [9] constructed the network attack simulator
(Nasim) and used known network configurations as states,
available scans and exploits as actions, and used table-based
Q-learning methods and neural network-based DQN
methods to achieve intelligent discovery of attack paths.
Zhou et al. [10] combined various improvements with the
DQN algorithm and proposed the NDSPI-DQN algorithm
to optimise PT path discovery. The algorithm effectively
reduces the action space of the agent and is experimentally
validated based on Nasim. Zhang [2] introduced the mul-
tidomain action selection module on the basis of intelligent
PT. This module can effectively identify the actions that can
be used according to a specific state, reducing unnecessary
exploration by an agent. Finally, this method combined with
the deep deterministic policy gradient (DDPG) algorithm is
verified in a simulated environment.

2.3. Use of Expert Knowledge. Expert guidance often plays
a key role in solving real-world problems. As a method
highly dependent on expert knowledge, reference to



experienced expert knowledge is often helpful to exploit the
vulnerability of the target system, so as to achieve the target
at a lower cost. From the perspective of research status, the
current research is mainly focused on solving the problems
of state space explosion, action space explosion, and sparse
reward caused by penetration testing using the re-
inforcement learning algorithm. Most of them focus on the
algorithm itself, often ignoring the characteristics of expert
decision-making in the penetration test process and the
analysis of specific network scene structures.

Zennaro et al. [11] simplified the penetration testing
problem with different structures in the form of a capture
flag challenge and demonstrated how the performance of an
agent can be improved by relying on different forms of prior
knowledge provided to the agent. The experiments show that
by incorporating prior knowledge, the agent can better ex-
plore the space of their problems and thus effectively obtain
solutions. However, the CTF scenarios constructed for the
experiments were only simplified versions and were not
experimented on relatively complex scenarios. Chen [12] first
proposed a generic intelligent PT framework based on GAIL.
GAIL-PT addresses the problem of high labour costs due to
the intervention of security experts and high-dimensional
discrete action spaces. The study used a variety of algorithms
for experiments, but the results showed that the complexity of
the A3C-GAIL and DPPO-GAIL algorithms, which combine
GAIL, is still relatively high.

The main idea of imitation learning is to match the
behavioural strategies of an agent with the behaviour of an
expert by means of training. Imitation learning can be di-
vided into behavioural cloning [23], inverse reinforcement
learning [24], and generative adversarial imitation learning
[25]. However, imitation learning tends to focus on imi-
tating the behaviour and trajectories of experts, making it
difficult to enhance and contribute to the performance of the
agent in the environment when combined with RL methods.
This method is essentially an exploration and exploitation of
the environment without enhancement for the strategy in
the application of RL methods. Recently, demonstration data
have been shown to help solve difficult exploration problems
in RL. Subsequently, a framework known as reinforcement
learning with expert demonstration (RLED) was proposed.
This framework is suitable for scenarios where rewards are
provided by the environment. Todd Hester et al.of the
Google DeepMind team [26] propose the DQfD algorithm
based on the RLED framework. The method is pretrained on
presentation data while combining the features of supervised
and unsupervised learning to construct a loss function and
using PER in order to achieve a balanced amount of
demonstration data in the training data. By training deep
neural networks in this way, the results show that DQfD
outperforms imitation learning, which only imitates expert
trajectories, as well as classical deep Q networks in terms of
average overall performance.

2.4. Brief Summary. We have summarised the current
progress in intelligent penetration testing research in the
previous section. Traditional penetration testing has high
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reliance on expert knowledge and high labour costs. In the
process of changing from manual to intelligent PT, the cost
of manual time is effectively reduced. This goes some way to
solving one of the major dilemmas of current manual PT.
However, as the complexity of the target system increases, the
performance of penetration testing using classical RL methods
also encounters bottlenecks. The problem is that real-world PT
relies on expert experience and the proficiency of the pene-
tration tester. Knowledge reasoning between successive states
during real PT is missing in the training of the agent, but in the
course of a real penetration test, this is quite important.
Considering the integration of expert knowledge into in-
telligent PT can effectively solve these problems.

In the exploration of incorporating expert knowledge in
PT, previous studies have mainly used imitative learning
methods. These studies have been conducted by processing
collected expert knowledge and combining it with imitative
learning methods for PT path planning. On the one hand,
the expert knowledge collected is usually highly relevant to
the target network scenario and not universally applicable.
The interpretability of this expert knowledge is relatively
poor. On the other hand, the use of a combination of im-
itative and RL was effective in guiding the agent to fit the
expert knowledge trajectory to some extent. However, im-
itative learning is more concerned with imitating the be-
haviour of the expert than the strategies of the testing expert.
This will lead to problems of expert knowledge overfitting.
As a result, agents trained using imitation learning often
struggle to outperform experts. In conclusion, the current
research in the field of intelligent penetration testing in-
corporating expert knowledge can be further enhanced with
regard to the interpretability of expert knowledge and the RL
methods used.

3. Preliminaries
3.1. Classical RL Method and Its Improvements

3.1.1. Q-Learning. Q-learning is a value-based RL algorithm.
Qis Q(s,a), which is the expected gain from taking an action
a(a € A)in astate s(s € S) at a given time. The main idea of
the algorithm is to construct a Q table of states and actions to
store Q values and then select the action that yields the
greatest benefit based on the Q value. Q-learning uses
temporal difference (TD) to update Q values, with the
updated formula shown in the following equation:

Q(spa,) «— Q(spa,) +afr + )/IlalaX(SHl,aHl) -Q(spa,) |
t+1

(1)

where « is the learning rate, y is the discount factor, a, and s,
are the action and state at moment ¢, respectively, s,,, is the
next state after performing action a,, a,,, is the possible
action to be performed in the state s,,;, and r, is the im-
mediate reward obtained.

3.1.2. Deep Q-Learning. Q-learning takes a tabular approach
to storing Q values. Therefore, when facing the RL
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assignment with a high-dimensional state space and action
space, the limited space of the table cannot store all states
and actions, which limits the performance of the algorithm
[27]. Algorithms that combine the advantages of deep
learning give a better solution to this problem. Minh [28]
proposed the deep Q-network (DQN), which is an extension
of Q-Learning. The algorithm replaces the Q value table in
Q-learning with a neural network. This transforms the
original problem of convergence of action value function
solving into a function fitting problem for neural networks.

During the exploration and exploitation of the envi-
ronment, the transition data are stored in a replay buffer.
DQN uses randomly sampled data from the replay buffer to
train the neural network to approximate the Q function. This
method breaks the correlation between the training data and
makes the training process stable. The DQN algorithm uses
the square of the error between the target Q value and the
estimated Q value as the loss function when updating the
parameters of the neural network, where the target Q value
y; at the i iteration is calculated as follows:

Yi=Eg |1t YI}}aXQ’ (Sivn> @i 16)1s a; |, (2)
i+1

where 0;. are the parameters of the target Q network. The goal
of strategy learning is to update the parameters of the
strategy Q network by the mean square error between the
target Q value and the current Q value, where the loss
function of the algorithm at the i iteration is calculated as
follows:

Li (01) = Es,-,a,-~p(-)[(yi - Q(Si’ai | ei))z]’ (3)

where p (s;,a;) is the probability distribution of s; and g;. 0;
are the parameters of the strategy network. The parameters
of the strategy network are assigned to the target network in
fixed steps of intervals. When optimizing the loss function,
the parameters of the target network 0; are not updated.

3.1.3. Prioritized Experience Replay. Prioritized experience
replay is a technique for prioritizing experiences, whereby
important state transition experiences are replayed more
frequently. This method is effective because some transition
data contain more information that is worth learning.
Giving these transitions more opportunities to be played
back helps accelerate the overall learning process. The core
idea of PER is to measure the importance of different
transition data through the TD error §. The larger the error
of the sample, the larger the value of the sample. The
sampling probability of the state transition i is calculated as
follows:

o

pi) =L, (4)
kP

where p; refers to the priority of the state transition i,
denoted as p; = |§;| + €, and € is a positive number used for
numerical stability so that p;»0. 0 is an exponential
hyperparameter representing the degree of the impact of the
TD error on the sample.

It is worth noting that the purpose of using experience
replay is to eliminate sample correlation, but the use of
prioritized sampling certainly forgoes random sampling.
Therefore, it is also necessary to reduce the training weights
of the high-priority state transition data. The PER method
uses importance sampling weights to correct for deviations
in the state transition i. The weights are calculated as follows:

w; = [NPH)]F, (5)

where N refers to the capacity size of the replay buffer and f3
is the annealing hyperparameter of the training process. To
implement the above method efficiently, we store the pri-
orities in an efficient query line tree data structure and
sample the range of line segments during the training
process. We call this efficient query data structure a sum tree.

3.2. RL Formalisation for PT. An RL agent must be able to
perceive the state of the environment, have one or more
goals related to the state of the environment, and then take
action and influence the state of the environment. In order to
implement intelligent PT in conjunction with an RL method,
we begin by modeling the penetration testing process as an
RL paradigm. MDP is a theoretical framework for achieving
goals through interactive learning. It is the classic formal
expression of sequential decision-making. The actions of an
agent in an MDP affect not only the current immediate
reward but also the subsequent state and the future benefit.
Thus, the MDP is a mathematically idealised form of the
reinforcement learning problem. The interaction process
between the agent and the environment in the MDP is
shown in Figure 1.

The machines that learn and implement decisions in the
MDP are called agents. Everything that interacts with it
outside of the agent is referred to as the environment. Taking
the penetration testing process as an example, if the target
network is considered as a state variable environment, the
feedback from the environment to the actions of the agent is
considered as a reward. The whole penetration testing
process can then be represented in the form of a 4-
tuple(S, A,R, T), where S represents the state space, A
represents the action space, R represents the reward
function, and T represents the transfer function. Detailed
definitions for specific penetration testing questions are
given in Section 4.3.

4. Methods

In this section, we first present an intelligent PT framework
incorporating expert knowledge and explain the details and
processes involved in this framework. We then detail the
collection and use of expert knowledge and present the RL
algorithm that we use that incorporates demonstration data.

4.1. DQfD-AIPT Framework. Manual PT relies on the ex-
perience and knowledge of experts. Expert knowledge and
the way of making decisions are also of great importance for
intelligent PT. By analysing the PT process and summarising
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the characteristics of expert knowledge and RL, we propose
DQID-AIPT for intelligent PT that incorporates expert
knowledge as shown in Figure 2. DQfD-AIPT consists of
three main phases: expert knowledge collection, input and
use of demonstration data, and interaction and training of
the agent. Our proposed framework is suitable for in-
telligent PT in simulated network scenarios and is char-
acterised by simplicity of use and generality. In the
following, we will explain the specifics of each phase of the
framework.

4.1.1. Stage 1: Collection of Expert Knowledge. The first step
in combining expert knowledge for intelligent PT is the
collection and acquisition of expert knowledge. The ac-
quisition of expert knowledge is an abstract and difficult
matter. The difficulty lies in the fact that the generation and
design of expert knowledge are often based on the experi-
ence and rules of experts. As the process of PT is usually
strongly correlated with the structure and vulnerability
distribution of the target network scenario, the actions taken
by penetration testers facing a specific target network are
somewhat unpredictable. Considering the interpretability
and validity of expert knowledge, we propose two ways of
collecting expert knowledge:

(i) Method 1: As shown in Figure 3, first, we transform
the abstract experience of the penetration tester into
an executable action that can interact with the
simulated environment. This executable action is
usually mapped to a specific environmental state. For
example, a penetration tester decides to take a cer-
tain penetration exploit action based on the current
state of the target network. We can abstract this
expert knowledge and represent it in the form of
a state-action pair. Afterwards, the penetration test
simulation environment executes the action and
processes the result of the action and gives feedback.
Finally, the reward value R resulting from the exe-
cution of action A is integrated into the state S to-
gether with the new state S'. We obtain a complete
set of expert transition data that can be used by the
training of the agent and stored in an expert
knowledge base.

(ii) Method 2: We collect valid paths and traces of agents
completing PT objectives in multiple different sim-
ulated network scenarios (scenarios that are within
a fixed order of magnitude due to the uniformity of
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expert knowledge). These trajectories consist of
multiple transition data, and the transition data are
obtained from tests of the agent against different
network scenarios. However, due to the structural
specificity of the expert data that we designed, real-
world common open ports and services, for example,
have specific bitmasks in the transition data. These
predefined bitmasks often override the configuration
of our simulated network environment. For exam-
ple, the agent collects expert data in multiple net-
work scenarios of size less than N. We can apply this
expert knowledge to the training of network sce-
narios of a size less than N. In addition to this, we can
take valid transition data (reward values>0 for
action execution) and store them in an expert

knowledge database.

4.1.2. Stage 2: Input of Expert Knowledge. The transitional
data collected in the expert knowledge base can be used as
demonstration data to ensure that agents can learn the PT
strategy of experts through pretraining. The demonstration
data input to the agent conform to the standard transition
data form of reinforcement learning algorithm and are used
for training and processing. The detailed representation and
structure of transition data are shown in Figure 3.

The transition data consist of a four-tuple: 7(S, A, R,S’),
where S is a valid observation of the current target network
state by the agent and also serves as the state input to the
neural network in the RL algorithm, A is the vector of
actions performed, consisting of the number of the agents’
actions, R is the reward value for executing action A under
the state S, and §' is the new state to which the transition is
made after the execution of action A under the state S. Each
transition in the expert knowledge base has the same
structure and can be applied to the training of the agent as
demonstration data. The observed state contains the agent’s
perception of the target network environment, which
contains statistically tractable information that has an im-
pact on the action decisions of the PT process. This in-
formation includes, among other things, the number of
hosts the agent has discovered, the number of hosts it
controls, the number of open services it has scanned, the
number of connection credentials it has obtained, and the
ports it has discovered.

4.1.3. Stage 3: Interaction and Training of the Agent. As the
agent interacts with the penetration test simulation envi-
ronment, the agent’s actions will change the state of the
environment, while the environment will give feedback to
the agent on rewards and penalties. The agent adjusts the PT
strategy and actions based on the rewards. At this point, the
demonstration data extracted from the expert knowledge
base serve to assist the agent in making decisions and to
influence the agent’s tendency to perform actions. The better
transition data generated by the agent as it interacts with the
environment are also recorded and stored in the expert
knowledge base. In this way, the expert knowledge base is
continuously expanded with valid transition data. More
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comprehensive and effective guidance is provided for the
training of the agent.

4.2. DQfD Training. The previous section described the basic
process of implementing our DQfD-AIPT framework in-
corporating expert knowledge. In particular, we highlighted
the process of collecting expert knowledge data. This section
will describe the DQfD RL algorithm and the specific
implementation details of how the algorithm combined with
expert knowledge data can guide the agent in PT.

Based on the algorithm structure of DQN and combined
with the framework of DQfD, we implement the DQfD
algorithm, whose algorithm structure can be expressed as
shown in Figure 4. First, based on the algorithmic structure
of the DQN, we build a policy network and a target network
with the same structure. Each network consists of a multi-
layer structured neural network: an input layer, three fully

connected hidden layers, and an output layer. At the same
time, we implement PER through the tree storage structure
of the sum tree. PER draws those samples that are more
valuable at higher frequency than random samples, and PER
takes into account the importance of the different state
transition data by means of the TD error. This approach is
used to balance the proportion of demonstration data and
interaction data contained in the small batch of transition
data sampled. On this basis, we combine the demonstration
data from the expert knowledge base to improve algorithm
performance and learning efficiency.

The detailed process of the DQfD algorithm can be
described as follows.

4.2.1. Pretraining Stage. State transition data from the
constructed expert knowledge base are prepositioned in the
demonstration data area of the sum tree. In particular, it is
important to emphasise that the size of the demonstration
data area and the data filled by the sum tree are fixed.
Throughout the training process, the data in the demon-
stration area are not overwritten as new state transition data
are added to the sum tree. After the expert knowledge preset
was completed, the policy network was pretrained by
sampling batch-sized state transition data from the dem-
onstration data areas several times. The pretraining process
updates the parameters of the Q network using a J(Q) loss
combining the three losses, where the J(Q) error is calcu-
lated as follows:

J(Q)s = Jq(Q) +4,],(Q) + 1] (Q) + 4371, (Q), (6)

where ] (Q); is the joint loss containing the supervised loss,
A1s Ay, and A, represent the constants, respectively, J, (Q) is
the loss of DQN, J, (Q) is the N-step return loss, J;(Q) is
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FiGure 4: DQfD algorithm training process.

a supervised loss, and J;, (Q) is a regularisation term ap-
plied to the neural network to alleviate overfitting to the
presentation data and to prevent the strategy from over-
fitting to a small fraction of the experience in the expert
data. A detailed explanation of the J,(Q) and J;(Q) is
given below.

For the ], (Q) loss, the agent updates its Q-network with
a mixture target of 1-step and n-step return. The in-
corporation of the N-step loss can help propagate the value
of the expert data to an earlier state, greatly enhancing
learning from the limited demo dataset. It also ensures that
the pretrained learned neural network value function esti-
mates satisfy the Bellman equation. The calculation of ], (Q)
can be expressed as follows:

(7)

J£(Q) is a supervised loss. The incorporation of the su-
pervised loss is the key to the pretraining process. It can be
expressed as follows:

J£(Q) = max[Q(s.a) + {ap,)] - Q(s.ag),

n—1 n
Tt Pl ety T+ maxgy ' Q (s, a).

(8)

where a is the action corresponding to the expert dem-
onstration data in the state S. I (ag, a) is a margin function,
which is a measure of how well the currently executed action
matches the action demonstrated by the expert and can be
expressed as follows:

0, ap=a,

K 9)

I(ag,a) :{

ag +a.

In this way, the value of any action that differs from the
expert action ay, is less than the value of the action a;. With
the supervised loss, the values of actions outside the range of
the demonstration data also become reasonable values,
resulting in a value-driven e-greedy strategy that effectively
imitates the expert’s actions. Pretraining is a good starting
point for learning the task. Once the agent begins to interact
with the task, it continues to learn by sampling from its own
generated and demonstrated data.

4.2.2. Training Stage. After the pretraining phase, we get an
agent with expert experience. However, the agent does not
interact with the environment throughout the pretraining
phase. During the formal training phase, the agent first
interacts with the environment to generate transition data,
and each transition data is stored in the interaction data area
of the sum tree structure. In addition, to avoid overfitting of
the expert transition data early in the training process, the
interaction data area of the sum tree needs to be filled up by
the interaction of the agent with the environment before the
formal learning begins. After the maximum storage capacity
is reached, the agent-generated data will continuously cover
the interaction data area of the sum tree structure. The flow
of the PER algorithm is presented in Algorithm 1.

In the pretraining phase, only the expert transition data
are extracted from the demonstration data areas for training.
In the formal training phase, the transition data from both
the demonstration data region and the interaction data area
could be extracted from the sum tree according to the PER
method. The difference is that the supervised loss J; (Q) is
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sum tree structure

(1) if n< N then

(3) endif

(4)  Start sampling batch-size transitions from the sum tree

(5) Calculate o«~SumTreeMaxPriority/k
(6) for steps t € {1,2,...k} do

(12)  end for

(14)  Update transition priority according to the TD error

Input: k: batch size, N: capacity of the sum tree, and »: the amount of transition currently stored by the sum tree, initialised the
Output: Updated the sum tree structure after sampling the transitions

2) push the transition 7(S, A, R,S') into the sum tree with maximal priority

7) Sample k transition data with priority from the sum tree

(8) a—t*o, b—(t+1)" o,

9) v generate a random number between a and b

(10) Transition 7, and corresponding priority are obtained according to a random number v
(1) Compute importance sampling weight for each transition 7,

(13)  Train this batch size of transition and compute the TD error according to the weight

ALGORITHM 1: Implements PER with the sum tree structure.

removed from the calculation of the joint loss ] (Q),, which
indicates that A, = 0.

In addition to this, the network update process is more
computationally expensive due to the forward propagation
process compared to the forward propagation process. The
purpose of this form is to ensure that the replay buffer is
closer to the state distribution of the current policy and to
prevent network overfitting. Therefore, the update frequency
of the target network in the pretraining phase is measured in
steps, and the step setting interval should not be too small. In
the formal training stage, the update frequency of the target
network is in episodes. In summary, the DQfD algorithm
combined with expert knowledge 1is presented in
Algorithm 2.

4.3. RL Settings for PT. In this paper, we model the PT
process as an MDP. We use the RL agent as an attacker who
penetrates the target system. The target system constitutes
the environment in which the agent interacts with each
other. We take the formalisation of MDP as a basis and
consider the characteristics of the intelligent PT simulation
environment used for the experiments. We give the relevant
settings for the necessary elements required for RL. The
relevant elements in the PT formalisation into an MDP can
be represented separately as follows:

(i) State space: A state space is a finite set of states with
anonfixed structure. In PT problems, the state space
covers the range of changeable states of the target
network. In this paper, we take the awareness of the
target network environment by an agent through
observation as the state. The representation of the
specific states is shown in Figure 5.

(ii) Action space: The action space contains all the
executable actions of the agent and does not change
with the current state of the environment. This
means that the output dimension of the neural
network is always fixed during the state-to-action

mapping process. In this paper, there are three main
types of actions for an agent:

@ Local exploit: the local exploit action is the
process of exploiting the local resources of
a target host after taking control of that host. The
outcome of this action exploitation is privilege
elevation, credential information leakage, sus-
picious link leakage, etc.

@ Remote exploit: the remote exploit uses the
current controlled host as a springboard to ex-
ecute malicious commands by submitting them
in the local browser. The outcome of the exploit
is to gain control of the target host, leaking
a suspicious link, etc.

® Connect: the connect action acts on the dis-
covered hosts and connects to the target host by
means of the host credential information ac-
quired during the lateral movement. The action
outcome is to control the target host.

(iii) Reward: the reward function is feedback from the

environment for the action taken by the agent, and
the calculation of the reward during the penetration
test can be expressed as follows:

R= Eval(Outcomei) — Cost (Action). (10)

In the equation, Eval(Outcomei) is an evaluation of
the outcome of the execution of an action by the agent.
Cost (Action) is the cost of performing the action. The
classification of the exploit outcomes of the actions
and the corresponding values are shown in Table 1.

(iv) Transfer function: The transfer function is a de-

scription of the probability of the environment to
make a state transfer under certain conditions. For
the model-free approach, learning is performed
from the experience generated during the in-
teraction, as the agent cannot directly rate the merit
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Output: An agent trained with expert knowledge

Input:D™P: the experience replay area built by the sum tree, D%™°: expert demonstration data area in DrePiy, pinteract;
interactive data area in D™P'%Y, §: weights for the policy network (randomly generated), §': weights for the target network (randomly
generated), fo upda.te.target ne.:twork frequency of pretraining, f ;: upane target network frequency of formal training, k: batch size,
j: number of pretraining gradient updates, E: episode number of training, and S: max steps per episode

T~ a ¥V — —
S [@...___]

Action [. ]—} Agent Action Number

Reward [ ]—> Reward for Action

Nestsie (7], I (2] 2] N . ) . (S|

([ ame v)a)

FIGURE 5: Structure of transition data.

(1)  Push expert transition data into D%™° and initialize their priority
(2) for steps t € {1,2,...j} do
3) Sample a batch size of k transitions from Ddemo vyith prioritization
(4) Calculate loss J(Q), using the target network
(5) Perform a gradient descent step to update the weights for the policy network 6
(6) iftmodf, = Othen6'«0end if
(7)  end for
(8) for episode u € {1,2,...E} do
9) for step v € {1,2,...S} do
(10) Sample action A from the behaviour policy
@11 The environment performs A and gives back R(reward), and the agent observes (S, A, R,S’)
(12) Push the transition 7(S, A, R,S’) into D™, overwriting oldest interaction transition if over capacity of Dinteract
(13) Sample a batch size of k transitions from D™P®Y with prioritization
(14) Calculate loss J(Q) using the target network
15) Perform a gradient descent step to update the weights for the policy network 0
(16) §'«S, the state transitions from S to S’
@17) end for
(18) ifumodf , = Othend’ —0fend if
(19) end for
ArLcoriTHM 2: DQfD.
Discovered Owned Discovered Service Discovered Discovered Ports Discovered Running
Node Count Node Count Count Credentials Count Credentials Service

TaBLE 1: Action execution outcome and evaluation.

Outcomes Evaluation
Leak new nodes 10
Leak credentials 5
Successful connection 20
Privilege promotion 10
Failed to exploit -10
Repetitive action -5

of the transformed state. The transfer function is
unknown when formalising the PT process as
an MDP.

5. Experiment

First, we build PT simulation network scenarios on the CBS
platform developed by Microsoft. Second, we build an expert

knowledge base containing transition data for multiple
network scenarios by using the expert knowledge collection
method introduced in Section 3. Finally, to validate the
effectiveness of our proposed method, we use the DQfD
algorithm and the DQN algorithm to perform PT path
planning under scenarios containing elements of network
defence deception (equipped with honeypots), respectively,
and the performance of the algorithms is evaluated by
specific metrics.

5.1. Main Experimental Procedures

5.1.1. Experimental Platform. Our experiments were con-
ducted on the CyberBattleSim (CBS) platform developed by
the Microsoft security team. CBS is an experimentation
research platform to investigate the interaction of automated
agents operating in a simulated abstract enterprise network
environment. The simulation provides high-level abstraction
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of computer networks and cyber security concepts. We
construct a simulated network scene through CBS and
encapsulate this network scene into a gym environment
where we can interact with an agent and further combine it
with RL-related algorithms for our experiments.

5.1.2. Network Scenario Building. We abstracted a real-
world enterprise network scenario and built a simulated
network scenario containing a honeypot based on the CBS
platform. The topology of the network scenario is shown in
Figure 6.

The simulated enterprise network scenario consists of
a DMZ zone, Trust-1 zone, and Trust-2 zone. The Trust-1
and Trust-2 zones provide web services and database services
in the enterprise network. We have deployed honeypots in
two separate trust areas. Honeypots are replicas of sensitive
servers and hosts and provide some common services, open
more sensitive ports, and contain some invalid resources and
information. Honeypots are set up to consume the attacker’s
resources and to mitigate the impact of the attacker’s actions
on the enterprise network. This is a high fidelity construction
of a real-world network scenario. The firewall between each
zone controls the access policy between zones. The host
configuration information and firewall access policies and
vulnerability information for the simulated enterprise net-
work scenario are shown in Tables 2-4, respectively.

5.1.3. Penetration Testing Goals. In the simulated enterprise
network scenario, the attacker has initially gained control of
SpringBoot in the DMZ zone. The attacker uses this as
a springboard machine for further lateral move. The goal of
the PT process is to gain access to the control commands of
the database server in the Trust-2 area in order to get further
access to sensitive data and critical information. At the same
time, the agent needs to avoid getting caught in the honeypot
in the trust area. That is, the agent expects to obtain as many
cumulative rewards as possible at the least cost of
consumption.

5.1.4. Expert Knowledge Collection. For the construction of
the expert knowledge base, we convert the artificial expe-
rience of successfully conducting PT into demonstration
transition data that can be understood and learnt by the
agent. In our experiments, we collected 1000 expert dem-
onstration data from each of 10 different structured network
scenarios and pushed them into the expert knowledge base.
The scale of these network scenarios is all within a certain
size range. We preplace these expert demonstration data in
the demonstration data areas of the sum tree before
pretraining.

5.1.5. Evaluation Metrics

(i) Average cumulative reward: In the process of ap-
plying the RL algorithm to train an agent for pen-
etration testing, the cumulative reward earned in
each round can directly indicate the training of the

11

current round as the number of steps increases.
Therefore, the average cumulative reward over
multiple rounds can effectively show the average
performance of the agent throughout the whole
training process.

(ii) Probability of attacking honeypots: The honeypots in
the simulated network scenario are hosts or servers
with a cyber deception defence role. We calculate the
number of times the honeypot is attacked in each
round as a percentage of the number of actions
performed by the agent. This metric assesses the
effectiveness of expert demonstration data for policy
training by the agent.

5.2. Experimental Results and Analysis. We trained the agent
to perform PT using two algorithms, DQfD and DQN, re-
spectively. The hyperparameter settings for the algorithms
and the DQfD-specific parameter settings are shown in
Tables 5 and 6, respectively.

The average of the cumulative rewards obtained by the
agent over the 200 round episodes of training was counted to
compare the performance of DQfD and DQN. Second, to
verify the effectiveness of the incorporated expert knowl-
edge, we counted the probability of attacking the honeypot
for Honeypot-1 and Honeypot-2, respectively. To ensure the
credibility of the experimental results, we conducted 10
experiments in the same network scenario. We plotted the
average results of the 10 experiments as graphs as shown in
Figures 7-9.

As can be seen from the experimental results in Figure 7,
the DQfD algorithm incorporating expert knowledge is able
to achieve the PT goal in fewer steps compared to the DQN
algorithm (DQfD within 500 steps and DQN within 3000
steps). Redundant repetitions, exploitation failures, and
actions that fall into the honeypot during the penetration test
often result in penalties. Therefore, the larger the reward
value accumulated in each round, the more it reflects the
superiority of the agent’s PT path and action selection
strategy. The DQIfD algorithm accomplishes the goal faster
while earning more cumulative rewards in each round. The
experimental results indicate that the DQfd algorithm im-
proves the performance of penetration testing to a certain
extent while demonstrating the superiority of fusing expert
knowledge.

The results in Figures 8 and 9 show that intelligence
trained using the DQfD algorithm has a significantly lower
probability of attacking the honeypot hosts in the Trust-1
region and Trust-2 region in each episode. Compared to
DQN, DQfD maintains a lower probability of attack
throughout the training convergence, always below 0.1. The
reason for fluctuations in DQfD in the early stages is due to
the fact that in the early stages, the exploration rate € is in the
process of decaying. However, there is still a high probability
of random exploration of actions. DQN has a high proba-
bility of attacking the honeypot in the early stages. As
training progresses, trial-and-error experience is learned
into the network model though. However, due to the lack of
guidance from expert knowledge, its ability to avoid
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FIGURE 6: Enterprise network scenarios with honeypots.

TaBLE 2: Host configuration information of the enterprise network.

Host ID Vulnerability Service Open port Value
Weblogic-1 CVE-2015-4852 HTTP 7001,5556 10
SpringBoot Scancachehistory HTTPS 8082 50
Windows7 CVE-2021-42287, scancachehistory RDP, HTTPS, SMTP, FTP 8080, 3389, 25, 21 100
Tomcat CVE-2017-12615 HTTP, SSH 8088, 22 100
Log4j CVE-2021-44228, scancredhistory HTTPS, RDP 3389, 8080 100
Honeypot-1 CVE-2016-10009 HTTPS, MySQL, FTP, SMTP, SSH 8080, 3306, 21, 25, 22, 2222 -200
Honeypot-2 CVE-2016-10009 HTTPS, MySQL, FTP, SMTP, SSH 8080, 33006, 21, 25, 22, 2222 -200
Database CVE-2017-4971 HTTPS, MySQL, FTP 3306, 8080, 21 200
Weblogic-2 CVE-2015-4852 HTTP 7001, 5556 100

TaBLE 3: Firewall policies for the enterprise network.

Sources Destination Service Rule
SpringBoot Windows?7 HTTPS, RDP Permit
SpringBoot Tomcat HTTP, SSH Permit
SpringBoot Log4j HTTPS, RDP Permit
SpringBoot Honeypot-1 All permit
SpringBoot Trust-2 All deny
Trust-1 Trust-2 HTTPS, MySQL, FTP, HTTP, SSH Permit
Trust-1 DMZ All permit
Trust-2 Windows7 HTTPS, RDP Permit
Trust-2 Tomcat HTTP, SSH Permit
Trust-2 Log4j HTTPS, RDP Permit
Trust-2 Honeypot-1 All permit
deception defences was not significantly improved com- The less the intelligence interacts with the honeypot
pared to DQID. in each episode, the less the cost of completing PT will

The experimental results effectively reflect the role of  be consumed. This will greatly weaken the role of hon-
incorporating expert knowledge in the identification  eypot deployments from another perspective, where
and evasion of the deception defence components of  expert knowledge can guide and modify the agent’s PT
the scenario during the PT performed by the agent.  strategy.
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TaBLE 4: Vulnerability information and exploitation results.

Vulnerability Type Outcome Cost

CVE-2015-4852

CVE-2016-10009
CVE-2017-12615
CVE-2021-44228
CVE-2021-42287
Scancachehistory
Scancredhistory

Remote exploit Privilege promotion 10
Remote exploit Privilege promotion 10
Remote exploit Privilege promotion 10
Remote exploit Privilege promotion 10
Remote exploit Privilege promotion 10

Local exploit Live nodes leaked 5

Local exploit Credential leaked 5

TaBLE 5: Hyperparameter setting of the algorithm.

Hyperparameter DQfD DQN
Batch size 512 512
Epsilon 0.9 0.9
Discount factor 0.015 0.015
Epsilon exponential decay 5000 5000
Epsilon minimum 0.1 0.1
Learning rate 0.01 0.01
Demonstration memory size 1000 *
Replay memory size 5000 5000
Target network update frequency 6 6
Max steps per episode 3000 3000
Training episode 200 200

TABLE 6: Special hyperparameter setting of the DQfD.

Hyperparameter Value
Pretrain step 1000
N-step return weight A, 1.0
Supervised loss weight A, 1.0
L , regularisation weight A, 1.0
Expert margin I(ag,a)(a +ag) 0.8
N of N-step return 10
Prioritized replay exponent « 0.4
Prioritized replay constants €, 0.001
Prioritized replay constants €, 1.0
Prioritized replay importance sampling exponent f3, 0.6
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FIGURE 7: Changes in the average cumulative reward value.
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6. Conclusion and Future Work

In this study, we focus on the effective use of expert
knowledge in the process of intelligent PT. In order to
address the poor interpretability of expert knowledge and
the overfitting of algorithms to expert knowledge that exists
in the current study, we propose an intelligent PT framework
named DQfD-AIPT. DQfD-AIPT incorporates the collec-
tion of expert knowledge and guides the agent in the en-
hancement of PT strategies. The expert knowledge that we
use is interpretable and generalisable for PT processes in
network scenarios at a fixed scale. At the same time, we
provide a detailed description of the process of transforming
and collecting expert knowledge and define the structure of
expert knowledge. Our proposed DqfD-AIP framework is
generic and feasible. In terms of algorithms for combining
expert knowledge, we use the DQfD method based on the
RLED framework instead of traditional imitation learning.
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The advantage of using the DQfD algorithm is that it
combines the advantages of supervised and unsupervised
learning. The DQfD algorithm makes reasonable use of the
transition data from experience replay and avoids the
phenomenon of overfitting of expert data. The results of
experiments conducted in a network scenario with honey-
pots also indirectly indicate the validity of the expert
demonstration data. Experimental results also show that the
DQfD algorithm not only achieves higher cumulative re-
ward values faster in network scenarios with honeypots but
also makes better use of the expert demonstration data to
avoid getting trapped in honeypots compared to DQN.

The efficiency and difficulty of PT depends on the
complexity of the target network structure. Most of the
expert knowledge that we currently collect is gathered
through training in network scenarios of a specified size
range. The coverage of expert knowledge is therefore rela-
tively small and limited by the representational form of the
transition data. In future research, we consider improving
the interpretability of expert knowledge by better converting
human PT experience into knowledge that can be accepted
and learned by an agent. [15, 27, 28].

Data Availability

As a result, the data for this experiment were generated
through training on the CBS platform, and no previous data
were used. The transition data used in this article are
generated through self-constructed scenarios.

Additional Points

Our experiment was carried out on the basis of Microsoft’s
open source CBS platform (CyberBattleSim). CBS highly
abstracts the process of penetration testing from the network
scene in the real world and builds simulated network sce-
narios. The agent algorithm interface is provided in CBS, and
the agent uses the interaction with the environment and the
reinforcement learning algorithm to obtain the penetration
test strategy. The reinforcement learning method is an
unsupervised machine learning method and difficult to
repeat, and the data for simultaneous training are generated
in the process of interaction between the agent and the
concrete environment. The difficulty of penetration testing
depends on the complexity of network scenarios. In reality,
network scenarios are diverse, and the generation of tran-
sition data is also related to the structure of network
scenarios.
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