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Federated learning is a distributed machine learning framework that has been widely applied in scenarios that require data
privacy. To obtain a neural network model that performs well, when the model falls into a bug, existing solutions retrain it on
a larger training dataset or the carefully selected samples from model diagnosis. To overcome this challenge, this paper presents
Fed-DNN-Debugger, which can automatically and efciently fx DNNmodels in federated learning. Fed-DNN-Debugger fxes the
federated model by fxing each client model. Fed-DNN-Debugger consists of two modules for debugging a client model:
nonintrusive metadata capture (NIMC) and automated neural networkmodel debugging (ANNMD). NIMC collects themetadata
with deep learning software syntax automatically. It does not insert any code for metadata collection into modeling scripts.
ANNMD scores samples according to metadata and searches for high-quality samples. Models are retrained on the selected
samples to repair their weights. Our experiments with popular federated models show that Fed-DNN-Debugger can improve the
test accuracy by 8% by automatically fxing models.

1. Introduction

Federated learning [1–3] is a distributed machine learning
framework in which multiple clients jointly train a model
under the coordination of a central server. Each client can
keep its data locally without disclosing them to the server or
to other clients. Federated learning can protect data privacy
and mine valuable information from data at the same time.
As the most commonly used base model, deep learning
models under the framework of federated learning have been

widely applied in electronic health records [4, 5], trafc fow
prediction [6, 7], medical image [8, 9], and other felds.

A deep learning model is a deep neural network (DNN)
[10] with neurons connected by a set of weights, whose
weights are updated by the training process. If a deep
learningmodel performs poorly caused by themisconducted
training processes (e.g., insufcient training or bias in the
training dataset), it means that some weights of the model
are not trained well [11, 12]. We call these weights as error
weights in this paper. Tis can signifcantly degrade model
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performance. For example, accuracy can be decreased by
10% because of this problem [11].

In federated learning, the training process and training
data of each client cannot be accessed. Te training data are
collected by diferent parties, some of which have problems
such as heterogeneity, noise, and unlabeled or mislabeled.
Due to the lack of a global view of the data, it is difcult for
data scientists to avoid the error weight problem in fed-
erated learning [13]. Terefore, fxing models in the fed-
erated learning is of great signifcance. A series of solutions
have been proposed for centralized deep learning models.
One solution to solve the problem of error weights is to add
more training samples and modify the error weights by
retraining. Collecting more samples, such as those from
generative models for data augmentation [14–16], or from
public data sources [17, 18], has limited efectiveness and
sometimes even leads to degenerated models [11]. Another
solution is to explore the relationship between error
weights and training samples and provide guidance for
selecting retraining samples that can repair error weights
[11, 12, 19]. Tese approaches are more efective than the
method of randomly increasing training samples. Un-
fortunately, they cannot be applied to federated learning
because all of these methods were designed for centralized
learning and rely on manual extraction and analysis of
metadata (e.g., features or weights) generated during
training. On the one hand, limited by privacy protection
strategies, local training data and metadata cannot be
accessed in federated learning. On the other hand, existing
methods still impose signifcant computational and com-
munication overhead in federated learning.

In this paper, we propose Fed-DNN-Debugger,
a debugging system that can automatically and efciently fx
error weights in the federated model. Fed-DNN-Debugger
consists of two modules: nonintrusive metadata capture
(NIMC) and automated neural network model debugging
(ANNMD). NIMC analyzes the data fows of client models
with deep learning software syntax to automatically collect
metadata, such as model features and model weights. It does
not insert any code related to data collection and analysis
into modeling scripts and is therefore nonintrusive.
ANNMD automatically searches for high-quality samples
with collected metadata. It efciently fxes each client model
by retraining models with selected samples.

We evaluate Fed-DNN-Debugger using four popular
federated models on the MNIST and CIFAR-10 datasets.
Experimental results show that Fed-DNN-Debugger can
efciently collect and flter out 99% of useless metadata. It
takes only 4.3% of the execution time required by a native
method that collects all metadata. Moreover, Fed-DNN-
Debugger can automatically and efectively fx federated
models. In particular, the accuracy can be increased by more
than 8% for federated models. Even if only one client model
is fxed, the test accuracy can increase by up to 5.75%.

Te main contributions of our paper are as follows:

(1) We propose Fed-DNN-Debugger, a debugging sys-
tem that can debug error weights of DNN models to
improve their performance in federated learning

(2) We provide a nonintrusive method of metadata
capture to efciently collect training metadata from
client models, without inserting any metadata col-
lection code into deep learning scripts

(3) We propose an efcient method for automatic neural
network debugging, which can search for high-
quality samples and retrain models to repair error
weights

(4) We develop a prototype of the Fed-DNN-Debugger
and comprehensively evaluate it on popular feder-
ated models

2. Related Work

In this section, we introduce some work that is related to our
research. Debugging methods for deep learning models are
presented frst because they are considered the basis of this
paper. Furthermore, we discuss existing methods for model
debugging in federated learning, after which we briefy
introduce the diference between these studies and the re-
search presented in this paper. Finally, we discuss how to
capture the metadata during training.

2.1.DeepLearningModelDebugging. To debug deep learning
models and improve their performance, various debugging
methods have been proposed. Human-in-the-loop debug-
ging [20] is the most commonly used method in the
modeling process. Modelers use the data collection APIs
provided by auxiliary debugging tools [21–23] to record and
track the metadata during training. Te main metadata to be
collected include model hyperparameters, evaluation met-
rics (values of loss and accuracy), training samples, and
models. According to the training metadata, the hyper-
parameters and structure of the model are manually ana-
lyzed and modifed, or a generative adversarial network
(GAN) is used for data augmentation [24–26]. Human-in-
the-loop debugging relies mainly on the experience of the
modeler and requires the modeler to analyze the data.

To repair the error weights of a model, Ma et al. [11]
proposed an automatic neural network debugging method
called MODE, inspired by software engineering debugging.
It was powered by feature diferential analysis and input
selection to help identify buggy neurons and measure their
importance for guiding the selection of new input samples.
Retraining used high-quality samples to fx the model.
Apricot [12] is a debugging method for weight adaptation
during the training process. However, MODE and Apricot
cannot be directly applied to federated learning.

2.2. Federated Learning Model Debugging. Tere are cur-
rently few works on federated learning model debugging. To
the best of our knowledge, FLDebugger [27] is the only work
for model debugging under federated learning framework.
FLDebugger proposed a model debugging system for the
problem of erroneous training data in federated learning.
FLDebugger traces the test errors of the global model and the
training log of each client during federated training process.
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Ten, FLDebugger fxes model bugs by identifying erro-
neous training samples based on infuential functions
[28, 29]. Unlike FLDebugger, which solves the problem of
erroneous samples, Fed-DNN-Debugger focuses on the
problem of error weights caused by improper training
processes.

2.3. Metadata Capture. Metadata generated by the model
during training or testing are extremely important for model
debugging. Auxiliary debugging tools [21–23] or data
provenance studies [30–32] extract metadata using a data
collection API during training. However, in the federated
learning setting, manual extraction and analysis of training
metadata are not allowed because of the data protection
requirement. noWorkfow [33] is a nonintrusive method of
metadata capture, which can collect metadata automatically,
without inserting any data collection code into the machine
learning script. However, noWorkfow collects massive
amounts of metadata in deep learning scenarios.Temethod
proposed in this paper is inspired by noWorkfow: it obtains
metadata nonintrusively and combines it with the syntax of
deep learning software to locate and extract target metadata
during training or testing.

3. Background

3.1. Federated Learning. Suppose that there are N data
owners F1, F2, . . . FN , all of whom want to train machine
learning models by merging their respective datasets
D1, D2, . . . DN . Te traditional approach is to pool these
datasets together to train the model Mtra. Federated learning
is a learning process in which data owners train the model
Mfed jointly under the coordination of a central server, such
that any data owner Fi does not disclose its dataset Di to the
others. Defning the accuracy of models Mtra and Mfed as
Acctra and Accfed, respectively, federated learning aims to
make Accfed very close to Acctra [34].

A typical assumption is that theN participants are honest
and the server is honest but curious. Terefore, no partic-
ipant is allowed to leak information to the server [35]. Te
training process of federal learning usually includes the
following four steps [34]:

S1: each participant trains the model locally and cal-
culates the training gradient, uses encryption [35],
diferential privacy [36], or secret sharing [37] to mask
the gradient, and sends the masked result to the server.
S2: the server accepts the gradient transmitted by each
participant, to perform safe aggregation, without
learning information about any participant.
S3: the server sends back the aggregated gradients to
each participant.
S4: the participants accept the results returned by the
server and update their local models with the decrypted
gradients.

3.2. Deep Neural Network Debugging. Bugs in deep learning
models can be divided into two categories [11]: structure

bugs and training bugs. Structure bugs are generally caused
by inappropriate model architecture, such as the number of
hidden layers, the number of neurons per layer, and
hyperparameters. Training bugs are usually caused by
misconducted training processes, such as biased data, noisy
data, and insufcient training. In this paper, we focus on
training bugs. As discussed in Introduction, a deep learning
model is essentially a set of neurons connected by a high-
dimensional weight matrix, and the weights are updated
during training. When there are problems such as biased
data, noisy data, or inadequate training, some weights
cannot be updated to the optimal state. Ten, the error
weights appear in the model, resulting in poor performance
of the model.

Te usual method of fxing training bugs is to modify the
error weights in the model by retraining the model with
more samples.

In practice, underftting and overftting are the most
common problems of a deep learning model. Overftting
refers to a model learning the pattern and noise in the data to
such an extent that it hurts the performance of the model on
the test dataset. Underftting is that the model neither learns
from the training dataset nor generalizes well on the test
dataset.

To measure the performance of a model, we defne
Tracc(Mtrain

g ) as the training accuracy of label g of model M

and defne Teacc(Mtest
g ) as the test accuracy of label g of

model M. In practice, as shown in Figure 1(a), during the
training process, if a model is overftting, its training ac-
curacy is higher than the test accuracy. If a model is
underftting, its training accuracy and test accuracy will be
poor, as shown in Figure 1(b).Terefore, we say that a model
has an overftting or underftting bug if it satisfes equations
(1) or (2), respectively.

∃g,Tracc M
train
g  − Teacc M

test
g ≥ c, (1)

∃g,Tracc M
train
g ≤ θ,Teacc M

test
g ≤ θ, (2)

where c and θ are predefned values based on concrete
applications. If the test accuracy for both model and label
becomes higher, and the accuracy of the label is no longer
substantially lower than the model accuracy, we consider
that the model is fxed.

4. Fed-DNN-Debugger Overview

Figure 2 presents the architecture of Fed-DNN-Debugger.
Te purpose of Fed-DNN-Debugger is to fx a trained
federated model and improve its performance.Te design of
Fed-DNN-Debugger is based on a key insight: if the global
model has error weights, some client models must have error
weights. Tis is because all data are trained in client models
and the server model only aggregates the results of each
client model by FedAvg [1], without training. Tus, Fed-
DNN-Debugger debugs the local model on each client. Te
error weights of the federated model can fnally be repaired
by fxing each client model. Te detailed process is explained
as follows:
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(1) Each client locally performs the following debugging
workfow in parallel. First, the client tests the model
and automatically collects the metadata generated by
the model, including the features generated by the
model, prediction results, and model weights. Te
client then debugs the model according to the col-
lected metadata and selects high-quality samples to
fx the model. Finally, it computes gradients of the
model during the retraining process.

(2) Each client masks the gradients with homomorphic
encryption [35] and sends results to the server.

(3) Te server accepts the masked gradients sent by each
client and performs the secure aggregation
algorithm [1].

(4) Te server sends back the aggregated gradients to
each client.

(5) Each client receives the encrypted gradients and
updates its local model after decryption.

As shown in Figure 2, the debugging process of each
client model is divided into two steps: NIMC and ANNMD.
To collect the metadata automatically and transparently,

NIMC constructs an execution datafow by analyzing the
abstract syntax tree (AST) of the deep learning script. It
captures the metadata that helps debug from the datafow,
according to the syntax of the deep learning software (e.g.,
the syntax of PyTorch [38]), as described in Section 5. Te
purpose of ANNMD is to fx the client model according to
the captured metadata. First, it selects a layer that guides
repairing error weights and calculates the diferential fea-
tures [11] by the selected layer. Second, it scores candidate
samples using the diferential features and selects retraining
data that have high scores. Te details of ANNMD are
explained in Section 6.

5. Nonintrusive Metadata Capture

Te main purpose of NIMC is to collect the metadata that
are useful for debugging, automatically and transparently.
noWorkfow [33] is a commonly used method for automatic
metadata collection from a Python script. It parses the AST
of the entire Python script to obtain all function calls and
variables and then collects their values during execution.
noWorkfow is widely used in data provenance applications.
Unfortunately, it is hard to apply this tool to deep learning
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Figure 1: (a) Overftting and (b) underftting. Te gray horizontal lines represent the desired accuracy.
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scenarios. Te main reason is that noWorkfow collects
metadata at a fne granularity and will collect massive
amounts of metadata during model training or testing.
However, most of the collected metadata are not relevant to
model debugging. Collecting the metadata can signifcantly
increase the complexity of debugging.

In this section, we propose NIMC, as shown in Figure 3,
which collects metadata useful for DNN model debugging
automatically during execution. In NIMC, there is no need
to insert any metadata collection code into the deep learning
script. Firstly, we design a code analysis module to obtain the
deep learning datafow from the python script using the AST
tool. Ten, we perform a metadata capture module to
identify and collect the target metadata in the datafow
during the code execution. Te implementations of each
module in detail will be introduced as follows.

5.1. Code Analysis. Te purpose of code analysis is to obtain
the datafow of the deep learning script. As shown in Fig-
ure 3, frstly, the script is compiled using the Python
compiler to obtain the AST of the code. Te AST is then
analyzed to obtain the function defnitions and their pa-
rameters. For example, the function call and method of an
object in the Python script are represented as ast.Call and
ast.Attribute, respectively, and the function defnition and
class defnition correspond to ast.FunctionDef and ast.-
ClassDef, respectively. Te AST is searched to fnd all in-
formation related to function calls and variables. Finally, the
datafow of the code is composed of the searched function
calls and variables.

5.2. Metadata Capture. Metadata capture is intended to
collect the target metadata from the datafow of the deep
learning script. Te datafow constructed from the AST
contains all the function calls and variables of the entire
script. However, most of the metadata are useless for
debugging. Terefore, the key to metadata capture is the
method of identifying the target metadata from the datafow.

We divide the trainingmetadata into two categories. One
type is generated by the deep learning software, such as the
model weights and output features of the neural network.
We call these the software metadata. Because deep learning
software is implemented by diferent organizations and
teams, their APIs and parameters are diverse. Te other type
is customized by the modeler, such as the testing or training
accuracy and loss function. We call these the custom
metadata.

Software metadata are defned by deep learning software,
whose function names and parameters are fxed in each
version. Terefore, this type of metadata can be identifed in
the datafow by the syntax of the deep learning software. Te
custom metadata are defned by the modeler. Because the
metadata are used when debugging the local model on the
client side, the function name or variable name of the custom
metadata should be marked by the modeler in advance.

To collect software metadata efciently, we combine the
syntax and APIs of the deep learning software to capture the
metadata from the datafow. In this paper, we take PyTorch

[38] as an example. Figure 4(a) shows part of the code of
a typical DNN model in PyTorch, and its datafow is shown
in Figure 4(b). In Figure 4(b), the blue nodes represent
variables, and the orange nodes represent function calls. It is
clear from the datafow that the model-related function calls
and variables show spatial locality. Te nodes from Conv2d
to loss are the target metadata for debugging; they constitute
a path without branches in the datafow. Tese character-
istics guide collecting the target metadata. Because the API is
defned by deep learning software, the function names are
fxed in a certain version.Terefore, we traverse the datafow
according to these APIs to locate the target metadata. We
have designed an algorithm for metadata identifcation, as
shown in Algorithm 1. Te input parameters of the algo-
rithm include a datafow graph of the code and a set of
metadata names. Te set of metadata names contains the
API name from the deep learning software and the variable
name specifed by the modeler. Te output of the algorithm
is a list of target metadata. First, the depth-frst search (DFS)
algorithm [39] is executed to traverse the datafow graph to
obtain the list of nodes (line 1 of Algorithm 1). According to
the characteristics of the datafow discussed above, because
a connected subgraph of the datafow contains all target
metadata, the DFS algorithm arranges all target metadata
nodes adjacent to each other in list G; this is convenient for
the subsequent identifcation of metadata. Te target met-
adata list is then initialized (line 2 of Algorithm 1). Each
node is checked; if either the node or the previous node is in
the metadata name set, the node is added to the target
metadata list (lines 3–7 of Algorithm 1). Finally, the target
metadata list is returned. After identifying the target met-
adata from the datafow, NIMC extracts them from the
datafow during code execution.

Te advantages of NIMC are as follows. First, from the
perspective of modeling, data scientists only need to focus on
the machine learning task itself instead of metadata col-
lection and model debugging, which will lower the threshold
for modeling in federated learning and improve its ef-
ciency. Second, from the perspective of privacy protection,
nonintrusive metadata collection (NIMC) and automatic
neural network model debugging (ANNMD) can avoid data
scientists from manually collecting and analyzing privacy
metadata, further reducing the risk of privacy leakage.

6. Automated Neural Network
Model Debugging

In this section, we describe the ANNMD method, which
repairs the error weights automatically and efciently. Since
the model is trained on the client and aggregated on the
server, ANNMD automatically debugs the local model on
each client. Given a model that has overftting or under-
ftting problems for a label, ANNMD selects a hidden layer
to generate features of correctly classifed samples and
misclassifed samples for the label (Section 6.1). Based on the
generated features, the diferential features are then con-
structed for various types of problem (Section 6.2). Finally,
the diferential features are used to select retraining samples
and repair the error weights (Section 6.3).
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6.1. Target Layer Selection. We directly select the last hidden
layer (the layer before the output layer) as the target layer.
Tis layer is connected to the output layer, which is used for
feature fusion and prediction. Te output of the last hidden
layer can be regarded as the fnal extracted features, which
determine the performance of the model. Our experimental
results show that the efect of selecting the last hidden layer
as the target layer is similar to, or even better than, the efect
of selecting the layer selected by MODE [11], and it con-
sumes much less time.

6.2. Diferential Feature. Diferential features identify the
features that guide problems; they can be achieved by
comparing the correctly classifed and misclassifed features
[11]. Diferential features provide guidance for searching for

samples that can fx themodel. Given a label l that we hope to
debug, there are three groups of samples: CIl represents the
correctly predicted samples for l, MIl denotes the samples
that are misclassifed as l, and WIl represents the samples of l
that are misclassifed as other labels. For each group of
samples, the features generated by the target layer are
denoted by FCIl (for CIl), FMIl (for MIl), and FWIl

(for WIl).

6.2.1. Underftting. To solve the underftting problem for
label l, we need to add more samples with features that are
unique to label l and eliminate the faulty features (which
cause misclassifcation). To add more samples with features
that are unique to label l, we calculate diferential features
DFCI using correctly classifed samples CI, as follows:

1.
2. def_init_(self):

class Net (nn.Module): 

3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20

super (Net, self)._init_()
self.conv1 = nn.Conv2d (1, 10, kernel_size=5)

self.fc1 = nn.Linear (50, 10)

def forward (self, x):

network = Net ()

network.train ()
...

optimizer.zero_grad ()
output = network (data)
loss = F.nll_loss (output, target)

x = self.fc1 (x) 

x = self.conv1 (x) 
x = x.view (-1, 50)

return F.log_softmax (x)

for batch_idx, (data, target) in 
enumerate (train_loader):

train_loader

enumerate

data batch_idx target

network

Net

nn.Conv2dx

x

x

x

output

loss

F.nll_loss

F.log_softmax

20

11

nn.Linear
10

view
9

10

9

8

13

19

17

18

16 16 16

8
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Example code of DNN model in pytorch Dataflow of the code

(a) (b)

Figure 4: Example DNN code and datafow in PyTorch. (a) Shows a segment of DNN code in PyTorch. (b) Shows the datafow of the
example code in (a).Te blue nodes in the datafow denote variables, and the orange nodes represent function calls in the script.Te number
of each node in the datafow represents its line number in the code.
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Figure 3: Workfow of nonintrusive metadata capture. Te code analysis module is used to obtain the deep learning datafow by compiling
the Python script. Te metadata capture module is performed to identify and collect the target metadata during code execution.
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DFCIl,k[i] � FCIl[i] − FCIk[i], (3)

where DFCIl[i] � DFCIl,k[i], with k≠ l, k ∈ L, and abs
(DFCIl,k[i]) is minimized. DFCIl,k[i] denotes the diference
of feature i between labels l and k.

To eliminate the faulty features for label l, we computes
diferential features DFMI, as follows:

DFMIl[i] � FMIl[i] − FCIl[i], (4)

where DFMIl[i] represents the diference of the feature i

between the faulty and correct classifcations of label l.

6.2.2. Overftting. Overftting problems are mainly caused
by biased training samples, so we need more samples with
feature diversity to fx the model [11]. Te misclassifed
samples guide the most-needed features, so we compute the
diferential features DFWIl using these samples.

DFWIl[i] � MFWIl[i] − FCIl[i], (5)

where MFWIl[i] � FWIl,k[i], with k≠ l, k ∈ L, and abs
(FWIl,k[i]) is maximized. FWIl,k[i] represents the features
for the samples of label l that are misclassifed as label k.
MFWIl[i] denotes the maximal value that features i for
label l.

6.3. Retraining Sample Selection. After generating the dif-
ferential features, we select retraining samples that can repair
error weights. Te algorithm for selecting retraining samples
calculates a score to evaluate the similarity between the
features of candidate samples and the diferential features.
Te top n samples, ranked by score, are then selected as the
retraining samples.

Each sample is fed to the model to obtain a feature vector
sf from the selected target layer. For a given sample and
a diferential feature df, a score is calculated to measure the
contribution of the model fxing. We combine a variety of
measures of vector similarity, including Canberra distance,
cosine distance, Euclidean distance, Manhattan distance,
and Minkowski distance. Tese methods take into account
the characteristics of feature space distribution. To combine
the advantages of these methods when making decisions for
selecting samples, the score is calculated as follows:

score �
1
N



N

i

scorei, (6)

scorei �
normalize di(sf , df)( , di ∈ LS

1 − normalize di(sf , df)( , di ∈ LL,
 (7)

where di represents the i-th measure of vector similarity, sf
represents the vector of the sample feature, and df represents
the vector of the diferential feature. normalize() represents
the normalization method, which maps the value of the
vector similarity to the range [0, 1].

normalize(d) �
d − dmin

dmax − dmin
. (8)

Te score of each sample is calculated by equations
(6)–(8), which combine the multiple similarity measures
mentioned above. Equation (6) alone is not sufcient be-
cause we cannot simply add the values calculated by each
method, for the following reasons. First, the range of values
calculated by each method is diferent. For example, the
range of values calculated by cosine distance is [0, 1], but the
range of Euclidean distance is [0, +∞). If the values from
each measure were added directly, the sample selection
would be afected by the measure with the larger value.
Second, for some measures, a larger value corresponds to
a greater similarity between vectors. We have marked this
type of method as LS, with others marked as LL. For ex-
ample, a smaller Euclidean distance corresponds to greater
similarity between the vectors, whereas the dot product has
the opposite meaning. Terefore, we frst convert all the
values to the same form, whereby a larger value represents
greater similarity between the vectors, and then normalize
the result, as shown in equation (7).

After calculating the score of each sample, the sample
with the highest score is selected as the high-quality sample
to fx the model. It is worth noting that Fed-DNN-Debugger
does not retrain using only samples selected by the score
because that would introduce new problems [11]. Terefore,
random samples are added for training, together with
selected samples. Te experiments reported in this paper
show that the best ratio between selected and random
samples is 3 : 7.

Require: datafow graph Dda taflow, metadata name set Smetada ta;
Ensure: target metadata list Tmetada ta

(1) G⟵DFS(Dda taflow)

(2) Tmetada ta � []

(3) fori � 1, . . . , len(G) do
(4) ifG[i].name in Smetada taorG[i − 1].name in Smetada ta then
(5) Tmetada ta.add(G[i].name)
(6) end if
(7) end for
(8) Return Tmetada ta

ALGORITHM 1: Metadata identifcation algorithm.
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7. Debugging Algorithm

Algorithm 2 describes the debugging algorithm of Fed-
DNN-Debugger. In practice, the debugging algorithm is
mainly divided into two parts: server-orchestrated training
(lines 1–12 in Algorithm 2) and client debugging (lines
14–22 in Algorithm 2). In each iteration process on the
server side, we frst test the model accuracy on the test set. If
the test accuracy does not reach the target (line 3), the model
is sent to each client for further debugging (lines 4–5);
otherwise, the debugging ends (line 9). Each client accepts
the model parameters from the server and updates its local
model (line 15). Ten, we input the local training dataset to
the model and perform the NIMC method, described in
Section 5, to obtain the metadata generated by the model
(line 16). Te last hidden layer’s output features and pre-
diction results are captured by the NIMC method. Te
retraining dataset is obtained by debugging the model using
the ANNMD method (line 17), described in Section 6, and
then the model is retrained using the stochastic gradient
descent (SGD) algorithm (lines 18–21). Finally, the pa-
rameters of the debugged model are sent to the server for
safe aggregation (line 22). Te server accepts the model
parameters transmitted by each client (lines 4–6), averages
the model parameters of each client (line 7), and then goes to
the next round of debugging.

7.1. Privacy Analysis. Our Fed-DNN-Debugger protects the
local data of each client from being leaked during the
debugging process. First, during the server-orchestrated
training process, the training process strictly follows the
standard federated learning training [1], as shown in Al-
gorithm 2. Terefore, no local training data are transmitted
other than the client model. Second, during the local
debugging process, no local metadata will be collected and
analyzed manually. To prevent information leakage caused
by manual collection and analysis of private metadata, Fed-
DNN-Debugger transparently and automatically collects
metadata and debugs neural network models on each client
side, without embedding any metadata collection and
debugging code in training scripts. Te entire debugging
process is performed locally, and no metadata will be
transmitted to the server. Tus, there is no information
leakage during the local debugging process. It is worth
noting that the research on preventing privacy leakage in the
federated learning training process is a hot topic, but it is out
of the scope of this paper.

7.2. Communication and Computation Complexity. Since
Fed-DNN-Debugger introduces NIMC and ANNMD on the
vanilla federated learning framework [1], additional com-
putation has occurred. As shown in Algorithm 2, each client
only shares the model and does not share any other in-
termediate results. Tus, our Fed-DNN-Debugger does not
bring any additional communication overhead. In this
section, we only focus on the additional computation in-
troduced by Fed-DNN-Debugger, compared to vanilla
federated learning.

On the server side, as shown in Algorithm 2, there is no
additional computation. Like traditional federated learning,
the server accepts and aggregates models from various cli-
ents. On the client side, as shown in Algorithm 2, the ad-
ditional computation includes NIMC and ANNMD. For
NIMC, the main computation is target metadata identif-
cation shown in Algorithm 1, which involves datafow graph
traversal and metadata matching. In Algorithm 1, the
computation complexity of datafow traversal (line 1 of
Algorithm 1) is O(NG + NE), where NG is the number of
vertex of datafow graph G and NE is the number of edge of
graph G. Te computation complexity of metadata matching
(lines 3–7 of Algorithm 1) is O(NSNG), where NS represents
the length of metadata name set Smetada ta. Tus, the total
computation complexity of NIMC is O(NG + NE + NSNG).
For ANNMD, the main computation includes diferential
feature generation and retraining sample selection. Te
computation complexity of diferential features generation is
O(Ni), where Ni is the number of samples in client i. Te
computation complexity of retraining sample selection is
O(NilogNi). Tis is because sample selection involves
sorting the data. Terefore, the total computation com-
plexity of ANNMD is O(Ni + NilogNi). As a result, the total
additional computation complexity of Fed-DNN-Debugger
in each client is O(NG + NE + NSNG + Ni + NilogNi).

8. Experiments and Results

We implemented a prototype of Fed-DNN-Debugger on
PySyft and PyTorch [38]. In the experiments, we aimed to
answer the following research questions:

RQ1: how efective is Fed-DNN-Debugger in fxing
a federated model?
RQ2: how efcient and efective is Fed-DNN-Debugger
in automated debugging of neural network models?
RQ3: how efcient is Fed-DNN-Debugger in non-
intrusive metadata capture?

8.1. Experimental Setup

8.1.1. Implementation and Deployment. We set up our ex-
periment in a distributed computing network equipped with
GPUs. Tere were four nodes: one representing the server
and the other three nodes representing clients (Client-1,
Client-2, and Client-3), which could represent organizations
in the real world. Each node was confgured with an
NVIDIA Tesla P100 GPU card. Our code implementation
was based on PyTorch [38] 1.4.0, PySyft 0.2.5, and Python
3.7.6. For simplicity, we assumed that all the clients par-
ticipated in the debugging process.

8.1.2. Dataset

(1) MNIST. For classifcation tasks, we used the MNIST [40]
dataset of handwritten digits, which contains 60,000 training
samples and 10,000 test samples. Each sample is a grayscale
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image with a size of 28 × 28 pixels, representing one of the
ten digits from 0 to 9.

(2) CIFAR-10. For object recognition tasks, we used the
CIFAR-10 [41] dataset, which contains 60,000 color images
with a size of 32 × 32 pixels. Te dataset includes 50,000
training samples and 10,000 test samples, which are divided
into ten categories.

To simulate the distributed data distribution in the real
world, we partitioned the original training set over three
clients in the non-IID (non-independent and identically
distributed) setting, where Client-1 contains labels 0–3,
Client-2 has labels 4–6, and Client-3 has labels 7–9. Each
client split the training dataset into two parts: training
dataset (80%) and validation dataset (20%). Te training
dataset was used for training, and the validation dataset was
used for validating the model during training. Moreover, the
original test dataset was used to evaluate the performance of
the federated model.

8.1.3. Models and Baseline. We selected four diferent
models to train on the same dataset. Te four models had
diferent neural network architectures. From Model-1 to
Model-4, the number of layers increased, as shown in Ta-
ble 1. Models 1–3 come from [42], and Model-4 is the fa-
mous VGG [43].

To answer RQ1, the baseline method was FedAvg [1]
with the same number of randomly selected samples. To
answer RQ2, we conducted a comparative experiment with
MODE [11], for automated debugging of neural network
models, and compared the performance and efciency of the

two methods when debugging a single model. To answer
RQ3, we used noWorkfow [33] as the baseline method.

8.2. Debugging Federated Models. To answer RQ1, we pre-
pared two sets of experiments for debugging federated
models. Given a federated model with overftting or
underftting problems, one group of experiments used Fed-
DNN-Debugger to debug the model in the federated
learning framework, and the other group executed the
FedAvg method with the same number of randomly selected
samples. Te experimental results revealed that Fed-DNN-
Debugger signifcantly improved the model performance
and efectively fxed the federated model (Table 2).

Table 1: Structure of DNN models.

Model-1 Model-2 Model-3 Model-4
Conv (64)× 2
MaxPooling

Conv (24) Conv (32)×

2 Conv (32)× 3 Conv (128)× 2

MaxPooling MaxPooling BatchNormalization MaxPooling

Conv (48) Conv (64)×

2 Conv (64)× 3 Conv (256)× 3

MaxPooling MaxPooling BatchNormalization MaxPooling
Flatten () Flatten () Flatten () Conv (512)× 3
Dense (256) Dense (512) Dense (128) MaxPooling
Dense (10) Dense (10) Dense (10) Flatten ()

Softmax Softmax Softmax Dense
(4096)× 2
Dense (10)
Softmax

Require: total number of users N ∈ N, global training rounds Tg ∈ N, local training rounds Tl ∈ N, a buggy model w, training
dataset Strain, test dataset Stest, target accuracy acctarget;
Ensure: well debugged model w;

Server-orchestrated training://Server side
(1) for each round t from 0 to Tg do
(2) acctest⟵ (test model wt using Stest)
(3) ifacctest ≤ acctarget then
(4) for each user n from 0 to N in parallel do
(5) wt+1

n ⟵ ClientDebugger(n, wt)
(6) end for
(7) wt+1⟵ 1/N 

N
n�0 wt+1

n

(8) else
(9) returnwt

(10) end if
(11) end for
(12) returnwtClientDebugger(n, w0)://Client side
(13) w⟵w0

(14) flast, p⟵Metada taCapture(Mode lCal(w, Strain))//Nonintrusive Metadata Capture
(15) Strain′⟵DLDebugger(flast, p, Strain)//Automated Neural Network Model Debugging
(16) for each round t from 0 to Tl do
(17) B⟵ (Strain′ split into k size B batches)
(18) w⟵ SGD(B, w)

(19) end for
(20) returnw

ALGORITHM 2: Fed-DNN-Debugger.
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Table 2 shows, from left to right, the dataset, model,
problem type, and test accuracy for both the model and the
specifc problem label (columns 1–5). Columns 6–9 of Ta-
ble 2 show the test accuracy of the model and the problem
label using Fed-DNN-Debugger and FedAvg, respectively.
Te last two columns show the improvement in the accuracy
of the model and the problem label.

From Table 2, we make some observations. First,
compared with the method of randomly increasing training
samples, Fed-DNN-Debugger was more efective in fxing
the federated model. After fxing the model, the test accuracy
of the model and the problem label were improved, in-
dicating that Fed-DNN-Debugger did not reduce the model
performance. Second, we found that randomly increasing
samples could slightly improve the accuracy of the model,
but the accuracy of some labels was not improved, which
shows that it could not fx the model or it introduced new
problems. Fed-DNN-Debugger did not introduce new
problems while fxing the model. As we can observe, the
accuracy of the four models with Fed-DNN-Debugger
exceeded that of FedAvg by 0.51%–8.44%, with an aver-
age of 2.68%, and for the problem label by 1.33%–19.08%,
with an average of 5.21%. In all cases, the accuracy of the
federated model was improved. FedAvg performed poorly in
some cases because the retraining samples were not selected
for repairing the error weights. Fed-DNN-Debugger, with
the bug fxing setting, outperformed FedAvg.

Figure 5 shows the debugging efect of Fed-DNN-
Debugger on each client and the server. Figures 5(a)–5(d)
show the debugging process and the performance of Model-
1 to Model-4 on the MNIST dataset. Te x-axes of the
subgraphs represent the debugging round, and the y-axes
represent the test accuracy of the model. In the fgure, the
blue, orange, green, and red curves represent the test results
on the server, Client-1, Client-2, and Client-3, respectively.
Te model on the server represents the federated model. As
shown in Figure 5, the performance of the federated model

improved with the improvements in the client models, and it
took only a few rounds to converge.Tis shows that our idea
of fxing the federated model by fxing the client models is
feasible.

Two critical parameters of Fed-DNN-Debugger are the
number of retraining samples and the proportion of selected
high-quality samples in the retraining dataset. To obtain the
two parameters, Table 3 shows the experimental results of
the model performance with diferent proportions of the
selected data in the retraining dataset. From left to right, the
table shows the dataset, proportion of selected high-quality
samples in the retraining dataset, and (in columns 3–11) the
number of retraining samples. We can observe that the
model achieved the best performance when the ratio was 0.3
and the number of retraining samples was 4000.

8.3. Debugging a Single Model. To answer RQ2, we con-
ducted two sets of experiments for single-model debugging.
Given a model with the overftting or underftting problem,
one set of experiments used Fed-DNN-Debugger, and the
other set of experiments used MODE [11]. We recorded the
execution time and the accuracy of the model and the label
in each group of debugging experiments. Te experimental
results show that Fed-DNN-Debugger signifcantly im-
proved both the speed and the performance in single-model
debugging.

Table 4 shows the experimental results of debugging
a single model. From left to right, it shows the dataset,
model, problem type, and the test accuracy for both the
model and the specifc label (columns 1–5). Columns 6–11
show the debugging time and the highest test accuracy of the
model and the label, for both MODE and Fed-DNN-De-
bugger. Column 12 shows the execution time of MODE
divided by that of Fed-DNN-Debugger. Columns 13 and 14
show the diference between the test accuracy (of the model
and the label) of Fed-DNN-Debugger and that of MODE.

Table 2: Debugging federated models.

Dataset Models Problem type
Origin FedAvg [1] Fed-DNN-Debugger Improvement

MAcc (%) LAcc (%) MAcc (%) LAcc (%) MAcc (%) LAcc (%) MAcc (%) LAcc (%)

MNIST

Model-1 Overftting 91 81.31 94.53 94.12 96.1 97.95 1.57 3.83
Underftting 93 82.48 94.38 92.87 98.3 98.98 3.92 6.11

Model-2 Overftting 92.42 81.42 95.88 95.38 96.39 96.71 0.51 1.33
Underftting 93.88 86.97 95.44 94.17 98.37 98.27 2.93 4.1

Model-3 Overftting 88.65 73.5 94.59 92.99 96.4 97.23 1.81 4.24
Underftting 91.54 86.35 95.85 94.05 97.77 98.88 1.92 4.83

Model-4 Overftting 94.89 88.30 96.69 94.36 97.23 98.15 0.54 3.79
Underftting 88.17 85.87 96.72 95.44 97.86 98.54 1.14 3.1

CIFAR-10

Model-1 Overftting 66.51 49.7 64.81 45.4 68.61 64.48 3.8 19.08
Underftting 68.07 48.8 69.58 56.4 72.75 70.4 3.17 14

Model-2 Overftting 70.94 61 71.87 62.2 72.91 71.49 1.04 9.29
Underftting 72.04 50.8 68.07 67.9 76.51 76.1 8.44 8.2

Model-3 Overftting 80.57 68.67 82.85 82.89 84.86 84.68 2.01 1.79
Underftting 75.66 65.9 75.66 75.2 82.56 79.9 6.9 4.7

Model-4 Overftting 77.52 66.3 78.68 73.2 80.05 76.61 1.37 3.41
Underftting 84.58 74.1 85.22 78 86.95 84.7 1.73 6.7

Average improvement 2.68 5.21
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As shown in Table 4, Fed-DNN-Debugger was 23 times
faster than MODE, on average. Te main reason is that
MODE needs to repeatedly fne-tune and test the model
when locating the target layer that provides guidance for
fxing the model. Fed-DNN-Debugger selects the last hidden
layer as the target layer directly, saving substantial time. For
debugging accuracy, Fed-DNN-Debugger performs better
than MODE because MODE uses only the vector dot
product to score samples for retraining. In contrast, Fed-
DNN-Debugger integrates multiple measures of vector
similarity, which evaluate the training samples from various
perspectives. Terefore, the samples selected by Fed-DNN-
Debugger are of higher quality.

8.4. Nonintrusive Metadata Capture. To answer RQ3, we
executed Fed-DNN-Debugger and noWorkfow [33] to
collect metadata during the test process. We recorded the
size of the collected metadata and the time spent on met-
adata capture. Te experimental results show that Fed-

DNN-Debugger signifcantly improved the collection speed
and reduced the storage space consumption.

Table 5 shows the size of the collected metadata on the
MNIST and CIFAR-10 datasets. Clearly, the size of the
metadata obtained by Fed-DNN-Debugger was far less than
that obtained by noWorkfow. For instance, the metadata
generated by Model-4 on the CIFAR-10 dataset collected by
noWorkfow occupied 203GB. However, the metadata
captured by Fed-DNN-Debugger occupied just 1.499GB.
Tis is because Fed-DNN-Debugger captures only the
metadata that are helpful for debugging, whereas noW-
orkfow obtains the return values of all function calls and
variables generated by the entire script. Tese results show
that, in the process of debugging a deep learning model, only
a small number of metadata are useful for model debugging,
whereas most of the metadata are useless.

Table 6 shows the collection time of the diferent models
on the MNISTand CIFAR-10 datasets. Fed-DNN-Debugger
is clearly more efcient than noWorkfow in extracting
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Figure 5: Efects of server and clients on the MNIST dataset. Te x-axes of the subgraphs represent the debugging round, and the y-axes
represent the test accuracy of the model. Te test accuracies of the models on the server, Client-1, Client-2, and Client-3 are plotted in blue,
orange, green, and red, respectively. (a) Debugging round of Model-1. (b) Debugging round of Model-2. (c) Debugging round of Model-3.
(d) Debugging round of Model-4.
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metadata. For example, the time required by noWorkfow in
Model-4 on the CIFAR-10 dataset was 15771.6 s, whereas
Fed-DNN-Debugger took just 113 s.

To summarize, the size of the metadata collected by Fed-
DNN-Debugger was only 0.6%–1.8% of that collected by
noWorkfow, with an average of 0.9%. Moreover, the

Table 3: Efects of the proportion of selected high-quality samples in the retraining data and the number of retraining samples.

Dataset Ratio 500
(%)

1000
(%)

1500
(%)

2000
(%)

2500
(%)

3000
(%)

3500
(%)

4000
(%)

4500
(%)

MNIST

0.1 94.76 95.56 92.5 95.44 95.37 96 96.15 96.75 95.48
0.15 93.85 90.89 94.35 92.27 96.32 95.32 95.25 96.42 94.94
0.2 92.82 95.21 94.21 95.6 93.39 95.99 96.29 96.1 96.36
0.25 94.65 94.03 94.58 95.35 96.27 95.9 94.95 96.09 95.56
0.3 94.81 94.84 95.28 94.76 94.69 96.09 96.53 96.96 96.69
0.35 93.36 92.13 95.03 94.35 96.08 96.35 95.84 96.39 94.81
0.4 93.88 83.24 94.89 94.14 94.23 94.5 94.98 95.5 96.31
0.45 93.89 93.67 93.46 94.44 93.61 95.13 93.96 96.41 96.64

CIFAR-10

0.1 69.63 71.79 72.69 72.28 74.05 71.60 74.44 72.99 74.52
0.15 71.53 69.98 73.43 73.27 73.68 72.69 67.20 73.04 74.64
0.2 72.36 70.46 73.25 71.53 68.30 73.52 72.63 74.02 74.34
0.25 71.88 71.70 72.52 72.83 72.01 74.09 72.04 74.07 73.95
0.3 73.40 70.14 72.39 70.72 68.84 69.68 72.79  4.86 74.01
0.35 70.91 69.24 70.91 70.82 62.61 74.08 70.47 74.03 74.12
0.4 70.27 70.69 71.45 72.88 74.30 73.55 73.66 74.38 73.17
0.45 71.31 66.23 70.91 65.67 72.83 73.32 74.08 73.74 72.70

Te two bold values indicate the combination of parameters for the best model performance on these two datasets.

Table 4: Debugging a single model.

Dataset Models Problem
type

Origin MODE Fed-DNN-Debugger Improvement
MAcc
(%)

LAcc
(%)

Time
(s)

MAcc
(%)

LAcc
(%)

Time
(s)

MAcc
(%)

LAcc
(%) Faster MAcc

(%) LAcc (%)

MNIST

Model-1 Overftting 91.11 81.3 169.11 96.65 94.6 11.81 97.96 98.7 14.32 1.31 4.1%
Underftting 93.00 82.5 118.86 96.82 97.6 8.18 97.91 99.2 14.53 1.09 1.6%

Model-2 Overftting 92.42 81.4 144.96 92.42 81.4 15.2 98.16 97.7 9.53 5.74 16.3%
Underftting 93.88 87.0 194.45 96.96 96.6 10.84 97.81 97.0 17.94 0.85 0.4%

Model-3 Overftting 88.65 73.5 490.62 96.63 93.2 31.25 97.61 97.3 15.70 0.98 4.1%
Underftting 91.54 83.9 566.26 97.63 98.9 30.65 98.62 99.0 18.47 0.99 0.1%

Model-4 Overftting 94.89 88.3 863.60 96.97 95.3 191.03 98.14 96.2 4.52 1.17 0.87%
Underftting 88.17 83.9 1523.38 95.99 98.2 543.27 96.73 98.9 2.80 0.74 0.75%

CIFAR-10

Model-1 Overftting 66.51 49.7 251.67 67.73 51.1 7.1 69.72 61.9 35.44 1.99 10.8%
Underftting 68.07 48.8 187.31 69.30 41.5 6.9 72.40 68.6 27.14 3.10 27.1%

Model-2 Overftting 76.94 57.0 459.84 77.11 76.6 8.12 79.21 76.8 56.63 2.10 0.2%
Underftting 72.04 56.5 330.79 74.28 62.0 7.96 76.88 66.3 41.55 2.60 4.33%

Model-3 Overftting 80.57 65.4 743.02 82.66 78.3 13.92 88.23 86.7 53.38 5.57 8.4%
Underftting 75.66 60.1 584.86 82.14 75.3 14.22 87.89 86.2 41.13 5.75 10.87%

Model-4 Overftting 77.52 65.5 494.04 85.04 85.9 148.77 88.16 87.9 3.32 3.12 2.08%
Underftting 84.58 63.7 1359.60 87.26 87.2 88.96 89.00 87.3 15.28 1.74 0.11%

Average improvement 23.23 2.42 5.76%

Table 5: Size of collected metadata.

Dataset Model noWorkfow [33] (GB) Fed-DNN-Debugger (GB)

MNIST

Model-1 9.6 0.135
Model-2 25 0.188
Model-3 37 0.176
Model-4 147 0.736

CIFAR-10

Model-1 13 0.235
Model-2 33 0.3215
Model-3 51 0.3089
Model-4 203 1.499
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execution time of noWorkfow was 10–139 times greater than
that of Fed-DNN-Debugger, with an average of 42 times.
Tese results show that Fed-DNN-Debugger is more efcient
than noWorkfow in the deep learning debugging scenario.

9. Conclusion

In this paper, we have presented Fed-DNN-Debugger, the
frst debugging system that can automatically and efciently
fx DNN models in federated learning. Fed-DNN-Debugger
fxes the overall model by fxing each client model because
only client models are trained on data. Fed-DNN-Debugger
consists of twomodules for debugging a client model: NIMC
and ANNMD. NIMC analyzes the data fows of client
models with deep learning software syntax to efciently
collect metadata that are helpful for debugging. It does not
insert any code for metadata collection into modeling
scripts. ANNMD automatically scores samples according to
metadata and searches for high-quality samples. Models are
retrained with the selected samples to fx training bugs.
Experimental results on the CIFAR-10 and MNIST datasets
and four DNNmodels have shown that Fed-DNN-Debugger
can improve the test accuracy by 8%.
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