
Research Article
FACSC: Fine-Grained Access Control Based on Smart Contract for
Terminals in Software-Defined Network

Bingcheng Jiang ,1 Qian He ,1 Mingliu He ,1 Zhongyi Zhai ,1 and Baokang Zhao 2

1College of Computers and Information Security, Guilin University of Electronic Technology, Guilin, China
2College of Computers, National University of Defense Technology, Changsha, Hunan, China

Correspondence should be addressed to Qian He; heqian@guet.edu.cn

Received 14 October 2022; Revised 3 March 2023; Accepted 13 April 2023; Published 15 May 2023

Academic Editor: Zhe-Li Liu

Copyright © 2023 Bingcheng Jiang et al. Tis is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Physical terminals provide network services to upper-layer applications, but their limited memory and processing power make it
challenging to perform security updates and patches, leaving them vulnerable to known security threats. Attackers can exploit
these weaknesses to control the terminals and attack the network. To restrict unauthorized access to the network and its resources,
appropriate access control mechanisms are necessary. In this paper, we propose a fne-grained access control method based on
smart contracts (FACSC) for terminals in software-defned networking (SDN). FACSC utilizes the attribute-based access control
(ABAC) model to achieve fne-grained control over terminal access networks. To ensure the security and reliability of access
control policies and terminal-related attribute information, we utilize smart contract technology to implement the ABAC model.
Furthermore, we leverage the programming protocol-independent packet processor (P4) to flter and forward packets in the data
plane based on the packet option feld, enabling rapid terminal access. Experimental results show that our proposed method
achieves fne-grained secure authentication of terminals in SDN networks with a low authentication processing overhead.

1. Introduction

With the increasing adoption of emerging technologies in
various felds, such as the Internet of Tings, social networks,
and mobile Internet, there is a growing need for proper
management of large-scale dynamic networks [1]. Fortunately,
software-defned networking (SDN) ofers a viable solution to
this pressing problem. SDN innovatively changes the existing
network structure by dividing it into a data plane and a control
plane [2], making it possible to optimize network resource
allocation and improve network quality. However, the open
and untrustworthy network environment of SDN leaves it
vulnerable to attackers who may use forged user identities or
malicious terminals to attack the network [3, 4].

Access control is a standard approach to safeguard
valuable resources from illegal access by unauthorized users
or improper use by authorized ones. However, the native
SDN controller lacks access control mechanisms for ter-
minal access and cannot perform authentication functions

for terminals. As a result, malicious terminals can gain access
to the SDN and launch various attacks, leaving the entire
network vulnerable to known attacks, such as denial-of-
service (DoS) attacks.

Te identifer network [5] presents a new possibility for
access control of terminals in SDN. By utilizing identifer
network technology, all terminals can be uniformly bound
with attributes, which makes each terminal unique by its set
of attributes, providing support for developing access
control policies for terminals. Te attribute-based access
control model (ABAC) has made a signifcant breakthrough
in addressing complex access control policies, access control
granularity, and dynamic scaling of terminal access [6, 7].
ABAC introduces the idea of entity attributes, which de-
scribe subject, object, operation, and environment attributes
in a unifed manner. Tis makes ABAC an appropriate
solution for addressing the problem of secure and con-
trollable network access for many terminals. Te ABAC-
based scheme [8–11] implements policy-based access

Hindawi
Security and Communication Networks
Volume 2023, Article ID 6013270, 13 pages
https://doi.org/10.1155/2023/6013270

https://orcid.org/0000-0003-4316-5668
https://orcid.org/0000-0003-3020-2896
https://orcid.org/0009-0003-3228-8563
https://orcid.org/0000-0003-4935-3993
https://orcid.org/0000-0001-9200-9018
mailto:heqian@guet.edu.cn
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2023/6013270


control, which combines various types of attributes (subject,
object, operation, and environment attributes). Tese
schemes grant access rights to subjects by defning a set
of rules.

It is worth noting that in the aforementioned schemes,
authentication of the subject’s access rights is usually per-
formed by a centralized entity, which is vulnerable to single
points of failure. To avoid the aforementioned security
problems, some attempts have beenmade in recent literature
to solve the distributed authentication problem using
blockchain technology [7, 12].

Blockchain can be technically understood as a distrib-
uted database without the problem of a centralized single
point of failure. And the tamper-evident and traceable
nature of blockchain can strongly endorse the data on the
chain. Tanks to the invention of smart contracts (execut-
able code residing in the blockchain), the blockchain has
now evolved into a promising platform for developing
distributed and trusted applications. It has attracted much
attention from researchers in the SDN community [13, 14].
Predictably, blockchain technology is emerging as a key
enabler for achieving distributed and trusted access control.

In this paper, the ABAC model is implemented as smart
contracts with the help of blockchain technology, which
makes the access control policy free from malicious tam-
pering and enables secure and controlled access to the SDN
network for terminals.

Te main work of this paper consists of the following.

(1) Tis paper proposes a fne-grained access control
mechanism based on smart contracts for terminals in
SDN-based networks (FACSC). It leverages attri-
butes to identify terminals uniquely, and network
administrators combine multiple attributes to for-
mulate access control policies based on the
ABAC model.

(2) In FACSC, we improve token-based authorization by
introducing blockchain and ABAC. Dedicated smart
contracts are designed to encapsulate, distribute and
verify tokens to satisfy terminals’ decentralized, re-
liable, and fexible access control requirements.

(3) We introduce the P4 forwarding device to realize
SDN data plane programmability, which enables fast
packet fltering by parsing data streams in the P4
control plane.

Te remainder of this paper is organized as follows:
Section 2 reviews the related work in recent years. Section 3
introduces the preliminary P4, smart contracts, and ABAC
situation. Section 4 introduces the system model. Section 5
presents the proposed ABAC access control scheme based
on smart contracts. Section 6 presents the experiments and
performance evaluation. Section 7 concludes this article.

2. Related Work

As SDN technology becomes increasingly mature, it has
been widely used in production environments, such as
Google Cloud Data Center, Huawei Cloud Data Center, etc.

In addition, it has also been used in some higher education
institutions, such as Stanford University and Tsinghua
University, which have implemented SDN as the basic
network architecture. However, SDN-based networks also
have security threats, such as the lack of access control
mechanisms for terminal access.

Duy et al. [15] construct an access control scheme for
SDN northbound, introducing the B-DAC framework for
decentralized authentication and fne-grained access control
for northbound interfaces, which assists administrators in
managing and protecting critical resources, indirectly en-
abling terminals access functionality. Kammoun et al. [16]
propose a new SDN architecture based on IoT trust man-
agement and access control, where a predefned trust
management algorithm calculates the terminal’s trust value.
Based on trust value, malicious devices are prevented from
accessing the network. However, this scheme does not
consider the security of the access control policy and is prone
to problems such as policy leakage. Awasthi et al. [17] design
a scalable, efcient, and cost-efective network architecture
that not only meets the changing needs of users but also
increases the number of accessing IoTdevices, which embed
network elements in software rather than dedicated hard-
ware, making it easy to rent from the pool of available
devices, enabling rapid device access. Matias et al. [18]
propose FlowNAC, an access control scheme for SDNs,
which grants users access to the network based on the user’s
requested target and implements fne-grained access control
functionality. However, this scheme is time-consuming and
relies on third-party authorization for data fow access,
which is likely to be insecure. Benzekki et al. [19] propose an
access authentication model based on an SDN network by
improving the 802.1X protocol, in which a switch supporting
the 802.1X protocol must exist and DHCP and RADIUS
servers are connected to this switch to reduce the com-
munication latency with the controller, but the disadvantage
of this model is the lack of fexibility in deployment. Fathima
and Vennila [20] propose a new algorithm for building IEEE
802.1X-based port authentication schemes, which extends
the implementation of EAP from 802.1X to the application
and control layers in IPv6, thus improving network
throughput and terminals authentication efciency. How-
ever, this scheme is highly targeted and cannot fexibly
provide authentication services for more terminals. Ferra-
zani and Duarte [21] propose an access control model that
combines information about users with OpenFlow fow
tables, which solves the problem of fne-grained user access
control. Still, the model has a single authentication method
and is less scalable when the number of terminals is large.
Hesham et al. [22] propose a simple authentication model
for M2M, which provides diferent levels of access rights and
bandwidth for users through controllers. Still, this model has
a single authentication method and cannot be applied to
large data centre networks. Yakasai and Guy [23] propose
a virtualized network access control scheme based on SDN
architecture, which provides a virtualized network access
control scheme by combining a stateful role-based frewall
with an authorization process to provide a solution for
endpoint access control in enterprise networks; however,

2 Security and Communication Networks



this work is applied to a single domain and is not very
pervasive.

Although access control policies are considered in
some of the previous literature, they are often infexible
and not robust enough regarding security. Furthermore,
these schemes do not address the issue of reducing access
time overhead. As a result, problems such as high au-
thentication overhead and tampering with control poli-
cies may arise.

3. Preliminaries

3.1. Attribute-Based Access Control. In response to the
challenge of dynamic and fne-grained access control, which
cannot be efectively addressed by traditional models, re-
searchers have proposed the attribute-based access control
model (ABAC) [6]. Unlike other models, the ABAC model
determines a user’s access control privileges based on their
entity attributes rather than solely on their identity, elimi-
nating the need for the explicit privilege granted to a subject.
Te structure of the ABAC model is shown in Figure 1. Te
core elements of the ABAC model include subject, object,
environment, and operational constraints, all of which are
described using attributes and attribute values.Te generation
of access control policies is composed of entity attributes in
a fexible way, which improves the representability of access
control policies and the model’s fexibility. In addition, the
ABAC model can also represent the permissions used to
control roles and security in other access control models in
the form of attributes.

Terefore, the ABAC model is suitable for controlling
massive data access. In the terminals access control designed
in this paper, attributes are used to identify terminals,
making the terminal access fexible and controllable.

3.2. Programming Protocol-Independent Packet Processor
(P4). SDN divides the traditional network architecture into
the control plane and the data plane, which becomes more
fexible than the traditional network but also has some
drawbacks. OpenFlow was designed to control only the
forwarding behaviour of switches and routers, which limits
its ability to manage network trafc and resources. As
networks grow larger and more complex, OpenFlow may be
unable to handle the increased trafc and routing demands.
Because OpenFlow allows for remote control of network
devices, there are concerns about security vulnerabilities and
potential attacks. OpenFlow is not a standardized protocol,
which means that there may be interoperability issues be-
tween diferent vendors’ devices and software [24]. To solve
the problem of poor scalability caused by OpenFlow’s own
design, Bosshart et al. [25] proposed the Programming
Protocol-Independent Packet Processors (P4) language and
the corresponding forwarding model [26, 27]. With the data
plane programming capability brought by P4, administra-
tors can not only implement existing network device
functions and network protocols such as bridges, routers,
and frewalls but also easily support new protocols including
VxLAN and RCP [28].

P4 has the language properties of reconfgurability,
protocol independence, and platform independence. To this
end, P4 defnes a set of abstract forwarding models to
support the above three language properties. Te abstract
forwarding model consists of three main components.

(1) Header parser: P4 enables developers to customize
the packet header structure and parsing process and
to confgure the debugged P4 code into pro-
grammable hardware devices that support P4. Tis
allows for fexible parsing of various packet formats.
Upon receiving a message from a terminal, the P4
programmable device follows the message process-
ing logic to separate the packet header from the
payload.Te information within the packet header is
then stored in a self-defned feld according to the
state transfer rules of the parsing graph, allowing for
matching with the fow table in the subsequent
pipeline.

(2) Multilevel pipeline: Tis includes the ingress
pipeline and the egress pipeline. Te ingress pipeline
is responsible for modifying the data grouping and
determining the port from which the data is for-
warded. Te egress pipeline only has the function of
modifying the attributes associated with the mes-
sages. If the researchers want to fulfl the custom
business requirements, they have to customize the
information in the P4 code such as the matching
header feld, the executive action and parameters, the
number of fow tables in each match action table
(MAT), and decide the execution order of the
MAT [29].

(3) Control program: Te written P4 program can be
compiled by the P4 compiler to generate a control
interface for data parsing or matching. Trough this
interface, data fow forwarding rules can be installed
for the data plane, and hardware facilities such as
counters and registers can also be confgured

ABAC Strategic 
Decision Points

Strategy 
Execution point

Subject

Subject 
Attributes

Object 
Attributes

Access Control Rules

Environment
Attributes

Figure 1: Model structure.

Security and Communication Networks 3



through this interface, as well as statistical in-
formation on the status of P4 forwarding devices
during operation.

In this paper, we use P4 forwarding devices to implement
packet processing in the data plane.

3.3. Blockchain and Smart Contracts. Blockchain is a decen-
tralized digital ledger technology that allows data to be
recorded and stored in a secure, transparent, and tamper-
proof manner. It was originally developed for the crypto-
currency Bitcoin but has since been applied to a wide range of
industries and use cases [7, 30–32]. Transaction information is
stored in blocks containing timestamps and references to the
previous block and grows as a chain, which is maintained by
all participants, and the consistency of the ledger is ensured by
consensus algorithms [33]. According to the access rules,
blockchains can be divided into public blockchains and
consortium blockchains. For public blockchains, participants
are free to join and withdraw, and the number of participants
is not fxed, as in the case of Bitcoin [34]. For consortium
blockchain, only authorized users can join, and the set of
participants is usually predefned, such as IBM’s hyperledger
fabric. With its transparent, traceable, and robust features,
blockchain can establish reliable trust between unknown
parties and is an efective solution to replace vulnerable
central servers in insecure environments. As a blockchain
with access control, the consortium blockchain is suitable for
access control scenarios that require prevetted users and
a relatively stable set of participants.

A smart contract is a concept introduced by cryptographer
Nick Szabo in the 1990s. However, due to the lack of a trusted
execution environment at that time, smart contracts were not
widely applied or developed until the emergence of Ethereum.
With the introduction of Ethereum, smart contracts were
revitalized and began to gain more attention and use. Smart
contracts are designed to eliminate reliance on traditional
trusted third parties and are deployed on physical hardware to
generate a variety of fexible and controllable smart assets. Te
life cycle of a smart contract consists of six phases: negotiation,
development, deployment, operation and maintenance,
learning, and self-destruction. Among them, the development
phase includes functional testing of the contract to ensure the
correctness of its results, and the learning phase includes
operational feedback and updates to the smart contract. In the
fabric network, the debugged contract is wrapped in the form
of a Docker image, installed in the form of a Docker container
in each peer node, and the Init method in the contract is
executed after the installation.Te installed contract will wait to
be invoked by the related business.

In this paper, the ABAC model is implemented as
a smart contract, and the contract interface is encapsulated
as a Restful service using Fabric-Java-SDK and SpringBoot
technology. Te encapsulated Restful service is used to re-
alize the functions of terminal access verifcation and data
storage.

4. System Model

We propose a fne-grained terminal access control method
based on ABAC and smart contracts to address the lack of
efective terminal access control mechanisms in SDN-based
networks. Te system model, shown in Figure 2, comprises
terminals/devices, P4 forwarding devices (P4FD), a block-
chain platform, attribute management center (AMC),
controllers, and OpenFlow Switches (OFS).

(i) Terminal/Device: A terminal is a client used by
a user to access the SDN-based network. A device is
the carrier of the network resource that the terminal
wants to access. When the terminal tries to access
the SDN-based network, it will put its own attri-
butes into theOptions feld of the IP packet and send
it to the P4FD.

(ii) P4FD: Te P4FD is responsible for packet pro-
cessing, including parsing IP packets sent by ter-
minals, fltering out packets without Options, and
forwarding packets with Options. Additionally, it
can mirror the packets to the P4 control plane,
enabling fast access for the terminals.

(iii) Blockchain: Te blockchain is the core component
of the access control model, and all nodes are re-
quired to be authenticated by the Certifcate Au-
thority when they join the blockchain system. In our
scheme, the blockchain has the following two
functions.

(1) Te ABAC model is implemented through
smart contracts, which mainly include three
kinds of contracts, namely, policy contract (PC),
device contract (DC), and access contract (AC).
Te PC formulates access control policies for
terminal access to the SDN network based on
terminal attributes, device attributes, operation
attributes, and environment attributes and
stores the policies on the blockchain. Te DC
stores the set of attributes submitted by the
AMC in the blockchain state database and
provides attribute support for the PC. Te AC
adjudicates whether the terminal has the au-
thority to access SDN network resources
according to the access control policy.

(2) Provide RestFul service for network adminis-
trators to implement smart contract addition,
modifcation, deletion, and query operations.

(iv) AMC: AMC is divided into subject AMC (SAMC)
and object AMC (OAMC), with two main
functions.

(1) Te SAMC manages the attribute sets of ter-
minals and submits the attribute sets to the
blockchain in batches to prevent terminals from
interacting with the blockchain directly and
improve the performance of the blockchain.

4 Security and Communication Networks



(2) TeOAMCmanages the attribute sets of devices
under the SDN-controllers domain and submits
them to the blockchain in batches.

(v) Controller: Te main modules developed in the
controller are the message parsing module and the
data forwarding module.
Temain function of the message parsing module is
to get the IP packets carrying the Options feld after
fltering by the P4FD.Te controller parses the value
of theOptions feld, constructs the access request for
the current terminal based on the parsing result, and
submits the request to the AC through the encap-
sulated RestFul service. Te AC verifes whether the
terminal has permission and returns the response
status code to the controller.
Te main function of the data forwarding module is
that the controller determines whether to issue
a fow table to instruct the OpenFlow switch to
forward messages based on the status code.

(vi) OFS: In this paper, we use OpenvSwitch (OvS) as
OpenFlow switches, whose main function is to
encapsulate packets sent by P4FD into Packet in
messages for forwarding to the controller and to
forward the messages normally according to the
fow table issued by the controller.

5. ABAC and Smart Contract-Based
Access Control

To address the lack of efective access control for terminal
access in software-defned networks, we propose an ABAC
and smart contract-based access control method for terminal

access. First, the ABACmodel is formally defned, followed by
a detailed description of the access control process.

5.1. ABAC Model. Te attribute is the core concept of the
ABAC model, which is described by a four-element set
〈Si, Oj, Pk, En〉. Te meaning of each element is explained as
follows:

Si represents the i-th subject attribute, which is the
terminals attribute, and uses Si � [ASi

: VSi
] to denote any

one attribute item and attribute value in the subject, where
ASi

denotes the subject attribute name, such as terminal
Mac, IP, etc., and VSi

denotes the attribute value corre-
sponding to the subject attribute name. Oj represents the j-
th object attribute, which is the devices attribute, and Oj �

[AOi
: VOi

] is used to denote any one attribute item and
attribute value in the object. Pk � [APk

: VPk
] represents the

operation of the subject on the object, such as read, add,
execute, etc. Here, there are two values of VPk

, when VPk
is

1, it means that the terminal is allowed to access the SDN
network, and when VPk

is 0 or other values, the terminal is
denied access to the SDN network. En � [AEn

: VEn
] rep-

resents the environment attribute, which indicates the
environment attribute required by the access control policy
when the current subject accesses the object. En represents
environment attributes, indicating the environment
properties required by the access control policy when the
current subject accesses an object. En � [AEn

: VEn
] repre-

sents any attribute item and value in the environment
attributes. AEn

represents any attribute name in the envi-
ronment attributes, such as the policy efective time,
allowed terminal MAC, and IP information. VEn

represents
the attribute value corresponding to the attribute name in
the environment attributes.

SDN controllers

Message Parsing 
Module

Data forwarding 
modules

P4 control plane

message 
forwarding 

table

Message 
Mirror Table

terminal
P4

OpenFlow Switches

Authentication data 
stream

Device attribute registration 
under controller domain

Access control permission 
acquisition

Messages carrying Options 
field

Downlink rules

Blockchain

Terminal attribute
registration

Attribute 
Submission

Attribute Management Center

Packet_in
(Options)

Operational 
Data

Figure 2: System model.

Security and Communication Networks 5



Defnition 1. An attribute group AGm � [Am1
: Vm1

]∧􏽮

[Am2
: Vm3

]∧ · · · ∧ [Amp
: Vmp

]􏼉 represents a collection of

attribute items of the same type, where m ∈ Si, Oj, Pk, En􏽮 􏽯.

Defnition 2. An attribute access request AAR � AGSi
∧A􏽮

GOj
∧AGPk
∧AGEn

􏼉 is a collection of subject attribute
groups AGSi

, object attribute groups AGOj
, action attribute

groups AGPk
, and environment attribute groups AGEn

. It
indicates that the terminal with attribute group AGSi

is
requesting operation AGPk

for device attribute group AGOj

under environment attribute group AGEn
.

Defnition 3. Attributed-based access control policy (ACP) is
a collection of subject attributes, object attributes, operational
attributes, and environment attributes formed by means of

merging or parsing. ACP � AGSi
∧ or∨AGOj

∧ or∨AGPk
∧􏼚

or∨AGEn
􏼛 represents the access control rules of the subject to

the object and represents the set of attributes required to access
the protected object resources.

5.2. Terminal Access Control. Terminal access control has
three main parts. In this section, the implementation steps of
each part will be explained in detail.

(i) Registration phase: Terminals and devices register
attributes in the AMC. Administrators generate access
policies based on attribute sets (see Algorithm 1).

(1) Te terminals and devices submit attributes to
the attribute management centre, which uses
a RestFul service to execute device contracts
with the submitted attribute set and store them
on the blockchain.

(2) Te administrator obtains the set of attributes
submitted by the terminal or the device under
the controller domain through the device
contract. Ten, the access control policy is
formulated for the terminal access to the SDN
network based on AGSi

, AGOj
, AGPk

, AGEn
.

(3) During the formulation of the access control
policy, a unique Token is generated for the
terminal. Te Token is created by encrypting the
relevant attributes in the access control policy.
All of these operations are performed in the
chain to ensure the Token is not tampered with.
Finally, the administrator signs the access
control policy to ensure its validity.

(4) Once the administrator has defned the ACP,
the RestFul service of the operation policy
contract is used to add, delete, modify, and
verify the access control policy.

(ii) Authentication phase: Te controller calls the ac-
cess contract, verifes that the terminal AAR

requests, and returns the response to the SDN
controller (see Algorithm 2).

(1) First, the terminal encapsulates the attribute set
in the IP packet’s Options feld. When the P4
forwarding device receives the message, it
quickly flters out messages without the Options
feld based on the IHL feld value. If the packet
carries the Options feld, it’s forwarded to the
connected switch, which encapsulates it into
a Packet in message and sends it to the con-
troller. Te controller then parses the Packet in
message, retrieves the Options value, and uses it
to construct the AAR request for the access
contract for the terminal.

(2) Te blockchain verifes whether the AAR re-
quest constructed by the controller satisfes the
ACP and, if so, generates a response status code
and returns it to the controller. At the same
time, the controller sends the fow table to OVS,
allows the terminal trafc to be forwarded, and
caches the Token generated by the terminal
corresponding to the access control policy with
the key as the terminal ID and value as the Token
value in the cache database and the blockchain.
Te Token value in the cache database is con-
sistent with the Token on the blockchain, and
when the Token on the chain changes, it will be
synchronized to the cache database in real time.
If the AAR request does not satisfy the access
control policy, the blockchain returns an error
message to the controller.

(iii) Access phase: If the terminal’s connection is
interrupted for external reasons, two situations will
occur when it is accessed again: frst-time access and
nonfrst-time access (see Algorithm 3).

(1) For frst-time access, the terminal needs to do the
same operations as in the authentication phase.

(2) For nonfrst-time access, the terminal adds the
Token value obtained for the frst time to the
Options feld of the IP packet and initiates an
access request to the SDN network. First, when
the packet carrying the Options feld arrives at
the P4 forwarding device, the P4 forwarding
device parses the packet and flters out the
packets without the Options feld in the IP
packet using the IHL feld. Ten, the packet is
mirrored to the P4 control plane through the
to cpu action, and the P4 control plane parses
the Options feld value and queries the corre-
sponding Token to the cache database through
the RestFul service. If the corresponding Token
is queried and is within the validity period,
a function similar to the Packet in message is
implemented in the P4 control plane, and the
fow table is distributed in the control plane to
allow the terminal to join the SDN network.
Otherwise, IP packets carrying Options are

6 Security and Communication Networks



resent to the controller, which realizes terminal
access to the SDN network after the operation of
the authentication stage.

5.3. Smart Contracts of ABAC. Tis section provides details
on the structure and interface of the ABAC smart contract,
which is implemented using smart contracts and can be
accessed by the application through the RestFul service.

(1) Policy Contract: Te responsibility of the PC in-
cludes generating, updating, fnding, and deleting
access control policies. Te Policy struct is used for
this purpose, which consists of AS, AO, AP, and AE

substructs. AS, AO, and AE represent the attributes
of the terminal, device, and environment, re-
spectively, while AP represents access permissions.
Te main functions of the PC are as follows.

(1) AddPolicy():Tis method primarily generates an
access control policy using 〈AS,AO,AP,AE〉 as
the input parameters. Te algorithm frst vali-
dates the legitimacy of the input parameters and
then uses the parsePolicy method to parse and
match the policy JSON string with the policy
structure, ensuring the type and number of at-
tributes are correct. Following this, the

Require: Attribute set
(1) Terminal and device submit attributes to the AMC
(2) AMC submit all attributes to the device contract and store attributes in the blockchain
(3) Administrators generate an access control policy Policy � gen(AGSi

, AGOj
, AGPk

, AGEn
)

(4) compute Token�MakeToken (Policy.AE.AllowedMAC, Policy.AO.DeviceId, Policy.AS.TerminalId)

ALGORITHM 1: Attributes registration phase.

(1) Terminal sends packets with Identifcation to P4FD
(2) if Option feld is none then
(3) discards the packets
(4) end if
(5) Forwarding the packets to the controller
(6) Controller sends a AAR request to Access Contract
(7) Access Contract verifes the ACP and return a statuscode
(8) if statuscode � 200 then
(9) Controller sends fow rules to OFS
(10) else
(11) return Authentication failed
(12) end if

ALGORITHM 2: Authentication phase.

(1) Terminal add Token to the Options feld of the IP packet
(2) Initiate access requests
(3) if Te terminal is nonfrst-time access then
(4) P4FD parses the IP header of packets
(5) if IHL� 0x05 then
(6) Discard the packets
(7) end if
(8) Te packet is mirrored to the P4 control plane
(9) Te P4 parses the Options and get the Token
(10) Query the Token from the cache database
(11) if Te Token exists and has not expired then
(12) Distribute the fow table in the p4 control plane
(13) else
(14) Resend the IP packet with Options to the controller
(15) end if
(16) else
(17) Perform the same operation as in the authentication phase
(18) end if

ALGORITHM 3: Access phase.

Security and Communication Networks 7



CheckPolicy method is called to verify whether
the access control policy set by the network
administrator satisfes the policy requirements. If
it meets the requirements, the MakeToken
method is called to create a Token using
SHA256(AAS.ID,AO.ID), which is then
assigned to the Token feld in the Policy structure.
Te formulated policy is stored in the blockchain
state database as a key-value pair, where the key is
generated using SHA256(AS.ID,AO.ID) and
the value is policy. Finally, Policy.ID is returned.

(2) QueryPolicy(): First, the method verifes the
legitimacy of the input parameters and then
queries the policy details in the blockchain state
database based on Policy.ID.

(3) DeletePolicy(): Tis method executes the
DelState method to remove the access control
policy corresponding to Policy.ID from the
blockchain state database.

(4) UpdatePolicy(): Tis method will override the
original access control policy.

(5) QueryToken(): Tis method queries the corre-
sponding Token based on the input Policy.ID.

(ii) Device Contract: Te DC is responsible for adding
and fnding attributes related to terminals or de-
vices, and it performs the following main functions.

(1) AddAS(): Tis method saves the registered at-
tributes of the terminal in the blockchain state
database. Initially, it validates the input pa-
rameters’ accuracy and uses the parserAS
function to parse the terminal’s registered at-
tributes to the AS struct. If the attribute value
complies with the defned data type, the ter-
minal’s ID is obtained and used as the key, and
the attributes are saved as the value. Finally, the
blockchain state database stores the key-value
pair 〈ID,Attributes〉.

(2) AddAO(): Similar to AddAS(), this method
receives the device’s attributes under the man-
agement domain of a particular SDN controller
and stores them in the blockchain state
database.

(3) GetAS(): Tis method queries the attributes
from the blockchain based on the terminal ID
and returns the details of the terminal attributes.

(4) GetAO(): Similar to GetAS(), this method
queries the device’s attributes.

(iii) Access Contract:Temain function of the AC is to
verify whether the terminal has the right to access
the SDN network.

(1) AuthACP(): Tis method verifes the correct-
ness of the struct for the input AAR.

(2) CheckAccess():Tis method validates the access
privileges of the terminal by examining the AAR
request received from the controller. Initially, it
validates the legitimacy of the passed parameters
and uses the AuthACP() method to verify the

AAR struct. Subsequently, the GetAttrs method
is called to retrieve AO.ID, AS.ID, and AS.MAC
from the verifed AAR. Te QueryPolicy()
method is then used to retrieve the access
control policy. If the value of Policy.AP is 1,
indicating that the terminal has access rights,
and access is granted. Otherwise, it is denied.
Using the four AE parameters (CreatedTime,
EndTime,AllowedIP, andAllowedMAC), the AC
checks the current access time’s validity and the
legality of MAC and IP. Finally, the method
returns the outcome of the access verifcation to
the controller.

6. Evaluation

To evaluate the feasibility and performance of our scheme,
we realized a prototype of its proof-of-concept using
Mininet [35] and Hyperledger Fabric [36]. Mininet is
a network simulation tool that rapidly creates large-scale
SDN prototype systems on ordinary computers with limited
resources. Hyperledger Fabric is an open-source consortium
blockchain platform widely used in various domains.

6.1. Simulation Setup. As illustrated in Figure 3, we simulate
an SDN network using Mininet with Floodlight as the SDN
controller. We modify the message parsing module in each
controller to parse the Options feld of Packet in messages
and the data forwarding module to implement the fow table
for postauthentication distribution. To enable blockchain
functionality, we combine each controller with a Fabric
node. Additionally, we leverage a pastry-based dynamic load
balancing algorithm [37] to ensure load balancing among
controllers. Te experiments are conducted on an Ubuntu-
20.04 system running on VMware ESXi 6.5 with an Intel(R)
Xeon(R) Silver 4114 CPU @2.20GHz and 16GB of memory.

6.2. Comparative Summary. In the comparative summary,
we focus on four key features: decentralization, fne-grained
access control, dynamic access control, and a programmable
data plane. It should be noted that among all the schemes
compared in Table 1, only our scheme meets all these fea-
tures. Te detailed explanations of the comparative sum-
mary are presented below.

6.2.1. Decentralization. Decentralization requires that the
entire solution not rely on a central server. For example, in
SDN, a single controller may not be able to handle the
service requests from a large number of terminals. With
distributed edge controllers, service requests from terminals
are dispersed to closer controllers, efectively avoiding the
vulnerability of a single point of failure.

6.2.2. Fine-Grained Access Control. Fine-grained access
control in SDN environments allows administrators to
control who can access the network, what they can access,
and how they can access it. Tis helps prevent unauthorized

8 Security and Communication Networks



access to the network, which can help protect against cyber
threats such as network intrusions, data breaches, and de-
nial-of-service attacks.

6.2.3. Dynamic Access Control. Access policies can be
updated and enforced in real time based on changes in the
environment. Tis means that access control decisions can
be made on the fy, which can help improve security and
reduce risk. ABAC is a scalable access control model that can
be easily applied to large, complex environments. Tis
means that organizations can easily manage access control
policies for a large number of users and resources.

6.2.4. Programmable Data Plane. Programmable data
planes enable greater fexibility and control over how packets
are processed and forwarded through the network. Tis can
lead to improvements in network performance, security, and
reliability, as well as enable the development of new network
applications and services. With programmable data planes,
network engineers can defne how packets should be pro-
cessed and forwarded through the network using a high-
level programming language such as P4.

6.3. Performance of ABAC Smart Contracts. In this sub-
section, we conduct tests to fully assess the performance of
the ABAC model. Specifcally, we measure the average
completion time of the three smart contracts in the ABAC
model under varying concurrency levels of 10, 50, 100, 150,
and 200.

6.3.1. Policy Contracts. Figure 4 shows the average com-
pletion time for add, delete, query, and update operations in
the policy contract under varying concurrent requests. Te

fgure indicates that the AddPolicy(), QueryPolicy(),
DeletePolicy(), UpdatePolicy(), and QueryToken() func-
tions have average response times of 139.4ms, 36.6ms,
100.2ms, 197ms, and 39ms, respectively. We also con-
ducted tests for a single operation of each function and
found that the completion time for a single add or update
operation was consistently between 80–140ms, a single
query operation was consistently between 25–50ms, and
a single delete operation was consistently between 55–90ms.
Tese results demonstrate that the performance of the policy
contract can efectively meet the daily requirements of
network administrators for policy add, delete, query, and
update operations.

6.3.2. Device Contracts. Te performance test results for the
device contract are presented in Figure 5, which includes
interfaces for adding and querying AS and AO attributes. As
shown in the fgure, the average completion times for
AddAS(), AddAO(), GetAS(), and GetAO() are 129.6ms,
141.4ms, 36.1ms, and 48ms, respectively. Additionally, we
conducted tests on individual add or query operations, with
completion times for the add interface ranging from
70–125ms and for the query interface ranging from
30–50ms. Tese results indicate that the device contract’s
performance is sufcient for registering and querying device
attributes.

6.3.3. Access Contracts. Te performance test results of the
access contract interface are presented in Figure 6. Te
average completion time for verifying terminal access rights
is approximately 175.4ms under diferent concurrent re-
quests, while the completion time of the policy verifcation
function interface remains stable at 82–150ms during
a single verifcation operation. Tis takes more time as it

OpenvSwitch
P4 P4

Host1 Host2

Floodlight Controllers

Figure 3: Te proposed prototype topology.

Table 1: Comparative summary features.

Schemes Decentralization Fine-grained access control Dynamic access control Programmable data plane
B-DAC [15] √ √ × ×

FlowNAC [18] × √ √ ×

SILedger [7] √ √ √ ×

FGAC [38] √ √ × ×

FACSC √ √ √ √

Security and Communication Networks 9



requires interchain code calls in the AC, such as calling the
QueryPolicy function in the PC.

Based on the performance tests conducted on the policy
contracts, device contracts, and access contracts, we can
draw the following conclusions: (1) query operations have
a minimal time overhead since they do not require con-
sensus and do not need to be recorded on the blockchain. (2)
Add and update operations have a signifcant time overhead
because consensus is required among the blockchain nodes
before data can be saved.

6.4. TimeOverhead for Terminal Access. In our system, there
will be two cases of terminal access to the network: frst
access and nonfrst access.

(1) First-time access: For the client-server experiment, we
designated Host1 as the client and Host2 as the target
server. We ran the client and server codes on their
respective hosts. Te client Host1 encapsulated the IP
packet with the Options feld into a UDP packet and
sent it to P4FD, which fltered the UDP packet and
forwarded it to the OpenvSwitch switch. OvS then
encapsulated the UDP packet into a Packet_in mes-
sage and transmitted it to the Floodlight controller.
Te foodlight controller parsed the message and
constructed an AAR request. Upon receiving the AAR
request, the blockchain called AC and returned the
response status code to the controller. Finally, the
controller sent the fow table to OvS according to the
status code, thereby achieving the frst access to the
terminal.

(2) Nonfrst-time access: When the access is not the frst
time, Host1 retrieves the previously obtained Token
and inserts it into the Verifcation_Token feld in
Options, then initiates the ping operation. As shown
in Figure 7, the terminal successfully passes the
Token verifcation in the P4 control plane, and
subsequently, the P4 control plane issues the fow
table, enabling the successful execution of the ping
command.

We compared the time overhead of frst-time and
nonfrst-time requests for terminal access to the SDN net-
work. As shown in Figure 8, for frst-time access, the average
authentication completion time for diferent numbers of
packets is approximately 197ms. For nonfrst-time access,
message parsing in the P4 control plane and verifcation of
the Token are simulated, and the average completion time for
verifying each packet authentication is approximately
35.6ms for diferent numbers of packets. From the com-
parison results, it is evident that the authentication overhead
for nonfrst-time access is much lower than that for frst-
time authentication. Terefore, the nonfrst-time terminal

50 100 150 2000
Number of concurrent requests

0

50

100

150

200

Av
er

ag
e c

om
pl

et
io

n 
tim

e (
m

s)

AddPolicy ()
QueryPolicy ()
DeletePolicy ()

UpdatePolicy ()
QueryToken ()

Figure 4: Average completion time of policy contract calls under
concurrency.

50 100 150 2000
Number of concurrent requests

0

50

100

150

200

Av
er

ag
e c

om
pl

et
io

n 
tim

e (
m

s)

AddAS ()
AddAO ()

GetAS ()
GetAO ()

Figure 5: Average completion time of device contract calls under
concurrency.

50 100 150 2000
Number of concurrent requests

CheckAccess ()

0

50

100

150

200

250

Av
er

ag
e c

om
pl

et
io

n 
tim

e (
m

s)

Figure 6: Average completion time of access contract calls under
concurrency.

10 Security and Communication Networks



access method in this scheme can compensate for the time-
consuming nature of frst-time access.

6.5. Data Forwarding Delay. Considering that frst-time
access to the terminal requires permission verifcation
from the blockchain, which consumes more time, we only
compare the latency of nonfrst-time access for the following
comparison. We compare the latency of performing two
ping operations in the traditional network, the OpenFlow
network, and FACSC.

In FACSC, when P4FD receives the frst ping packet, the
control plane of P4FD does not issue any fow rules, so it
cannot forward the data. At this point, the P4 control plane
calls the RestFul service to fnd the corresponding Token of
the terminal from the cached database according to the
terminal ID. If the Token is the same, the P4 control plane
issues the fow table, and the trafc will be transmitted.
Otherwise, the P4 control plane will refuse to issue the fow
rule. Te results of the latency evaluation for diferent
schemes are shown in Figure 9.

Based on the comparison of time overhead for the frst
ping in the traditional and OpenFlow networks, it can be
concluded that the Floodlight controller takes around 12.1ms

to process data forwarding. In our proposed solution, the time
overhead for the frst ping is 35.62ms. Tis delay is higher
because the terminal must retrieve and verify the Token from
the cache database before accessing the network. However,
the time overhead for the second ping in FACSC is similar to
that of the traditional and OpenFlow networks since it only
involves normal packet fow between terminals without
complex authentication. Terefore, FACSC provides secure
terminal access to the SDN network while meeting normal
usage requirements for authentication delay.

7. Conclusion

Securing terminal access in SDN networks is crucial for
ensuring network security. However, most SDN architec-
tures lack efective access control methods, leaving the
network vulnerable to malicious terminal attacks. To address
this issue, we propose the Fine-Grained Access Control
System for SDN (FACSC), which uses blockchain tech-
nology and the ABAC model to implement smart contracts
that provide strong security and fexible control policies for
terminal access. Additionally, we utilize the pro-
grammability characteristics of SDN networks and P4 for-
warding devices to ofer convenient, efcient, and secure

Figure 7: Flow table issued by P4 control plane.

0

50

100

150

200

250

300

Av
er

ag
e c

om
pl

et
io

n 
tim

e (
m

s)

50 100 150 2000
Number of packets

First access
Non-first access

Figure 8: Comparison of time overhead for frst-time and nonfrst-
time access.

FACSC OpenFlow Traditional Network

Re
sp

on
se

 T
im

e (
m

s)

First access
Second access

0

5

10

15

20

25

30

35

40

Figure 9: Comparison of forwarding latency between diferent
schemes.

Security and Communication Networks 11



terminal access, further enhancing the network’s security.
Our experimental simulations demonstrate that FACSC
enables secure, controllable, and traceable terminal access to
SDN networks. In future work, we will focus on reducing the
authentication time and cost for initial access and using P4
to directly transmit fltered packets to the controller. We also
plan to deploy the ABAC model on multiple physical nodes
in a real environment for performance testing.

Data Availability

Te data used to support the fndings of this study are
available from the corresponding author upon request.

Conflicts of Interest

Te authors declare that they have no conficts of interest.

Acknowledgments

Tis work was supported in part by the National Natural
Science Foundation of China under Grant Nos. 62162018
and 61861013, in part by the Innovation Research Team
Project of Guangxi Natural Science Foundation
2019GXNSFGA245004.

References

[1] D. Chattaraj, S. Saha, B. Bera, and A. K. Das, “On the design of
blockchain-based access control scheme for software defned
networks,” in Proceedings of the IEEE INFOCOM 2020-IEEE
Conference on Computer Communications Workshops
(INFOCOM WKSHPS), pp. 237–242, IEEE, Toronto, ON,
Canada, July 2020.

[2] O. I. Abdullaziz, L.-C. Wang, and Y.-J. Chen, “Hiauth: hidden
authentication for protecting software defned networks,”
IEEE Transactions on Network and Service Management,
vol. 16, no. 2, pp. 618–631, 2019.

[3] M. Bonola, G. Bianchi, G. Picierro, S. Pontarelli, and
M. Monaci, “Streamon: a data-plane programming abstrac-
tion for software-defned stream monitoring,” IEEE Trans-
actions on Dependable and Secure Computing, vol. 14, no. 6,
pp. 664–678, 2017.

[4] P. Krishnan, K. Jain, K. Achuthan, and R. Buyya, “Software-
defned security-by-contract for blockchain-enabled mud-
aware industrial iot edge networks,” IEEE Transactions on
Industrial Informatics, vol. 18, no. 10, pp. 7068–7076, 2022.

[5] H. Zhang, W. Quan, H. C. Chao, and C. Qiao, “Smart
identifer network: a collaborative architecture for the future
internet,” IEEE network, vol. 30, no. 3, pp. 46–51, 2016.

[6] V. C. Hu, D. R. Kuhn, D. F. Ferraiolo, and J. Voas, “Attribute-
based access control,” Computer, vol. 48, no. 2, pp. 85–88,
2015.

[7] W. Ren, Y. Sun, H. Luo, and M. Guizani, “Siledger: a block-
chain and abe-based access control for applications in sdn-iot
networks,” IEEE Transactions on Network and Service Man-
agement, vol. 18, no. 4, pp. 4406–4419, 2021.

[8] N. Ye, Y. Zhu, R. C. Wang, R. Malekian, and Q. M. Lin, “An
efcient authentication and access control scheme for per-
ception layer of internet of things,” Applied Mathematics &
Information Sciences, vol. 8, no. 4, 2014.

[9] S. Bhatt, F. Patwa, and R. Sandhu, “Access control model for
aws internet of things,” in International Conference on Net-
work and System SecuritySpringer, Berlin, Germany, 2017.

[10] R. Zhang, G. Liu, S. Li, Y. Wei, and Q. Wang, “Absac:
attribute-based access control model supporting anonymous
access for smart cities,” Security and Communication Net-
works, vol. 2021, Article ID 5531369, 11 pages, 2021.

[11] Y. Xu, W. Gao, Q. Zeng, G. Wang, J. Ren, and Y. Zhang, “A
feasible fuzzy-extended attribute-based access control tech-
nique,” Security and Communication Networks, vol. 2018,
Article ID 6476315, 11 pages, 2018.

[12] Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart
contract-based access control for the internet of things,” IEEE
Internet of Tings Journal, vol. 6, no. 2, pp. 1594–1605, 2019.

[13] A. Yazdinejad, R. M. Parizi, A. Dehghantanha, Q. Zhang, and
K.-K. R. Choo, “An energy-efcient sdn controller architec-
ture for iot networks with blockchain-based security,” IEEE
Transactions on Services Computing, vol. 13, no. 4, pp. 625–
638, 2020.

[14] A. Rahman, M. J. Islam, A. Montieri et al., “Smartblock-sdn:
an optimized blockchain-sdn framework for resource man-
agement in iot,” IEEE Access, vol. 9, p. 28361, 2021.

[15] P. T. Duy, H. D. Hoang, D. T. T. Hien, A. G. T. Nguyen, and
V. H. Pham, “B-dac: a decentralized access control framework
on northbound interface for securing sdn using blockchain,”
Journal of Information Security and Applications, vol. 64,
Article ID 103080, 2022.

[16] N. Kammoun, R. Abassi, S. Guemara El Fatmi, and
M. Mosbah, “A new sdn architecture based on trust man-
agement and access control for iot,” in Proceedings of the
Workshops of the International Conference on Advanced In-
formation Networking and Applications, pp. 245–254,
Springer, Sydney, Australia, April 2020.

[17] C. Awasthi, I. Sehgal, P. K. Pal, and P. K. Mishra, “Software-
defned network (sdn) for cloud-based internet of things,” in
Transforming Management with AI, Big-Data, and IoT,
pp. 185–213, Springer, Berlin, Germany, 2022.

[18] J. Matias, J. Garay, A. Mendiola, N. Toledo, and E. Jacob,
“Flownac: fow-based network access control,” in Proceedings
of the 2014 third European workshop on software defned
networks, pp. 79–84, IEEE, Budapest, Hungary, September
2014.

[19] K. Benzekki, A. El Fergougui, and A. El Belrhiti El Alaoui,
“Devolving ieee 802 Devolving IEEE 802.1X authentication
capability to data plane in software-defned networking
(SDN) architecture: d,” Security and Communication Net-
works, vol. 9, no. 17, pp. 4369–4377, 2016.

[20] T. Fathima and S. M. Vennila, “Emphasizing a productive and
protective access control to improve authentication using
802.1 x with software-defned networks,” in Proceedings of the
International Conference on Computing, Communication,
Electrical and Biomedical Systems,Springer, Berlin, Germany,
2022.

[21] D. M. Ferrazani Mattos and O. C. M. B. Duarte, “Authfow:
authentication and access control mechanism for software
defned networking,” Annals of Telecommunications, vol. 71,
no. 11-12, pp. 607–615, 2016.

[22] A. Hesham, F. Sardis, S. Wong, T. Mahmoodi, and
M. Tatipamula, “A simplifed network access control design
and implementation for m2m communication using sdn,” in
Proceedings of the 2017 IEEE Wireless Communications and
Networking Conference Workshops (WCNCW), pp. 1–5, IEEE,
Seoul, South Korea, May 2017.

12 Security and Communication Networks



[23] S. T. Yakasai and C. G. Guy, “Flowidentity: software-defned
network access control,” in Proceedings of the 2015 IEEE
Conference on Network Function Virtualization and Software
Defned Network (NFV-SDN), pp. 115–120, IEEE, San Fran-
cisco, CA, USA, November 2015.

[24] R. Bifulco and G. Rétvári, “A survey on the programmable
data plane: abstractions, architectures, and open problems,” in
Proceedings of the 2018 IEEE 19th International Conference on
High Performance Switching and Routing (HPSR), pp. 1–7,
IEEE, Bucharest, Romania, June 2018.

[25] P. Bosshart, D. Daly, G. Gibb et al., “P4: programming
protocol-independent packet processors,” ACM SIGCOMM -
Computer Communication Review, vol. 44, no. 3, pp. 87–95,
2014.

[26] P. Bosshart, G. Gibb, H.-S. Kim et al., “Forwarding meta-
morphosis: fast programmable match-action processing in
hardware for sdn,” ACM SIGCOMM - Computer Commu-
nication Review, vol. 43, no. 4, pp. 99–110, 2013.

[27] S. Chole, A. Fingerhut, S. Ma et al., “drmt: disaggregated
programmable switching,” in Proceedings of the Conference of
the ACM Special Interest Group on Data Communication,
pp. 1–14, Beijing China, August 2017.

[28] N. Dukkipati, “Rate Control Protocol (RCP): congestion
control to make fows complete quickly,” Cités, vol. 12, no. 2,
pp. 45–56, 2008.

[29] S. Kaur, K. Kumar, and N. Aggarwal, “A review on p4-
programmable data planes: architecture, research eforts,
and future directions,” Computer Communications, vol. 170,
pp. 109–129, 2021.

[30] S. Jiang, J. Cao, J. A. McCann et al., “Privacy-preserving and
efcient multi-keyword search over encrypted data on
blockchain,” in Proceedings of the 2019 IEEE International
Conference on Blockchain (Blockchain), pp. 405–410, Atlanta,
GA, USA, July 2019.

[31] M. Zhang, J. Cao, Y. Sahni, Q. Chen, S. Jiang, and L. Yang,
“Blockchain-based collaborative edge intelligence for trust-
worthy and real-time video surveillance,” IEEE Transactions
on Industrial Informatics, vol. 19, no. 2, pp. 1623–1633, 2023.

[32] T. Wang, C. Zhao, Q. Yang, S. Zhang, and S. C. Liew, “Ethna:
analyzing the underlying peer-to-peer network of ethereum
blockchain,” IEEE Transactions on Network Science and En-
gineering, vol. 8, no. 3, pp. 2131–2146, 2021.

[33] D. Huang, X. Ma, and S. Zhang, “Performance analysis of the
raft consensus algorithm for private blockchains,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
vol. 50, no. 1, pp. 172–181, 2020.

[34] S. Nakamoto and A. Bitcoin, “A peer-to-peer electronic cash
system,” Bitcoin, vol. 4, p. 2, 2008.

[35] R. L. S. De Oliveira, C. M. Schweitzer, A. A. Shinoda, and
L. R. Prete, “Using mininet for emulation and prototyping
software-defned networks,” in Proceedings of the 2014 IEEE
Colombian conference on communications and computing
(COLCOM), pp. 1–6, IEEE, Bogota, Colombia, June 2014.

[36] E. Androulaki, A. Barger, V. Bortnikov et al., “Hyperledger
fabric: a distributed operating system for permissioned
blockchains,” in Proceedings of the Tirteenth EuroSys Con-
ferenceSpringer, Berlin, Germany, 2018.

[37] B. Jiang, Q. He, X. Li, and H. Huang, “Qos control method
based on sdn for mobile cloud service,” in Proceedings of the
2020 IEEE 13th International Conference on Cloud Computing
(CLOUD), pp. 275–283, Honolulu, HI, USA, September 2020.

[38] Y. Zhu, X. Wu, and Z. Hu, “Fine grained access control based
on smart contract for edge computing,” Electronics, vol. 11,
no. 1, p. 167, 2022.

Security and Communication Networks 13




