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Te proliferation of video sharing on social networks has created a novel avenue for covert communication. Since most social
networking channels are lossy, researchers have devoted eforts to robust video steganography to establish covert communication on
social networks. Although there are various methods available, they often overlook the diferences between frames in a video and are
designed for a single frame. In this paper, we explore the general process of video recompression and present the frame quantization
step (FQS) and interframe mutual information (IFMI) to measure the frame diference in the process of video recompression. Based
on the two proposed metrics, we design a heuristic frame selection strategy and then propose a new robust video steganographic
method in the DWT-SVD domain. Extensive experiments demonstrate that heuristic frame selection can efectively improve the
robustness and reduce the computational complexity of video steganography. Our proposed method provides better robustness and
higher efciency than existing methods for building reliable covert communication on social networks, such as YouTube and Vimeo.

1. Introduction

Steganography is the science of concealing secret messages
within digital media without detection. Due to the wide-
spread use of social media platforms and advancements in
video coding technology, video sharing on the Internet has
become an increasingly prevalent trend. It has spurred the
development and research of both high-level and low-level
tasks based on videos, such as object recognition and
tracking [1, 2], video denoising [3], and video compression
[4].Te behavior of video sharing serves as an ideal cloak for
covert communication [5]. In recent years, video steg-
anography has emerged as a prominent research topic
within the feld of information hiding.

Trough the utilization of popular social networking
channels such as YouTube and Vimeo, hidden communication
can be accomplished by disseminating stego videos that carry
secret messages. Covert messages can be disseminated to
numerous recipients without being detected by regular users.
Te concealed sender-receiver relationship ensures complete

protection of secret communication. Nonetheless, most video-
sharing platforms employ lossy processing techniques on the
uploaded multimedia data. Te utilization of lossy processing
can introduce errors in message extraction, which include but
are not limited to video recompression, geometric attacks, and
visual enhancement techniques. Video recompression is
a widely used method on the Internet, which can highly reduce
the transmission bandwidth and save the storage space.
Generally, video recompression mechanisms are unknown on
social networks, and only the input and output can be obtained.
To construct reliable hidden communication, researchers
should pay more attention to robust video steganography
under lossy black-box channels.

Te current focus of research on robust video data hiding
has been predominantly centered on spatial-transform do-
mains in recent years. Tere are many robust watermarking
methods but relatively few robust steganographic methods. A
robust video watermarking method was presented by Huan
et al. in [6], which implanted a watermark in each video frame
by changing the coefcients in the joint subbands of the
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DTCWT (dual tree-complex wavelet transform) domain. Al-
though this method is robust against a range of geometric
attacks, its embedding capacity is limited due to the repetitive
watermark embedding. Sadek et al. [7] introduced a video
steganographic technique that utilized human skin regions to
hide secret messages. Nonetheless, the skin detection algorithm
utilized in this approach exhibits a notable decline in accuracy
following video recompression. A robust video steganographic
technique designed by Fan et al. [8] aimed to mitigate social
networking transcoding by embedding messages in the
DWT-SVD (discrete wavelet transform-singular value de-
composition) domain. However, this method is both time-
consuming and inefcient, requiring previous embedding and
extraction during the message embedding process.

Although some advancements have been made in cur-
rent robust video data-hiding techniques, the majority still
treat videos as a sequence of consecutive frames, embedding
messages based on each individual frame. In the process of
message embedding, there is no distinction between frames
in a video. However, the diference between frames does
exist and cannot be ignored. Actually, video compression
and recompression encode frames in a video into bitstreams
of diferent lengths. Te used codec tries to get an optimal
trade-of between visual distortion and bitstream length,
known as rate-distortion optimization. Te frames within
a video are superimposed with diferent levels of video
encoding noise. Even though the same hiding method is
used to deal with these frames, there is still a robustness
diference between frames in a video.

In this paper, we try to explore the robustness diference
between frames within the same video. By analyzing the process
of general video coding, we provide two evaluation metrics to
quantify the diference between frames, called the frame
quantization step and interframe mutual information. And
then, we present a heuristic frame selection method based on
the two metrics. Te optimal frames are selected to carry secret
messages. In our approach, we make use of the luminance (Y)
component and extract coefcients within the DWT-SVD
domain for a large embedding capacity. To decrease the BER of
the transmitted message, ECC (error correction code) is also
integrated into our approach. Experimental results demonstrate
that employing the proposed heuristic frame selection enhances
both the robustness and efciency of message embedding.
Compared with some existing methods, our proposed method
is more robust and reliable in constructing hidden commu-
nication over social networks, such as YouTube and Vimeo.

Te rest of this paper is organized as follows. In Section
2, some related work is described. In Section 3, we explore
the diference between frames in a video. Section 4 explains
the details of heuristic frame selection, message embedding,
and message extraction. Section 5 presents the experimental
outcomes, while Section 6 concludes the paper and examines
potential future research.

2. Related Work

Traditional multimedia steganography utilizes signal pro-
cessing techniques and manually modulates features for
message embedding. However, there are also attempts to

utilize deep learning to achieve end-to-end steganography
[9, 10]. As deep learning-based steganography is unable to
resist JPEG or video compression, robust steganographic
methods are generally designed based on signal processing
techniques. Embedding domain construction and coefcient
modulation are two main parts of robust steganography.

2.1. Embedding Domain. In robust steganography, spatial
and spatial-transform domains are two common types of
embedding domains. Commonly used spatial domains in-
clude RGB (red, green, and blue) color components [11],
YUV (luminance, chrominance) components [12], or color
histograms [13, 14]. In comparison to spatial domains,
spatial-transform domains provide superior imperceptibility
and robustness. Tese domains include the DCT (discrete
cosine transform) domain [15], the DWT domain [16, 17],
the SVD domain [18], and the DTCWT domain, among
others. Furthermore, it is a common practice to combine
various transformations to form joint embedding domains,
such as the DWT-DCT domain [19], DWT-SVD domain
[8, 20], and DTCWT-SVD domain [6, 21].

2.2. Coefcient Modulation. Te technique of coefcient
modulation is implemented to alter the input cover elements
for message embedding. Tere are broadly three kinds of
schemes for coefcient modulation, such as least signifcant
bit modulation, spread spectrum modulation [22, 23], QIM
(quantization index modulation) [24–26], and coefcient
correlation-based modulation [6, 27]. Considering the dif-
ference between coefcients to be modifed, some re-
searchers also design coefcient selection strategies to
further enhance robustness. Fan et al. [8] proposed a frame
selection strategy to improve robustness. Huan et al. [6]
selected some reasonable coefcients in the process of
message extraction.

3. Differences between Frames

In this section, we try to explore the robustness diference
between frames in the process of video compression and
recompression. First, we explain the general procedure of
video encoding and decoding in common video codecs.
Second, we analyze the noise source during lossy com-
pression or recompression.Tird, two evaluationmetrics are
proposed to measure the robustness diference between
frames, called the frame quantization step and interframe
mutual information.

3.1. General Procedures for Video Encoding and Decoding.
Te processes of video encoding and decoding are broadly
similar in common video codecs, including H.246/AVC [28]
and H.265/HEVC [29]. To explore the diference between
frames, we briefy introduce the general procedures of video
encoding and decoding.

As shown in Figure 1, video encoding includes intra-
frame and interframe prediction, DCT, quantization, and
entropy encoding. Intraframe and interframe prediction
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helps determine the optimal reference macroblock. Ten,
the residual between the current macroblock and reference
macroblock is transformed to get the DCT coefcients,
which are then quantized based on the preset quantization
parameter. Due to the diference in the preset rate control
parameter, the assigned quantization parameter of the
current macroblock is diferent in diferent video codecs.
Video decoding aims to restore the current macroblock by
parsing the corresponding bitstream, which is the inverse
process of video encoding.

3.2. Video Compression Noise. In the process of video
encoding, quantization is the only procedure that introduces
video compression noise. Empirically, the level of video
compression noise is mainly related to the size of the
assigned quantization step.

Let us denote the residual of the current macroblock as
R. Te whole lossy process is defned as follows:

RD � DCT(R),

RQ �
RD

qstep
  × qstep,

R∗ � IDCT RQ ,

(1)

where RD and RQ refer to the DCT coefcients and quan-
tized DCT coefcients, respectively, qstep is the assigned
quantization step size, and the quantized form of R is
denoted as R∗. According to the principle of quantization,
the quantization noise n of the current macroblock can be
roughly estimated, where n � |RQ − RD|≤ 1/2qstep. Te
quantization noise of a frame that contains multiple mac-
roblocks is directly proportional to its average quantization
step size.

Even under the same quantization step size, interframe
correlation also changes the compression noise added to
each frame. Suppose that R � Cb − Cr is close to 0 before
message embedding. After coefcient modulation, their new
residual is defned as R′ � Cb

′ − Cr
′ . If DCT(R′)≤ 1/2qstep,

RQ � 0 after quantization. Ten, R∗ is equal to 0, which
means the current macroblock is the same as its reference
macroblock after quantization, and the message bit em-
bedded into the current macroblock is erased. If there exists
a strong correlation between the current frame and its
reference frame, the probability of the above phenomenon
occurring would be high, and the BER of this frame would
increase accordingly.

3.3. Two Frame Diference Metrics. Section 3.2 analyzes the
source of video compression noise in units of macroblocks.
Te codec’s quantization step size and the correlation be-
tween the current macroblock and its reference macroblock
are only correlated with macroblock robustness with high
probability but cannot directly determine the robustness of
the current macroblock. Tus, this section designs two
evaluation metrics, called frame quantization step and
interframemutual information, to quantify the robustness of
each frame. A frame quantization step is given to measure
the frame quantization noise under a given video codec.
Interframe mutual information aims to quantify the cor-
relation between two consecutive frames.

3.3.1. Frame Quantization Step. Most robust video data-
hiding methods are constructed based on spatial domains.
Generated videos are then compressed and recompressed on
social networks, where quantization noise is bound to be
introduced. As stated in Section 3.2, the level of quantization
noise is found to be positively correlated with the quanti-
zation step size employed in a given video codec. Tus, we
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Figure 1: Schematic diagram of the general video encoding and decoding procedures. Cb and Cr are the current macroblock and the
reference macroblock, respectively. Teir residual is denoted as R1. R2 is the quantized version of R1.
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defne the frame quantization step as one frame diference
metric to measure the frame quantization noise. Te frame
quantization step is calculated as

Qstep(i) �
1
n



n

j�1
qstep(i, j),

qstep(i, j) � MAP(qp(i, j)),

(2)

where Qstep(i) is the quantization step size of the i-th frame,
qstep(i, j) and qp(i, j) are the assigned quantization steps
and quantization parameters of the j-th macroblock in the
i-th frame, respectively, and MAP is the quantization table
building a mapping from qp(i, j) to qstep(i, j). Te quan-
tization table is specifed in the video coding standard, and
diferent video coding standards set diferent quantization
tables.

3.3.2. Interframe Mutual Information. To reduce interframe
redundancy, video encoders usually encode the residual
between the current macroblock and the reference macro-
block instead of the current macroblock itself. From another
perspective, the macroblock residual refects the information
increment of the current macroblock. Since the reference
macroblocks of macroblocks in the same frame may be
distributed in diferent frames, for simplicity, we just cal-
culate interframe mutual information between two con-
secutive frames to quantify the information increment. Here,
interframe mutual information is defned as the cross en-
tropy between the current frame and its previous frame. It is
formulated as

MIi �
0, i � 1,

I Xi−1; Xi( , i � 2, 3, · · · , n,


I Xi−1; Xi(  � H Xi−1(  + H Xi(  − H Xi−1, Xi( ,

(3)

where Xi refers to the i-th frame, H(°) represents the in-
formation entropy of °, and n is the number of frames in
a video. MI measures the mutual dependence between two
consecutive frames. Te smaller the value of MIi, the weaker
the correlation between the i-th frames and its previous
frame. Due to rate-distortion optimization, the frame with
a large MI tends to be assigned a large quantization step.
Even under the same quantization step, messages embedded
in these frames are possibly erased after quantization. Tus,
interframe mutual information also efectively measures the
robustness diference between frames in a video.

4. Proposed Method

In Section 3, we explore the diference between frames and
propose two evaluation metrics to measure the robustness of
each frame. Based on the two presented metrics, we introduce
a novel approach for robust video steganography in the
DWT-SVD domain. First, robustness features are calculated
by combining the frame quantization step with the interframe
mutual information. Ten, we adaptively determine the op-
timal frames by setting a fxed threshold. Tird, we perform

preprocessing on available frames to obtain candidate co-
efcients to be modulated. Finally, secret messages are
encoded using RS (Reed-Solomon) codes [30] and then
embedded into candidate coefcients based on QIM. Te
proposed embedding framework is illustrated in Figure 2.

4.1. Heuristic Frame Selection. In this section, we provide
a heuristic frame selection method. Tis method adaptively
selects available frames based on the cover video itself, re-
gardless of the used steganographic method. Te idea of
selecting available frames was frst proposed in [8]. Teir
method is time-consuming and inefcient because the
previous message embedding and extraction are necessary to
choose available frames. Contrary to their method, our
frame selection method is independent of the used steg-
anographic scheme. Section 3.2 gives the frame quantization
step and interframe mutual information as metrics to
measure video compression noise. Te stronger the noise
added to a frame, the weaker the robustness of this frame.
Tus, we combine the two presented metrics to make
a comprehensive evaluation of the frame robustness and
design a heuristic strategy to select those available frames.
Te details of heuristic frame selection are explained as
follows:

(i) Perform transport channel matching [31] on the
input video to generate the cover video. Ten, ex-
tract the quantization parameter of each macro-
block in the video stream.

(ii) Look up the corresponding quantization table of the
video codec. According to the quantization pa-
rameter, extract the quantization step of each
macroblock. And then calculate the FQSs of all
frames in a video, denoted as
Qstep � (Qstep(1), Qstep(2), . . . , Qstep(n)).

(iii) Decode the cover video and generate the YUV
component sequence. Calculate the IFMI of the Y
component, defned asMI � (MI1, MI2, . . . , MIn).

(iv) BothQstep andMI are negatively correlated with the
frame robustness. Let us denote the scale factor and
threshold as η and ρ. Te robustness feature is
calculated as r � MI + ηQstep, which measures the
robustness of the current frame.

(v) Distinguish between available and unavailable
frames in a video. If there exists a value of i that
satisfes ri ≤ ρ, i � 1, 2, . . . , n, the i-th frame is de-
termined as an available frame; otherwise, it is
determined as an unavailable frame.

After transport channel matching, we can capture the
quantization parameter of a given channel. Even for a black-
box channel, our heuristic frame selection method can also
select the optimal frames for message embedding. Besides, r
is calculated based on the cover video itself without con-
sidering the actual message embedding. Tus, our proposed
frame selection can be used as a preprocessing method to
improve the robustness performance of some existing robust
video steganographic methods.
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4.2. Preprocessing. A set of cover coefcients can be pro-
duced through preprocessing for subsequent message em-
bedding and extraction. In this paper, the cover coefcients
belong to the DWT-SVD domain.

To get a large embedding capacity, we select the Y
component and divide it into nonoverlapping 16 × 16
blocks. For each block, DWT and SVD are successively
conducted to generate the candidate coefcient to be
modifed. DWT is performed using high-pass and low-pass
flters, which divide each block into four frequency sub-
bands, namely, LL, LH, HL, and HH. Te LL subband of the
i-th pixel block decomposed by DWT is denoted as XL

i . SVD
is conducted as

XL
i � UΛL

i V
T
, (4)

where the matrices U and V are both unitary, and ΛL
i �

di ag(λ1, λ2, . . . , λr, 0, . . . , 0) denotes the resulting singular
value matrix, where r refers to the rank of ΛL

i . Te foremost
singular value λ1 is used as the candidate coefcient of the
current block. Suppose that a video contains m available
frames, and each frame consists of n pixel blocks. We defne
the sequence of extracted coefcients as
c � (λ1,1

1 , λ1,2
1 , . . . , λ1,n

1 , λ2,1
1 , . . . , λ2,n

1 , . . . , λm,n
1 ).

4.3. Message Embedding. Tis section presents the message
embedding procedure of our method in the DWT-SVD
domain, which consists of three parts: preprocessing, RS
encoding, and QIM encoding. Te following subsections
provide a detailed description of each step of the message
embedding process.

(i) For a video, make a heuristic frame selection to
determine the available frames in a video. Ten, the
tags L of all frames are generated for the receiver to
distinguish available frames from unavailable
frames.

(ii) Make preprocessing on the frst k frames to get the
coefcient sequence c1. And make preprocessing on
the remaining available frames to generate the co-
efcient sequence c2.

(iii) Encode the secret message m based on RS code to
improve the success rate of hidden communication.

In addition, to ensure the security of the encoded
data, we apply scrambling to obtain a secure version
denoted asme, which makes it difcult for potential
attackers to recover the original message. Following
the same process, encode and scramble L to
obtain Le.

(iv) Conduct QIM encoding and modulate the co-
efcient sequence c1 to embed the data Le and c2 to
embed the data me. Suppose that the quantization
step sizes of QIM are set as Δ1 and Δ2. Te stego
coefcient sequences are calculated as
s1 � (c1/Δ1 + c1/∆1 + Le mod 2) × ∆1 and
s2 � (c2/Δ2 + c2/∆2 + me mod 2) × ∆2.

(v) Replace c1 and c2 with the stego coefcient se-
quences s1 and s2. Perform the inverse SVD on the
LL subband XL and then conduct inverse DWT on
the resulting 16 × 16 blocks to yield the new pixel
blocks. Finally, merging all these blocks produces
the modulated Y component.

(vi) All modulated frames are joined with other frames
to get the whole Y component sequence. Setting the
value of CRF (constant rate factor) to 0, we can
encode the YUV component in a lossless way and
then produce a new stego video.

It is worth mentioning that the frst k frames carrying the
tags L may not all be available frames. As the length of L is
equal to the number of frames in the entire video, it is
recommended to use short videos for message embedding
and to embed the tags L in the frst frame.

4.4. Message Extraction. Message extraction aims to recover
the embedded message from the stego video. Te quanti-
zation step sizes of QIM, ∆1 and ∆2, are taken as the key
parameters to be shared with the receiver for blind ex-
traction. Te specifc steps of message extraction are de-
scribed as follows:

(i) Decode the stego video to generate the YUV
component sequence. Obtain the frst kY compo-
nents to extract the stego coefcient sequence s1.

(ii) Conduct QIM decoding and extract the hidden data
from s1. Suppose that the quantization step size of
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Figure 2: Te steganographic framework by exploring diferences between frames.
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QIM is set as ∆1. Te hidden data is calculated as
Le � [s1/∆1] mod 2. Antiscramble and decode it
to get the tags L of frames.

(iii) Based on L, select the remaining available Y com-
ponents and then perform preprocessing to gen-
erate the stego coefcient sequence s2. Conduct
QIM decoding and extract the hidden data
me � [s2/∆2] mod 2.

(iv) Antiscramble me and utilize the corresponding RS
code to decode it. Ten, the fnal message m is
extracted.

5. Experiments

In this section, extensive experiments are conducted to test the
efectiveness of our proposed method. Te concrete experi-
mental settings, such as source video, lossy channel, and ex-
perimental platform, are described in detail. We perform the
robustness experiment, the security experiment, and the
computational complexity experiment to evaluate the overall
performance of ourmethod. Besides, the practical performance
is also verifed on social networks, such as YouTube andVimeo.

5.1. Experimental Settings

5.1.1. Source Video. Te dataset consists of 100 public videos
downloaded from YouTube, covering diverse domains such
as sports, news, advertising, and flms, among others, with
the resolution of 1080p (1920 × 1080) and varying durations
ranging from 30 seconds to 10minutes. Tese videos are
stored in the 4 : 2 : 0 chroma sampling format. To create the
cover video dataset for the experimental validation, we
randomly selected 100 video clips, each comprising 300
frames, from the original videos. We then cropped these
clips to generate videos with resolutions of 480p (640 × 480)

and 720p (1080 × 720) at a frame rate of 30 frames per
second using the H264 encoder.

5.1.2. Lossy Channel. To test the algorithm’s robustness in
lossy channels, we set up six lossy channels, including four
local channels and two social networking channels. Te
coding rate of each local channel is controlled through the
parameter CRF or QP (quantization parameter), with a value
of 20 or 26. YouTube and Vimeo are social networking
channels; their coding parameters are unknown.

5.1.3. Experimental Platform. Our experiments are based on
the MATLAB platform. Video encoding and decoding are
based on FFMPEG instructions. In the experiments, we
utilize the MATLAB instruction “system” to invoke an
FFMPEG executable for video compression and recom-
pression. Besides, DWT and SVD are implemented by
MATLAB functions. Te used CPU is Intel Xeon Bronze
3106 Processor with a base frequency of 1.7GHz.

5.2. Ablation Experiment. To verify the efectiveness of
heuristic frame selection, we perform an ablation test in this
section. Since heuristic frame selection is based on FQS and

IFMI, we design two other strategies as supplementary: FQS-
based frame selection and IFMI-based frame selection, re-
spectively. We also implement a random frame selection
scheme not based on any evaluation metric as a baseline. For
fair comparison, all of the above methods select the same
number of frames and follow the same process to conduct
message embedding.

Te experimental results are shown in Table 1. Te average
BERs of these four methods are 2.99%, 2.19%, 1.89%, and
1.63%, respectively. Te proposed frame diference metrics,
FQS and IFMI, are efective in enhancing the robustness of
video steganography. Te FQS-based method has stronger
robustness than the IFMI-based method. Our heuristic frame
selection provides the best overall performance in most local
channels, the average BER of which is about half of that of the
baseline. Under theQP26 channel, the average BER of the FQS-
based method is lower than that of heuristic frame selection. It
is because some frames with small IFMI are wrongly selected
increasing BER. In general, the combination of FQS and IFMI
is more efective than a single metric, and our proposed
heuristic frame selection can highly improve the robustness of
existing video steganographic methods.

5.3. Comparison with Other Methods. To make a compre-
hensive assessment of our proposed method, we carry out
comprehensive experiments covering four areas: embedding
capacity, robustness, security, and computational com-
plexity. Besides, we conducted a supplementary experiment
to evaluate the practicability of our method on social net-
works, such as YouTube and Vimeo. For comparison, both
Huan’s method [6] and Fan’s method [8] are utilized. It
should be noted that Huan’s method is specifcally aimed at
robust watermarking based on DTCWT and SVD, while
Fan’s method is intended for robust steganography using
DWT and SVD. For fairness, all cover videos are generated
utilizing transport channel matching, and the same video
samples are used for these methods to conduct message
embedding and extraction.

5.3.1. Embedding Capacity. In this section, we evaluate the
embedding capacity of Huan’s method, Fan’s method, and
our proposed method. Teir embedding rates are the same
and set to 1, where each message bit is embedded into
a single candidate coefcient. Since certain techniques
employ ECC and add error correction bits, the efective
embedding capacity is computed as

Ca � %⌊ eCm

z %⌋, (5)

where the metric used to quantify Ca is bpf (bits per frame),
Cm refers to the maximum embedding capacity, z refers to
the overall frame count in a video, and e is the code rate of
ECC. Assuming a method does not use ECC, e is equal to 1.

Te experimental results are shown in Figure 3. Ca of
Huan’s method varies from 15 bpf to 50 bpf, Fan’s method
varies from 250 bpf to 800 bpf, and our method varies from
150 bpf to 390 bpf. Compared to two other methods, Huan’s
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method provides the least embedding capacity even without
introducing ECC. Tus, robust watermarking is often not
suitable for covert communication scenarios due to its low
embedding capacity. Ca of our method is lower than Fan’s
method. It is because heuristic frame selection excludes
many nonrobust frames and leads to a decrease in Ca.

5.3.2. Robustness. Tis section presents a robustness eval-
uation based on four local lossy channels. For fairness, we
fne-tune the length of messages embedded into videos and
keep the average embedding capacity of Fan’s method the
same as our method. Besides, the embedding strength of
Huan’s method is carefully determined for the best ro-
bustness, and the quantization steps of Fan’s method and
our method are set to be equal and adaptively adjusted
according to the given channels. It is worth mentioning that
the ECC used is diferent in these three methods. Huan’s
method does not utilize any ECC, Fan’s method uses BCH
(15, 5), and our method introduces RS (127, 63).

In order to accurately assess the level of robustness, we
perform a calculation of the BER for the generated message
both prior to and subsequent to RS decoding. Tese are
denoted as Re,1 and Re,2, correspondingly. We utilized the

average BER denoted as Re and the success rate denoted as
Rs to evaluate the robustness of each group of videos. Re and
Rs are calculated as

Re �


v
i�1Re,1(i) 

v
,

Rs �


v
i�1 Re,2(i) �� 0  

v
,

(6)

where the BER for the generated message prior to and
subsequent to RS decoding from the i-th video is represented
as Re,1(i) and Re,2(i), respectively, and v denotes the number
of videos in each group. A value of Re,2(i) � 0 indicates
a successful completion of covert communication between
the sender and receiver. As a result, Rs serves as a record of
the communication success rate.

Table 2 presents the experimental results, demonstrating
that the average BER across Huan’s method, Fan’s method,
and our method is 19.70%, 2.18%, and 1.65%, corre-
spondingly. It could be observed that the BER of Huan’s
method increases sharply when expanding its embedding
capacity and applying it to covert communication scenarios.
Compared with Huan’s and Fan’s methods, our method
provides better robustness against video recompression. In
addition, our method achieves higher success rates in covert
communication than two other methods, ranging from 53%
to 92%. Under the qp32 channel, Fan’s method has a lower
Re and Rs because the efect of message embedding on frame
selection cannot be ignored under the qp32 channel. Overall,
our method provides superior robustness to construct re-
liable covert communication on lossy channels.

5.3.3. Feasibility on Social Networks. In this section, we test
the feasibility of our method on social networks, such as
YouTube and Vimeo. Tus, the recompression channel is
changed to YouTube or Vimeo instead of the previous local
channels. For simplicity, we randomly selected 30 480p
videos and 30 720p videos for validation. Te used ECC is
changed to RS (127, 31) for better error correction perfor-
mance. Other experimental settings are the same as those of
the robustness experiment.

Table 3 presents the corresponding experimental results.
It can be observed that the average Re of Huan’s method is
20.87%, the average Re of Fan’s method is 11.12%, and the
average Re of our method is 6.18%. Te average Re of our
method is about 5% lower than that of Fan’s method. Since

Table 1: Average BER of the method using frame selection based on diferent metrics.

FQS IFMI
480p (%) 720p (%)

crf26 crf32 qp26 qp32 crf26 crf32 qp26 qp32
× × 3.03 3.25 2.84 4.84 2.38 2.35 2.51 2.55
× √ 2.75 2.45 2.32 2.82 2.29 1.40 2.19 2.31
√ × 2.51 2.04 1.1 2.77 1.92 1.41 0.87 2.45
√ √ 1. 0 1. 4 1.63 2.61 1.29 1.13 1.27 2.0 
Te bold values are the minimum value of the column. Te smaller the value, the stronger the robustness of the corresponding algorithm under the same
compression channel. Terefore, the bold values indicate that the corresponding method provides the strongest robustness under the current compressed
channel.
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Figure 3: Te average embedding capacity of videos under a res-
olution of 480p or 720p.
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the transcodingmechanisms are unknown, the average BERs
of these three methods increase on social networks com-
pared with local channels. Although Re increases on social
networks, our method still outperforms Huan’s and Fan’s
methods. On YouTube, Rs of our method is up to 70%.
Under the Vimeo channel, Rs of our method can reach 30%.
Our method demonstrates better robustness than the two
other methods even on social networks. Our method is more
practical for reliable covert communication on social net-
works, such as YouTube and Vimeo.

5.3.4. Security. Tis section aims to assess the security
performance of our method against video steganalysis, in
comparison with Fan’s method. Huan’s method is a water-
marking method and is not directly relevant to this security
evaluation. Besides, we conduct message embedding without
frame selection in the DWT-SVD domain, which is used as
the baseline for the security evaluation. Steganalysis based on
SPAM (subtractive pixel adjacency matrix) features [32] is
realized. Meanwhile, a steganalysis algorithm to detect DCT-
based data-hiding methods for H.264/AVC videos [33] is
realized, and VDCTR (Video DCT Residuals) features are
extracted.Te ensemble classifer [34] is used as the classifer
to train SPAM features and VDCTR features, respectively.
We generate cover and stego samples at embedding rates of
0, 0.1, 0.2, and 0.3. Half of the cover-stego pairs are randomly
selected for training purposes, whereas the other half is
reserved for the test set.

To evaluate the security of the steganalysis classifer, we
consider the OOB (out of bag) error denoted as EOOB as the

evaluation criterion. It is worth noting that EOOB serves as an
unbiased estimate of the minimum overall detection error
rate, denoted as PE. Te latter can be defned as

PE � min
PFA

1
2

PFA + PMD( , (7)

where PFA and PMD refer to the false alarm rate and the
missed detection rate, respectively. A larger value for EOOB
indicates better security performance against steganalysis.

Te experimental results are given in Figure 4. Under
SPAM-based steganalysis, the average detection error rates
of the baseline, Fan’s method, and our method are 0.3740,
0.4729, and 0.4740, respectively. Under VDCTR-based
steganalysis, their average PE is 0.4481, 0.4912, and
0.4807, respectively. Te average PE of the baseline is lower
than Fan’s and our methods.Temain reason is that a stego
video contains both frames modifed and frames not
modifed due to frame selection. In the training phase, the
used classifer is confused by the steganalysis features that
are extracted from unmodulated frames in a stego video.
Moreover, our and Fan’s methods are secure enough to
resist SPAM-based and VDCTR-based steganalysis, and
the steganalysis performance of SPAM is even stronger
than that of VDCTR. It is because the stego videos undergo
video recompression in lossy channels, and video recom-
pression noise erases the modulation noise to a certain
extent. Tus, in a real covert communication scenario, our
method can provide a satisfactory level of security per-
formance thanks to video recompression and frame
selection.

Table 2: Average BER Re and success rate Rs under the local channel of crf26, crf32, qp26, or qp32.

Resolution Algorithm
crf26 (%) crf32 (%) qp26 (%) qp32 (%)

Re Rs Re Rs Re Rs Re Rs

480p
Huan et al. [6] 15.34 — 20.17 — 12.98 — 18.33 —
Fan et al. [8] 2.31 63 2.16 69 2.24 68 3.87 16
Our method 1.41 88 1.39 88 1.63 78 2.94  3

720p
Huan et al. [6] 21.43 — 24.87 — 20.93 — 23.51 —
Fan et al. [8] 1.64 87 1.47 90 2.03 70 1.69 86
Our method 1.20 89 1.09 92 1.40 83 2.13 68

Te bold values are the minimum Re or maximum Rs of the column at a certain resolution. Te smaller the Re, the stronger the robustness of the
corresponding algorithm, and the larger the Rs, the stronger the robustness of the corresponding algorithm. Te bold values indicate that the corresponding
algorithm has the strongest robustness at the current resolution.

Table 3: Average BER Re and success rate Rs on social networks.

Resolution Algorithm
YouTube (%) Vimeo (%)

Re Rs Re Rs

480p
Huan et al. [6] 20.06 — 17.32 —
Fan et al. [8] 14.02 0 9.55 13
Our method 7.7 10 6.3 30

720p
Huan et al. [6] 24.41 — 21.67 —
Fan et al. [8] 8.21 20 12.68 10
Our method 3.82 70 6.78 27

Te bold values are the minimum Re or maximum Rs of the column at a certain resolution. Te smaller the Re, the stronger the robustness of the
corresponding algorithm, and the larger the Rs, the stronger the robustness of the corresponding algorithm. Te bold values indicate that the corresponding
algorithm has the strongest robustness at the current resolution.
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5.3.5. Computational Complexity. Tis section is designed to
test the computational complexity. For fair comparison,
each frame is loaded with the same number of messages.
Huan’s method is not considered due to its low embedding
capacity, and we just calculate the spent time of our pro-
posed method and Fan’s method.

We measure the computational complexity by calcu-
lating the total time of frame selection, embedding, and
extraction. Since the number of frames difers in diferent
videos, the time spent per frame is used as an evaluation
metric. It is defned as

ttol � tsf + tem + tex,

tsf , tem, tex �
T

z
,

(8)

where ttol, tsf , tem, and tex are measured by spf (seconds per
frame) and refer to the total time consumed per frame and
the time consumed per frame in each stage, respectively, T

refers to the execution time in each phase, and z is the
number of frames in a video.

Table 4 shows the computational time at each stage. Te
average time of our method is 0.9877 spf in the message
embedding phase and 0.3425 in the message extraction
phase, both of which are close to the computational time of
Fan’s method. However, the average time of our method is
0.0578 spf in the frame selection phase, which is about 1/28
of that of Fan’s method. Te total time spent per frame is

about half of Fan’s method. Terefore, our method is twice
as efcient as Fan’s method for covert communication due to
the low computational complexity of heuristic frame
selection.

6. Conclusion and Future Work

In this paper, we explore the robustness diference between
frames in the process of video compression or recom-
pression. Two evaluation metrics are given to measure the
diference between frames, called the frame quantization
step and interframemutual information. A new robust video
steganographic method is proposed to resist video recom-
pression based on the two metrics. Experimental results
demonstrate that our proposed method greatly reduces
computational complexity and improves robustness in lossy
channels. Besides, our method is still efective in resisting
video recompression on social networks, such as YouTube
and Vimeo.

Tere are some limitations in our current work. Tough
our approach shows good robustness against video
recompression, it falls short in the face of geometric attacks.
Furthermore, the success rate of covert communication on
social networks still has room for improvement. In the
future, we will explore other sources of video recompression
noise. Te improvement of the modulation algorithm is also
a direction worthy of further research.
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Figure 4: PE of video steganalysis based on (a) SPAM or (b) VDCTR.

Table 4: Computational time of each frame in each phase under a resolution of 480p or 720p.

Method
480p (spf) 720p (spf)

tsf tem tex ttol tsf tem tex ttol

Fan et al. [8] 0.9980 0.6999 0.2257 1.9236 2.2374 1.2673 0.4 40 3.9587
Our method 0.0288 0.7016 0.22 0 0.9  4 0.0867 1.2738 0.4599 1.8204
Te bold values are the minimum value of the column at a certain resolution. Te smaller the value, the shorter the computational time. Te bold values
indicate that the corresponding algorithm has lower computational complexity at the current resolution.
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